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1 Simulation Pipeline

1.1 Step 1: Simulating biological replicates

In order to approximate the situation in real RNA-seq experiment, we required two groups
of empirical RNA-seq samples representing control and treatment groups respectively. First,
the pipeline selected a random subset of genes that had more than one transcript based on
annotation and that were expressed (have non-zero read counts in every replicate) in both
input groups as true AS genes. The total transcripts copy number on a simulated gene was
proportional to the number of reads counted on the real gene. We also introduced biological
variance to gene expression by using Negative Binomial(NB) distributions. NB distribution is
widely used for modeling variance across biological replicates. For each gene g we calculated
mean µg and variance σ2

g of gene-level read counts across replicates and then performed a
Loess regression f on the set of points (µg, σ

2
g). Thus we can borrow information across genes

and do not rely on having large enough number of replicates to estimate variance. In the
simulation studies with the same dispersion pattern we forced the regression function f to be
the same under two conditions. For the simulation studies using different dispersion patterns
the regression function f was learned from each of the two input groups and thus it differed
for the two simulated conditions. The advantage of using Loess function is that Loess fitting
does not make the same assumption of global homoscedasticity as general linear regression.
Finally, the transcript counts for gene g were generated by NB distribution parameterized
by mean µg and fitted variance f(µg).

1.2 Step 2: Simulating differential splicing

We defined a parameter, PALT , to control the relative transcript abundances across con-
ditions. PALT stands for Percentage of ALTernative form, ranging from 0 to 1. The rel-
ative transcript abundances of a multi-isoform gene g which has i isoforms, denoted by
eg = (e1

g, ..., e
i
g), were decided through the following formulas.

• if g is a AS gene, then we set ejg = PALT, ifj = i and ejg = 1−PALT
i−1

, ifj 6= i.

• if g is not a AS gene, then we draw the relative abundance from a standard uniform
distribution ejg ∈ uniform(0, 1) with a constraint

∑i
j=1 e

j
g = 1
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In addition, we introduced another parameter Read Depth(RD) to allow user to control the
mean per-based read depth which is defined as: L ∗ N/T Where L is the read length; N is
the number of reads mapped to transcriptome; T is the transcriptome size.

Therefore the final absolute transcript abundance in the custom transcriptome expression
profile are the product of gene-level transcript counts from step 1, relative transcript abun-
dances and read depth tuner which makes sure the desired read depth is generated. Finally,
the program, Flux Simulator calls this profile to generate RNA-seq reads.
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Figure S1: A two-step simulation pipeline. SAM files from real data are used as input for
this pipeline. In the first step biological replicates are simulated by using Negative Binomial
(NB) models. The raw fragment counts mean µg and variance σ2

g are calculated from the
input. A regression function f is fitted on the set of points (µg, σ

2
g). Then the fitted variances

are used as parameters in the NB models to generate three replicates, e.g. a, b, c. In the
second step. The updated gene-level fragment counts are separate onto transcript levels
based on the relative abundances and desired read depth. Finally, Flux Simulator is used to
generated simulated RNA-seq reads.
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2 Sanity check of synthetic data

To simulate biological replicates, we used Arabidopsis heat shock dataset [1] which contains
three replicates for each of the two time points. The first time point was immediate after
heat stress. The second was 24 h after recovery from the heat stress. The mean fragment
counts across replicates and mean-variance relationship used in the simulation were estimated
from the heat shock data set. Figure S2 shows the mean and variance of fragment counts in
the log scale for synthetic data in baseline simulation study RD100H

D and heat shock data.
There was a good agreement which indicated that the negative binomial model used in the
simulation captured the mean-variance relationship or dispersion well. We further compared
the distribution of the mean fragment counts in log scale. The simulation again captured the
distribution in real data well.
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Figure S2: Comparison between real (left panels) and synthetic data (right panels). The
2 panels on top are scatter plots of mean-variance relationship across replicates. The blue
lines are LOWESS regression lines. The orange lines are variance = mean lines. It is clear
that the real data is overdispersed with respect to what we would expect from a Poisson
distribution and that it was well captured by a negative binomial distribution using in the
simulated data. The two panels at the bottom compare the fragment counts distribution.
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3 Command lines and parameter choices

3.1 Cufflinks

Cufflinks was written in Python and C++. It can be downloaded from http://cufflinks.

cbcb.umd.edu/. We used the version 2.1.1 in this study. A newer version 2.2.0 was release
while we were writing the paper.

