
Well-defined model checking problem

In order to show that the model checking problem is well-defined we will first
prove that the number of required simulations and state transitions within each
simulation are finite.

Finite number of required simulations

Probabilistic black-box model checking is the only approach considered which
can provide an answer regardless of the number of available model simula-
tions. Conversely all other considered methods require a minimum number of
model simulations, which can be computed at the beginning (Chernoff-Hoeffding
bounds) or not (Frequentist and Bayesian statistical, Bayesian mean and vari-
ance estimate), to provide an answer considering a given confidence level. Al-
though all model checking methods require a finite number of model simulations
the expected time required for an answer to be provided varies with the value of
the true probability p and the user-defined probability θ. However for practical
applications users might want to set an upper bound on the time to wait until
an answer is provided. Thus we employ the wrapper Algorithm 1 to execute
each specific model checking algorithm in Table 1. If an answer can be provided
using the requested approach within the specified extra evaluation time interval
then it is reported to the user. Otherwise probabilistic black-box model check-
ing is employed to report the answer based on the model simulations generated
and evaluated so far.

Table 1: Considered approximate probabilistic model checking approaches.
Bayesian methods consider prior knowledge about the parameters and variables
in the model when deciding if a logic property holds. Conversely frequentist
approaches assume no prior knowledge is available. All methods except proba-
bilistic black-box take as input a user-defined upper bound on the approximation
error. They request additional model executions until the result is sufficiently
accurate. Probabilistic black-box model checking takes a fixed number of model
simulations as input and computes a p-value as the confidence measure of the
result.

Frequentist Bayesian

Estimate Chernoff-Hoeffding bounds [1] Mean and variance [3]

Hypothesis Statistical [7]
Statistical [2]

testing Probabilistic black-box [5, 6]

In the initialisation step of Algorithm 1 nrOfTimeoutSeconds, the num-
ber of seconds to wait between re-executing the extra evaluation program, is
fixed. The reason for introducing such a variable is to temporarily wait and
allow the model simulator to finish its execution before verifying if new simula-
tions were provided. Afterwards the collection of valid model simulations is
initialised based on the given simulationsInputSet. The model checker
of type modelCheckingType is then executed to verify if the logic prop-
erty logicProperty holds considering the available simulations and set

1

Algorithm 1 The wrapper algorithm employed to call specific model check-
ing algorithms (see Table 1 for the considered approaches). If sufficient
model simulations are available, respectively generated and evaluated within
extraEvaluationT ime minutes, then the chosen specific model checking algo-
rithm is used to provide an answer. Otherwise the user is informed that the
maximum extra evaluation time threshold was reached and the answer is pro-
vided using the probabilistic black-box model checking approach. Model sim-
ulations are generated and stored in an input set simulationsInputSet using
the external model simulation program extraEvaluationProgram. The logic
property to be verified is stored in the variable logicProperty.

Require: modelCheckingType is the specific model checking approach,
modelCheckingParameters is the collection of parameters required by the
chosen modelCheckingType, extraEvaluationT ime is the maximum num-
ber of minutes allowed for generating and evaluating additional model sim-
ulations, extraEvaluationProgram is the model simulation program which
is called whenever new simulations are required, simulationsInputSet is
the set containing the simulations and logicProperty is the PBLSTL logic
property to be verified

Ensure: A true/false answer together with a measure of confidence is provided

1: nrOfT imeoutSeconds← 30; . The default number of seconds to wait
2: between re-executing the extra
3: evaluation program and evaluating
4: the generated traces
5:

6: simulations← GetSimulations(simulationsInputSet);
7:

8: RunModelChecker(modelCheckingType, modelCheckingParameters,
9: simulations, logicProperty, result, confidence);

10:

11: while (elapsed number of minutes < extraEvaluationT ime) AND
12: (more model simulations are required) do
13: GenerateModelSimulations(extraEvaluationProgram);
14: Wait(nrOfT imeoutSeconds);
15: UpdateCollectionOfSimulations(simulations, simulationsInputSet);
16: RunModelChecker(modelCheckingType, modelCheckingParameters,
17: simulations, logicProperty, result, confidence);
18: end while
19:

20: if more model simulations are required then
21: RunProbBlackBoxModelChecker(simulations, logicProperty,
22: result, confidence);
23: end if
24:

25: Output result and confidence;

of modelCheckingParameters. While the number of elapsed minutes is less
than extraEvaluationTime and the number of available model simulations

