
Semantics of considered approximate probabilis-
tic model checking approaches

Approximate or simulation-based probabilistic model checking approaches em-
ploy methods from statistical theory to decide if logic properties hold for a
model with a certain confidence level. In contrast to exhaustive approaches the
state space is only partially explored. The truth value of logic properties is
approximated based on a finite set of simulations.

Let us assume that a logic property φ is verified against a model M. For
each simulation of the model M the logic property φ evaluates to true with a
probability p, respectively false with probability 1− p.

Therefore each simulation can be represented by a Bernoulli variable X
which takes the value 1 with probability p (success) and 0 with probability 1−p
(failure). Moreover n simulations can be represented by a sequence of indepen-
dent, identically distributed (iid) Bernoulli variables X1, X2, ..., Xn, where each
Xi is a Bernoulli variable with the success probability p. The sum of a sequence

of iid Bernoulli variables Y =
n∑
i=1

Xi is a random variable that follows a binomial

distribution with parameters n and p.
Based on the Bernoulli or binomial distribution representation many ap-

proximate model checkers have been developed. The considered approximate
probabilistic approaches are given in Table 1 and a brief description of each
approach in the following Subsections.

Table 1: Classification of considered approximate probabilistic model checking
approaches

Frequentist Bayesian

Estimate Chernoff-Hoeffding bounds Mean and variance

Hypothesis testing
Statistical

Statistical
Probabilistic black-box

Simulation evaluations are represented as a sequence X1, X2, ..., Xn of iid
Bernoulli variables in all model checking approaches described below.

Chernoff-Hoeffding bounds based model checking

Approximate probabilistic model checking [2] is a simulation-based approach
which estimates the true probability p of a logic property being true.

The approximation error of the method is controlled using a derived form of
the Chernoff-Hoeffding inequalities [3]:

P [| X − p |> ε] < 2e−
Nε2

4 (1)

where X is the sample mean

X =
1

n

n∑
i=1

Xi
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and 0 < ε < 1.
Equation 1 states that the probability of X to deviate from the true probabil-

ity p more than ε is bounded above by δ = 2e−
Nε2

4 . The number of simulations
n required to meet the constraints of Equation 1 is computed with respect to
parameters ε and δ:

n =
4

ε2
log(

2

δ
)

where 0 < ε, δ < 1. Therefore ε and δ are input parameters of the algorithm.
A detailed description of the approach accompanied by examples are pro-

vided in [2]. From the point of view of the computational complexity the algo-
rithm is linear with respect to the value of δ and quadratic with respect to the
value of ε.

Frequentist statistical model checking

Frequentist statistical model checking methods [11, 13] verify if a logical prop-
erty φ holds for a model M using acceptance sampling tests [14]. An implicit
requirement of this method is that a model which can be simulated on demand
is available.

Let us assume that φ is a logic property of the form P≥θ[ψ]. The null
hypothesis H0 : p ≥ θ is tested against the alternative hypothesis H1 : p < θ
and model simulations are evaluated until one of the hypotheses is accepted.
In case φ is of the form P≤θ[ψ] the roles of the null and alternative hypotheses
switch. Moreover in terms of hypothesis testing P>θ[ψ] is equivalent to P≥θ[ψ],
respectively P<θ[ψ] is equivalent to P≤θ[ψ].

The approximation error of this method is determined by the strength 〈α, β〉
of the acceptance sampling test where

• α = P[H1 is accepted | H0 is true] (Probability of type I error);

• β = P[H0 is accepted | H1 is true] (Probability of type II error).

In case the probability θ specified in the logic property φ is close to the true
probability p a large number of simulations is required to validate a hypothesis
and it is impossible to ensure a low probability of type I and type II errors
simultaneously; see [15] for details.

Therefore the hypothesis testing problem constraints are relaxed. An indif-
ference region (p− δ, p+ δ) of width 2δ is introduced where neither of the two
hypotheses is true. In this new setting three hypotheses are considered:

• The null hypothesis H ′0 : p ≥ θ + δ;

• The alternative hypothesis: H ′1 : p < θ − δ;

• The undecided hypothesis: H2 : θ − δ ≤ p < θ + δ.