cufflinks -p 8 -o RD100.control_r1 -L RD100C1 RD100.control_r1.sam

cufflinks -p 8 -o RD100.control_r2 -L RD100C2 RD100.control_r2.sam

cufflinks -p 8 -o RD100.control_r3 -L RD100C3 RD100.control_r3.sam

cufflinks -p 8 -o RD100.high.diff_r1 -L RD100HDM1 RD100.high.diff_r1.sam

cufflinks -p 8 -o RD100.high.diff_r2 -L RD100HDM2 RD100.high.diff_r2.sam

cufflinks -p 8 -o RD100.high.diff_r3 -L RD100HDM3 RD100.high.diff_r3.sam

cuffmerge -g TAIR10_GFF3_genes.gff -s TAIR10_nucleus.fas -p 8 assemblies.

txt

cuffdiff -o diff_out -b TAIR10_nucleus.fas -L treatment ,control -p 8 -

u merged_asm/merged.gtf RD100.high.diff_r1.sam ,RD100.high.diff_r2.sam ,

RD100.high.diff_r3.sam RD100.control_r1.sam ,RD100.control_r2.sam ,RD100.

control_r3.sam

3.2 DEXSeq

DEXSeq is a R package available in Bioconductor. We used the latest version 1.8.0 in this
study.

library (" DEXSeq ")

inDir =" countTables"

infile=c(" RD100.high.diff_r1.count","RD100.high.diff_r2.count","RD100.high

.diff_r3.count","RD100.control_r1.count","RD100.control_r2.count","

RD100.control_r3.count ")

setwd (" countTables ")

annotationfile=file.path(" TAIR10_GFF3_genes_countingBin.gtf")

samples = data.frame(

condition = c(rep(" treated", 3), rep(" untreated", 3)),

replicate = c(1:3, 1:3),

row.names = c("g2_1","g2_2","g2_3","g1_1","g1_2","g1_3"),

stringsAsFactors = TRUE ,

check.names = FALSE

)

samples$replicate=factor(samples$replicate)

ecs = read.HTSeqCounts(countfiles = file.path(inDir ,infile),design =

samples ,flattenedfile = annotationfile)

ecs <- estimateSizeFactors(ecs)

ecs <- estimateDispersions(ecs)

ecs <- fitDispersionFunction(ecs)

ecs <- testForDEU(ecs)

res1 <- DEUresultTable(ecs)

sigExon=subset(res1 , res1$padjust <0.05)
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3.3 DiffSplice

DiffSplice was written in C++. It can be downloaded from http://www.netlab.uky.edu/

p/bioinfo/DiffSplice/. We used the latest version 0.1.1 in this study.

diffsplice settings.cfg datafile.cfg output

## parameters used in settings.cfg

thresh_junction_filter_max_read_support 2

thresh_junction_filter_mean_read_support 0

thresh_junction_filter_num_samples_presence 0

ignore_minor_alternative_splicing_variants yes

thresh_average_read_coverage_exon 0

thresh_average_read_coverage_intron 0

balanced_design_for_permutation_test no

false_discovery_rate 0.05

thresh_foldchange_up 0.5

thresh_foldchange_down 0.5

thresh_sqrtJSD 0.1

3.4 DSGseq

DSGseq consists of a set of R scripts but is not a standard R packages. It can be down-
loaded from http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/. We used the latest
version 0.1.0.

bamToBed -i RD100.high.diff_r1.bam > RD100.high.diff_r1.bed

bamToBed -i RD100.high.diff_r2.bam > RD100.high.diff_r2.bed

bamToBed -i RD100.high.diff_r3.bam > RD100.high.diff_r3.bed

bamToBed -i RD100.control_r1.bam > RD100.control_r1.bed

bamToBed -i RD100.control_r2.bam > RD100.control_r2.bed

bamToBed -i RD100.control_r3.bam > RD100.control_r3.bed

SeqExpress count RD100.high.diff_r1.bed TAIR10.merge.refFlat RD100.high.

diff_r1.count

SeqExpress count RD100.high.diff_r2.bed TAIR10.merge.refFlat RD100.high.

diff_r2.count

SeqExpress count RD100.high.diff_r3.bed TAIR10.merge.refFlat RD100.high.

diff_r3.count

SeqExpress count RD100.control_r1.bed TAIR10.merge.refFlat RD100.

control_r1.count

SeqExpress count RD100.control_r2.bed TAIR10.merge.refFlat RD100.

control_r2.count

SeqExpress count RD100.control_r3.bed TAIR10.merge.refFlat RD100.

control_r3.count

Rscript DSGNB.R 3 RD100.high.diff_r1.count RD100.high.diff_r2.count RD100.

high.diff_r3.count 3 RD100.control_r1.count RD100.control_r2.count

RD100.control_r3.count RD100_high_diff.DSGresult
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3.5 MATS

MATS was written Python. It can be downloaded from http://rnaseq-mats.sourceforge.

net/. We used the latest version 3.0.8 in this study.

