
Example of a simple stochastic spatial discrete
event system (SSpDES)

Let us assume that we would like to model the growth of a population of cells
in a fixed size environment. For simplicity purposes let us consider that the
environment comprises 2 × 2 spatial compartments where each compartment
can hold at most one cell. Cells can be of two types, wild type (A) or mutant
(B). The probability of obtaining a type A (B) offspring cell when a parent cell
of type A (B) divides is 70%, respectively 30% if the parent cell is of type B
(A). Since each compartment can be occupied by at most one cell, whenever a
parent cell divides the offspring cell is displaced to a neighbouring compartment
(considering the von Neumann neighbourhood relation). Finally the cell popu-
lation survival condition is that the concentration of O2 in the environment is
greater or equal to 50%. Each new type A cell reduces the O2 concentration
with 20%, respectively type B cell by 15%.

Although the above described scenario is not realistic for practical applica-
tions, it is sufficient to illustrate how a SSpDES model can be constructed for
a biological system which evolves in time and space. The reason for strongly
constraining the size of the environment and the behaviour of the cells was to
limit the number of possible system states such that they can all be explicitly
enumerated.

The behaviour of this simple system is characterised at each moment in time
by a set of state variables. Spatial state variables of interest are Cells A and
Cells B representing the number of type A, respectively type B cells in the
environment. Conversely the numeric state variable O 2 is used to record the
concentration of O2 in the environment. Considering these spatial and numeric
state variables the initial state/configuration S0 of the system is depicted in
Figure 1.

Figure 1: Initial state of the system. Cells A and Cells B are the spatial
state variables representing the number of type A, respectively type B cells
in the environment. O 2 represents the current concentration of O2 in the
environment.

Starting from S0 the system probabilistically transitions from one state to
the next until it reaches its final configuration; see Figure 2 for all possible states
which can be reached starting from the initial state.

Considering the initial state S0 the system can transition to four possible
states described by the following behaviours: the type A cell from the lower
right corner either divides and the offspring is of the same type (S1, S3) or of
type B (S2, S4). In both cases the offspring can be either displaced above the
parent (S3, S4) or to its left (S1, S2). Given that the overall probability of a
cell to produce offspring of the same type is 70% and in our case there are 2
relevant state transitions (S0 → S1, S0 → S3), the probability associated with
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Figure 2: The state space of the system i.e. all possible states which can be
reached from the initial state S0. Cells A and Cells B are the spatial state
variables representing the number of type A, respectively type B cells in the
environment. O 2 represents the current concentration of O2 in the environ-
ment. The percentages associated with the arrows connecting each pair of states
represents the probability of transitioning from one state to the other.

each of these state transitions is 70% / 2 = 35%. Analogously the probability
associated with each state transition where the offspring cell is of different type
(S0 → S2, S0 → S4) is equal to 30% / 2 = 15%. The concentration of O2 has
been decreased by 20% in states S1 and S3 due to a new type A cell, respectively
by 15% in states S2 and S4 due to a new type B cell. Therefore the O2 level is
80% - 20% = 60% in states S1 and S3, respectively 80% - 15% = 65% in states
S2 and S4. Since the birth of a new cell reduces the O2 concentration by at
least 15%, and the minimal O2 concentration required by the cell population
to survive is 50%, no further cellular division can occur starting from states S1

and S3 (60% - 15% < 50%). Conversely starting from states S2 and S4 at most
one new type B cell can be created (65% - 15% ≥ 50%). Given state S2 a type
B cell can be produced either from the existing type A (S2 → S6, probability
30%) or type B (S2 → S5, probability 70%) cell. Similarly given state S4 a type
B cell can be produced either from the existing type A (S2 → S6, probability
30%) or type B (S2 → S7, probability 70%) cell.

Using the above descriptions the formal SSpDES M = 〈S, T , µ, NSV ,
SpSV , NV , SpV 〉 corresponding to the system is defined as follows:

• S = {S0, S1, S2, S3, S4, S5, S6, S7};
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• T =

S0 S1 S2 S3 S4 S5 S6 S7



S0 0 35% 15% 35% 15% 0 0 0
S1 0 0 0 0 0 0 0 0
S2 0 0 0 0 0 70% 30% 0
S3 0 0 0 0 0 0 0 0
S4 0 0 0 0 0 0 30% 70%
S5 0 0 0 0 0 0 0 0
S6 0 0 0 0 0 0 0 0
S7 0 0 0 0 0 0 0 0

;

• µ is the function used to compute the probability of a set of paths starting
from S0. The probability value for a single path is computed by multi-
plying the probabilities of the state transitions associated with the path.
For instance µ(S0, S2, S6) = P (S0, S2) ·P (S2, S6) = T [S0, S2] ·T [S2, S6] =
15% · 30% = 4.5%.

• NSV = {O 2}, and NV is the function used to compute the value of
O 2 in the current state;

• SpSV = {Cells A,Cells B}, and SpV is the function used to evaluate
Cells A and Cells B in the current state.

Although only a simple example was considered here the same modelling
principles are employed to construct SSpDES models of more complex (realis-
tic) systems. One of the main differences is that due to the high complexity
associated with some real systems the number of possible system states is very
large, even potentially infinite. Therefore in such cases explicitly enumerating
all possible paths starting from the initial state is not possible.
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