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S1: Details on possible extensions of exogenous parameters the hydro-economic model  

Our hydro-economic hydropower model was designed to combine approaches of economic 
hydropower optimization with hydrological parameters. The main goal was the assessment of 
water level fluctuations in a hydropower reservoir. The basic premise of our approach is to 
provide a flexible modular setup that can easily be adjusted to available model capacities. The 
presented generic model represents the linkage between economic dispatch and WLF. This in 
turn can be linked to more detailed economic models providing price inputs and market 
dynamics on the economic side and more detailed hydrological, and climate models on the 
water inflow side. We would like to emphasize that more detailed programming inevitable 
makes the model more case-specific because more exact boundaries and exogenous 
parameters have to be assumed. To pertain to a more general approach in the main manuscript 
we therefore provide possible model adjustments here in the supplementary materials. 

  

Adjustments to generic model formulation to extend economic aspects  

From an ecological perspective the seasonality of WLF is crucial because it affects aquatic 
organisms’ life-cycles (see main manuscript for examples). Based on published literature on 
hydropower operations, we therefore chose mid-term optimization that shows monthly or 
weekly resolutions of storage level values for our model (Birger et al. 2001). As a more 
detailed production optimization, an alternative short-term optimization can be adopted with a 
time horizon consisting of incremental steps such as hours or quarter-hours. Such a model 
extension merely requires more detailed price data and potentially higher computation 
capacities as the model size increases, but the generic formulation remains unchanged 
(Borghetti et al. 2008; Chang et al. 2001). In the generic model energy prices were assumed as 
exogenously given. A possible model extension is to approximate real and future prices by 
stochastic dynamic programming (Eichhorn 2010); i.e., by using time series of historic 
information to generate price distributions, by forward simulation (a model tries to find 
possible value developments based on current data sets (Longstaff and Wang 2004)), or by a 
rolling planning model approach (Troy et al. 2010). Further details how stochastic dynamic 
programming is used to determine energy prices and inflows could be taken from: Siqueira et 
(al. 2006) who employed stochastic programming; from Blanco et al. (2001) who modeled 
prices with geometric Brownian motion; from Birger et al. (2001) who used Stochastic 
Dynamic programming based on a Markov chain principle; and from Zambelli et al. (2009) 
who modeled prices and inflows in concert using an open-loop feedback control framework. 

 

Adjustments to exogenous hydrological parameters 

The second adjustable aspect of the generic model is its linkage to detailed hydrological 
inflow and climate models. In the generic formulation this linkage is represented by the 
external input parameter natural inflows it . For the climate change scenario S2 we adjusted 
the base case values according to forecasts specifically modelled for the reservoir which we 
investigated. 

Consequently, the same can be carried out for a large variety of other influences like 
evaporation depending on the available model capacities. Further details of how climate 
change in the form of all possible effects on the water-balance of a reservoir catchment can 
result in different exogenous parameters can e.g. be found in Wang et al. (2014) who used 
Grey Forecasting Models to forecast precipitation. An overall review of methodologies 
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developed to capture and forecast the effects of climate change on hydropower reservoirs in 
alpine regions can be found in Gaudard et al. (2014)  

Finally, also the included technical parameters can easily be tailored to the specificities of the 
investigated hydro plant (Lu et al. 2004). Turbine capacities, minimum and maximum storage 
levels and further regulatory restrictions can be adjusted and added/omitted following the 
logic presented in the generic model framework (Schlecht and Weigt 2014).  
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