python RNASeq -MATS.py -b1 RD100.high.diff_r1.bam ,RD100.high.diff_r2.bam ,

RD100.high.diff_r3.bam -b2 RD100.control_r1.bam ,RD100.control_r2.bam ,

RD100.control_r3.bam -gtf TAIR10_GFF3_genes.gtf -t paired -len 100 -o

MATS_OUT

3.6 SeqGSEA

SeqGSEA is a R package available in Bioconductor. We used the version 1.2.1. A newer
version 1.5.0 was release while we were writing the paper.

library(SeqGSEA)

rm(list=ls())

case.pattern <- "^ RD100.high"

ctrl.pattern <- "^ RD100.control"

case.files <- dir(" RD100.high.dm/seqgsea", pattern=case.pattern , full.

names = TRUE)

control.files <- dir(" RD100.control/seqgsea", pattern=ctrl.pattern , full.

names = TRUE)

output.prefix <- "SeqGSEA.result"

library(doParallel)

cl <- makeCluster (2)

registerDoParallel(cl)

perm.times <- 1000

RCS <- loadExonCountData(case.files , control.files)

RCS <- exonTestability(RCS , cutoff =5)

geneTestable <- geneTestability(RCS)

RCS <- subsetByGenes(RCS , unique(geneID(RCS))[ geneTestable ])

geneIDs <- unique(geneID(RCS))

RCS <- estiExonNBstat(RCS)

RCS <- estiGeneNBstat(RCS)

permuteMat <- genpermuteMat(RCS , times=perm.times)

RCS <- DSpermutePval(RCS , permuteMat)

3.7 SplicingCompass

SplicingCompass is a R package. We used the latest version 1.0.1.

library (" SplicingCompass ")

packageDescription (" SplicingCompass ")

expInf=new(" ExperimentInfo ")

expInf=setDescription(expInf ," Group1 vs Group2 ")

expInf=setGroupInfo(expInf ,

groupName1 =" ControlGroup1",sampleNumsGroup1 =1:3,
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groupName2 =" CaseGroup2",sampleNumsGroup2 =4:6)

covBedCountFilesControl=c(

"RD100.control_r1.covBed",

"RD100.control_r2.covBed",

"RD100.control_r3.covBed ")

covBedCountFilesCase=c(

"RD100.high.diff_r1.covBed",

"RD100.high.diff_r2.covBed",

"RD100.high.diff_r3.covBed ")

junctionBedFilesControl=c(

"RD100.control_r1.juncBed",

"RD100.control_r2.juncBed",

"RD100.control_r3.juncBed ")

junctionBedFilesCase=c(

"RD100.high.diff_r1.juncBed",

"RD100.high.diff_r2.juncBed",

"RD100.high.diff_r3.juncBed ")

expInf=setCovBedCountFiles(expInf ,c(covBedCountFilesCase ,

covBedCountFilesControl))

expInf=setJunctionBedFiles(expInf , c(junctionBedFilesCase ,

junctionBedFilesControl))

expInf=setReferenceAnnotation(expInf ," TAIR10_TableUnion.gtf")

referenceAnnotationFormat=list(IDFieldName =" geneSymbol",idValSep =" ")

expInf=setReferenceAnnotationFormat(expInf ,referenceAnnotationFormat)

checkExperimentInfo(expInf)

countTable=new(" CountTable ")

countTable=setExperimentInfo(countTable ,expInf)

countTable=constructCountTable(countTable ,printDotPerGene=TRUE)

sc = new(" SplicingCompass ")

sc = constructSplicingCompass(sc , countTable ,

minOverallJunctionReadSupport =3)

sc = initSigGenesFromResults(sc , adjusted=TRUE , threshold =0.05)

sigGenes = getSignificantGeneSymbols(sc)

resTab = getResultTable(sc)

rDIff-parametric

rDiff can be downloaded from http://cbio.mskcc.org/public/raetschlab/user/drewe/

rdiff/. We used the latest version 0.3.

rdiff -o RD100HighDm -d data/ -a RD100.control_r1.bam ,RD100.control_r2.bam

,RD100.control_r3.bam -b RD100.high.diff_r1.bam ,RD100.high.diff_r2.bam ,

RD100.high.diff_r3.bam -g data/TAIR10_GFF3_genes.gff -m param -L 100
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4 Comparison of two different MATS results

Table S1: MATS result using junction reads only versus result using both junction reads
and exon body reads in simulation study RD100H

D . The Pearson correlation of the p-values
in these two results is as high as 0.978.