2

is insufficient to evaluate logicProperty the loop comprising the following
steps is executed:

1. Run extraEvaluationProgram to generate new simulations.

2. Wait for nrOfTimeoutSeconds to give the extra evaluation program
enough time to output results.

3. The collection of simulations is updated considering valid and previ-
ously unevaluated simulation input files.

4. The modelCheckingType model checker execution is resumed consid-
ering the additional simulations.

The loop is exited when either extraEvaluationTime minutes elapsed or
enough model simulations have been provided. In the former case the proba-
bilistic black-box model checker is executed to provide a result. Otherwise
the result is computed using the modelCheckingType model checker. In
the end both result and confidence measure are reported to the user.

The main advantages of Algorithm 1 are:

• The model checking execution time and number of generated and eval-
uated simulations is finite. Depending on the parameters of the model
checker, the distribution of the data and the number of required simula-
tions the answer will be provided using the desired model checker type or
the default probabilistic black-box model checker.

• In contrast to traditional model checking methods in our approach the
model checking task is decoupled from a specific model and model sim-
ulation environment (e.g. Matlab [4]). An external program which can
generate simulations is provided as input to the model checker. Whenever
additional model simulations are required this external program is exe-
cuted. For the algorithm implementation our recommendation is that the
employed external program should be a script (e.g. Bash [UNIX], Batch
[Windows]) which calls the model simulator and stores the output into the
specified location.

Finite number of state transitions

Logic properties are evaluated with respect to simulations of computational
models. In order to be able to decide if the logic property is satisfied, the model
simulation must cover a sufficiently long time frame. Stopping the simulation
early could potentially render the evaluation of temporal logic properties unde-
cidable. Therefore there is a need for a mechanism to decide when a simulation
execution can be stopped.

When verifying BLSTL logic properties an upper bound can be placed on
the required simulation time because all temporal logic operators are bounded.
Let us denote the upper bound corresponding to a BLSTL logic property ψ by
dψe.

Definition. The upper bound dψe ∈ N corresponding to a BLSTL logic prop-
erty ψ considering an execution σ is defined recursively on the structure of the
logic property as follows:

3

• dnsm � nme = 0 because the value of nsm and nm is computed consid-
ering only σ[0];

• dnsv � nme = 0 because the value of nsv and nm is computed considering
only σ[0];

• dd(nm1) � nm2e = 1 because the value of nm1 is computed considering
both σ[0] and σ[1];

• d¬ψe = dψe;

• dψ1 ∧ ψ2e = max(dψ1e, dψ2e);

• dψ1 ∨ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇒ ψ2e = max(dψ1e, dψ2e);

• dψ1 ⇔ ψ2e = max(dψ1e, dψ2e);

• dψ1 U [a, b] ψ2e = max(b− 1 + dψ1e, b+ dψ2e) ≤ b+ max(dψ1e, dψ2e);

• dF [a, b] ψe = b+ dψe;

• dG[a, b] ψe = b+ dψe;

• dXψe = 1 + dψe;

• dX[k] ψe = k + dψe;

• d(ψ)e = dψe;

Thus the minimum simulation time frame to be covered by model executions
when verifying a BLSTL logic property ψ is [0, dψe].

Lemma 1. Let us assume that a BLSTL logic property ψ is verified against
an infinite execution σ = {(s0, t0), (s1, t1), (s2, t2), ...}. Moreover let us denote
a finite prefix of σ by σ̂ = {(ŝ0, t̂0), (ŝ1, t̂1), ..., (ŝm, ˆtm)} where

ŝi = si and t̂i = ti,∀i = 0,m with

m∑
i=0

ti ≥ dψe and

m−1∑
i=0

ti < dψe.

Then σ |= ψ if and only if σ̂ |= ψ.

Proof. We will prove the results of Lemma 1 recursively on the structure of the
logic property ψ as described below:

1. σ |= nsm � nm if and only if σ̂ |= nsm � nm

Proof.

(a) σ |= nsm � nm if and only if nsm � nm.

(b) σ̂ |= nsm � nm if and only if nsm � nm.

(c) By Definition 9 dψe = 0 which means that according to the assump-
tions of Lemma 1 ŝ0 = s0. Hence the symbols nsm and nm are
evaluated to the same values for both σ and σ̂.

4

(d) From 1a, 1b and 1c it follows that σ |= nsm � nm if and only if
σ̂ |= nsm � nm.