Using two acceptance sampling tests it is possible to decide if φ ≡ P≥θ[ψ] holds:

Test 1 with strength 〈α, γ〉(H0 : p ≥ θ,H ′1 : p < θ − δ)
Test 2 with strength 〈γ, β〉(H ′0 : p ≥ θ + δ,H1 : p < θ − δ)
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where γ represents the probability of undecided results. Whenever H0 and H ′0
are accepted φ is declared to hold. Conversely if H1 and H ′1 are accepted then
φ is declared not to hold. Otherwise the validity of φ is undecided.

Two types of acceptance sampling plans can be employed to determine the
true hypothesis:

• Single acceptance sampling plan;

• Sequential acceptance sampling plan.

Single sampling plan methods compute the values of the acceptance number
c and the smallest number of required simulations n which ensure that the
strength of the test 〈α, β〉 is guaranteed. The number of simulations n is fixed
in the beginning and the hypothesis H0 is accepted if

n∑
i=1

xi > c

where xi represents an observation of the i − th Bernoulli variable (1 = true,
0 = false). Otherwise the hypothesis H1 is true. Values for c and n can be
obtained from a precomputed table of values [1] or approximated using binary
search [11, p. 21].

The disadvantage of employing single sampling plans is that the number of
required simulations is fixed and not updated while evaluating the simulations.
This means that although sufficient evidence is available to validate one of the
hypotheses the method will not stop early. For instance if the first c < n
simulations have been evaluated true H0 is validated and further simulations
are irrelevant to the final result. However since n is fixed the remaining n − c
simulations will be generated and evaluated as well.

Sequential acceptance sampling plans address this issue by verifying after
each simulation evaluation if sufficient evidence is available to validate one of
the hypotheses. An efficient sequential acceptance sampling plan is Wald’s
sequential probability ratio test [9].

After evaluating each simulation a value is computed

fm =

m∏
i=1

P [Xi = xi | p = p1]

P [Xi = xi | p = p0]
=
pd1(1− p1)m−d

pd0(1− p0)m−d

where m is the number of simulations evaluated so far, d =
m∑
i=1

xi is the number

of true evaluations, p0 = θ + δ and p1 = θ − δ. The hypothesis H0 is accepted
if fm ≤ B, respectively hypothesis H1 is accepted if fm ≥ A. Otherwise if
B ≤ fm ≤ A insufficient evidence is available and additional simulations are
required.

In practical applications an approximation of the optimal A and B values is
used in order to reduce the overall complexity of the method [9, Section 3.4]:

A =
1− β
α

; B =
β

1− α
.

The strength of the test 〈α′, β′〉 given by the approximated A and B values
closely matches the initial strength 〈α, β〉. In [9] it is shown that

α′ ≤ α

1− β
; β′ ≤ β

1− α
α′ + β′ ≤ α+ β
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which means that at least one of the inequalities α′ ≤ α and β′ ≤ β must hold.
Moreover if the values of α and β are small (e.g. less than 5%) then α

1−β ≈ α

and β
1−α ≈ β which means both inequalities hold.

The input parameters of the algorithm are α, β and δ. A detailed description
of the statistical model checking algorithm is given in [15] and an example of a
model checker implementing the algorithm is given in [12].

Statistical black-box model checking

Statistical black-box model checking initially introduced in [8] and further ex-
tended in [10] verifies if a logic property φ holds for a modelM using statistical
hypothesis testing based on p-values. In contrast to statistical model checking
a fixed number of simulations is provided and the model cannot be simulated
on demand.

Let us denote the sum of all Bernoulli variables by Y =
n∑
i=1

Xi. Then Y has

a binomial distribution with the cumulative distribution function:

F (c;n, p) =

c∑
i=1

(
n

i

)
pi(1− p)n−i.

If φ is a logic property of the form P≥θ[ψ] then the null hypothesis H0 : p ≥ θ
is tested against the alternative hypothesis H1 : p < θ. A p-value is computed
for each hypothesis and the hypothesis with the lowest p-value is accepted [10]:

pH0
= 1− F (d− 1;n, θ)

pH1
= F (d;n, θ)

where n is the number of Bernoulli variables, d =
m∑
i=1

xi is the number of true

evaluations and θ is the probability specified within the logic property φ. In
case the p-values are equal the alternative hypothesis H1 is accepted.