EventType NumEvents.JC.only SigEvents.JC.only NumEvents.JC+
readsOnTarget

SigEvents.JC+
readsOnTarget

SE 704 153 704 152

MXE 14 1 14 1

A5SS 556 165 556 165

A3SS 1106 314 1106 313

RI 983 311 985 311

SE: Skipped exon
MXE: Mutually exclusive exon
A5SS: Alternative 5’ splice site
A3SS: Alternative 3’ splice site
RI: Retained intron
NumEvents.JC.only: total number of events detected using junction reads only
SigEvents.JC.only: number of significant events detected using junction reads only
NumEvents.JC+readsOnTarget: total number of events detected using both junction reads and
exon body reads
SigEvents.JC+readsOnTarget: number of significant events detected using both junction reads
and exon body reads

5 Computational time requirement

We ran the code shown in the previous section in Iowa State University super cluster called
Lightning. The code was all executed in a single node and a single core with 16GB RAM.
Although we used a cluster, this amount of computational power can be easily obtained in
a standard PC. All the programs were finished within a few hours. The computation time
required for SeqGSEA is largely affected by the permutation times. In this study, we set
it to 1000. The total required CPU time for each method in the baseline simulation study
RD100H

D is given in the Table S1.

Table S2: Total computational time in CPU-seconds

Cufflinks DEXSeq MATS SpComp DSGseq rDiff-param DiffSplice SeqGSEA

41172s 6096s 8371s 10408s 1256s 1038s 4415s 39539s
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6 Visualization of read alignments in heat shock data

for experimentally validated AS genes

We have examined a few Arabidopsis genes that are known to be differentially spliced in
response to ambient temperature changes. The following figures are the visualization of
reads alignment of these few known genes using Integrated Genome Browser [4]. Solid bars
represent reads, and thin lines indicate gaps in the alignment.

6.1 LHY

LATE ELONGATED HYPOCOTYL (LHY), circadian clock genes, are known to be differ-
ential spliced in response to temperature changes[2]. 5 transcripts have been found (based on
TAIR10) in gene AT1G01060 which belongs to LHY gene family. Transcript AT1G01060.4
differs from other transcripts by 3-nt difference in the 3’ site.

Figure S3: LHY. Visualization of read alignments in heat shock data. Reads from heat
stress group are colored in red whereas reads from control groups are colored in blue. The
black arrow indicates where the AS event happens in the gene model.

6.2 SR45

AT1G16610 encodes SR45 which is a member of SR protein family. A alternative 3’SS event
differed by a 21-nt sequence has been found to occur as ambient temperature changes [7].
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Figure S4: SR45. Visualization of read alignments in heat shock data. Reads from heat
stress group are colored in red and reads from control groups are colored in blue. The black
arrow indicates where the AS event happens in the gene model.

6.3 SR1/SR34

AT1G02840 encodes SR1/SR34 protein, a member of highly conserved family of spliceosome
proteins. An alternative 3’SS event has been found as ambient temperature changes[6].
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Figure S5: SR1/SR34. Visualization of read alignments in heat shock data. Reads from
heat stress group are colored in red and reads from control groups are colored in blue. The
black arrow indicates where the AS event happens in the gene model.

6.4 SR30

AT1G09140 encodes SR30, a member of highly conserved family of spliceosome proteins. An
alternative 3’SS event has been found in response to heat stress [6].
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Figure S6: SR30. Visualization of read alignments in heat shock data. Reads from heat
stress group are colored in red and reads from control groups are colored in blue. The black
arrow indicates where the AS event happens in the gene model.

6.5 P5CS1

P5CS1 gene (AT2G39800) contains an exon-3 skipping event which is subject to temperature
variation [3].
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Figure S7: P5CS1. Visualization of read alignments in heat shock data. Reads from heat
stress group are colored in red and reads from control groups are colored in blue. The black
arrow indicates where the AS event happens in the gene model.

6.6 FLM

AT1G77080 encodes FLM, a protein which regulates flowering. An mutually exclusive exon
event has been found in subject to temperature changes [5]
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Figure S8: FLM. Visualization of read alignments in heat shock data. Reads from heat
stress group are colored in red and reads from control groups are colored in blue. The black
arrow indicates where the AS event happens in the gene model.

7 Supplementary figures

This section contains supplementary figures referred to in the main article.

Figure S9: ROC curves evaluation for three different AS ratios when two groups of samples
have the same dispersion pattern. ROC curves for simulation studies HighSame

100x (left panel),
MediumSame

100x (middle panel), LowSame
100x (right panel). These ROC curves are obtained at a simple

size of 3 for each condition.
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Figure S10: ROC curves evaluation for the two different samples sizes. Left panel shows
ROC curves in the baseline simulation study HighDiff

100xRD100H
D which contained three repli-

cates for each condition. The right panel shows the ROC curves when the sample size was
increased to 8.

Figure S11: ROC curves evaluation for three different read depths, simulation studies
100xDiff

High (left panel), 60xDiff
High (middle panel), 25xDiff

High(right panel).
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