More details and usage examples regarding the extended statistical black-box
model checking method are given in [10].

Bayesian mean and variance estimate based model checking

Bayesian mean and variance estimate based model checking [7] verifies if a logic
property φ holds for a model M by estimating the true probability p of φ
being true. In contrast to the frequentist model checking approach the present
approach uses prior information during the estimation process.

Simulation evaluations are represented as iid Bernoulli variables with the
probability of the logic property φ being true equal to p. Therefore we can
assume that the posterior has a Bernoulli distribution with parameter p. The
conjugate prior of a Bernoulli distribution is a Beta distribution with shape pa-
rameters α and β. Thus the prior information considered during the estimation
process is represented by a Beta distribution. If prior information is unavailable
an unbiased prior can be used (α = 1, β = 1). Both shape parameters are
provided by the user as input to the algorithm.

Considering the user-defined Beta distribution shape parameters α and β the
algorithm updates the estimate of the true probability ρ and variance ν after
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evaluating φ for each newly generated sample. The formulae for computing the
estimates ρ and ν are:

ρ =
k + α

α+ β + n

ν =
(α+ k)(n− k + β)

(α+ n+ β)2(α+ n+ β + 1)

where n represents the number of generated samples, k represents the number
of samples for which φ was evaluated true, and α > 0 and β > 0 are the Beta
distribution shape parameters.

New samples are generated and the estimates ρ and ν are updated until the
condition ν < T is true, where T > 0 is a user-defined threshold value provided
as input to the algorithm. Considering that the logic property φ is of the form
P≥θ[ψ] (P≤θ[ψ]) φ will be evaluated true if ρ ≥ θ (ρ ≤ θ).

A detailed description of the algorithm and usage examples are provided
in [7].

Bayesian statistical model checking

Bayesian statistical model checking [5,6] verifies if a logic property φ holds for a
modelM using statistical hypothesis testing. In contrast to frequentist statisti-
cal model checking approaches the present approach employs prior information
for validating one of the hypotheses.

Let us assume that φ is a logic property of the form P≥θ[ψ]. The null
hypothesis H0 : p ≥ θ is tested against the alternative hypothesis H1 : p < θ
and model simulations are evaluated until one of the hypotheses is accepted.
In case φ is of the form P≤θ[ψ] the roles of the null and alternative hypotheses
switch.

A measure of relative confidence in H0 with respect to H1 is defined called
Bayes factor B. The value of B considering a sequence of simulation evaluations
s = (x1, x2, ..., xn) and hypotheses H0 and H1 is computed as follows:

B =
P (s | H0)

P (s | H1)
=
P (H0 | s)P (H1)

P (H1 | s)P (H0)
.

Similarly to the Bayesian mean and variance estimation based model check-
ing approach the posterior is assumed to have a Bernoulli distribution. Therefore
the conjugate prior has a Beta distribution with shape parameters α > 0 and
β > 0. Both Beta distribution shape parameters are provided as input to the
algorithm.

Considering these assumptions it is shown in [5] that the value of B can be
computed with respect to the cumulative Beta distribution function:

B =
1

F(x+α,n−x+β)(θ)
− 1

where n represents the total number of simulation evaluations, x represents the
number of simulations for which φ was evaluated true, and

F(α′,β′)(θ) = Iθ(α
′, β′)
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is the cumulative Beta distribution function with shape parameters α′ = x+ α
and β′ = n − x + β such that Iθ(α

′, β′) is the regularized incomplete beta
function.

The null hypothesis H0 is accepted if B > T where T is a user-defined
threshold value provided as input to the algorithm. Conversely the alternative
hypothesis H1 is accepted if B < 1/T . Otherwise if 1/T ≤ B ≤ T insufficient
evidence is available and additional simulations need to be generated and evalu-
ated. A threshold value T = 10−2 suggests to provide decisive evidence against
H0 and in favour of H1 [4, Appendix B]. Conversely a threshold value of 102

suggests to provide decisive evidence in favour of H0.
A detailed description of the algorithm and usage examples are provided

in [5]. Moreover an example of applying Bayesian statistical model checking to
Simulink/Stateflow is given in [16].
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