2. σ |= nsv � nm if and only if σ̂ |= nsv � nm (Proof is similar to the one
provided for 1).

3. σ |= d(nm1) � nm2 if and only if σ̂ |= d(nm1) � nm2

Proof.

(a) σ |= d(nm1) � nm2 if and only if |σ| > 1 and (nm11 - nm10) �
nm2.

(b) σ̂ |= d(nm1) � nm2 if and only if |σ̂| > 1 and (nm11 - nm10) �
nm2.

(c) By Definition 9 dψe = 1 which means that according to the as-
sumptions of Lemma 1 ŝ0 = s0 and ŝ1 = s1. Hence the symbols
nm10, nm11 and nm2 are evaluated to the same values for both σ
and σ̂.

(d) From 3a, 3b and 3c it follows that σ |= d(nm1) � nm2 if and only
if σ̂ |= d(nm1) � nm2.

4. σ |= ¬ψ if and only if σ̂ |= ¬ψ

Proof.

(a) σ |= ¬ψ if and only if σ 6|= ψ.

(b) σ̂ |= ¬ψ if and only if σ̂ 6|= ψ.

(c) By Definition 9 d¬ψe = dψe which means that according to the
assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm where the
value of m is determined such that sufficient timepoints are recorded
for the evaluation of ψ. Hence the semantics of ψ considering σ is
equivalent to the semantics of ψ considering σ̂.

(d) From 4c it follows that σ 6|= ψ if and only if σ̂ 6|= ψ.

(e) From 4a and 4d it follows that σ |= ¬ψ if and only if σ̂ 6|= ψ.

(f) From 4b and 4e it follows that σ |= ¬ψ if and only if σ̂ |= ¬ψ.

5. σ |= ψ1 ∧ ψ2 if and only if σ̂ |= ψ1 ∧ ψ2

Proof.

(a) σ |= ψ1 ∧ ψ2 if and only if σ |= ψ1 and σ |= ψ2.

5

(b) σ̂ |= ψ1 ∧ ψ2 if and only if σ̂ |= ψ1 and σ̂ |= ψ2.

(c) By Definition 9 dψ1 ∧ ψ2e = max(dψ1e, dψ2e) which means that ac-
cording to the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm
where the value of m is determined such that sufficient timepoints are
recorded for the evaluation of both ψ1 and ψ2. Hence the semantics
of ψ1 and ψ2 is the same considering both σ and σ̂.

(d) From 5c it follows that σ |= ψ1 if and only if σ̂ |= ψ1, respectively
σ |= ψ2 if and only if σ̂ |= ψ2.

(e) From 5d it follows that σ |= ψ1 and σ |= ψ2 if and only if σ̂ |= ψ1

and σ̂ |= ψ2.

(f) From 5a and 5e it follows that σ |= ψ1 ∧ ψ2 if and only if σ̂ |= ψ1

and σ̂ |= ψ2.

(g) From 5b and 5f it follows that σ |= ψ1∧ψ2 if and only if σ̂ |= ψ1∧ψ2.

6. σ |= ψ1 ∨ ψ2 if and only if σ̂ |= ψ1 ∨ ψ2 (Proof is similar to the one
provided for 5).

7. σ |= ψ1 ⇒ ψ2 if and only if σ̂ |= ψ1 ⇒ ψ2 (Proof is similar to the one
provided for 5).

8. σ |= ψ1 ⇔ ψ2 if and only if σ̂ |= ψ1 ⇔ ψ2 (Proof is similar to the one
provided for 5).

9. σ |= ψ1 U [a, b] ψ2 if and only if σ̂ |= ψ1 U [a, b] ψ2

Proof.

(a) σ |= ψ1 U [a, b] ψ2 if and only if ∃i, a ≤ i ≤ b such that σi |= ψ2,
and for all j, a ≤ j < i, σj |= ψ1;

(b) σ̂ |= ψ1 U [a, b] ψ2 if and only if ∃i′, a ≤ i′ ≤ b such that σ̂i′ |= ψ2,
and for all j′, a ≤ j′ < i′, σ̂j′ |= ψ1;

(c) By Definition 9 dψ1 U [a, b] ψ2e = b + max(dψ1e, dψ2e). This means
that according to the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ...,
ŝm = sm where the value of m is determined such that sufficient time
points are recorded for the evaluation of both ψ1 and ψ2 considering
any execution suffix σh/σ̂h, a ≤ h ≤ b.

(d) From 9c it follows that for any suffix execution σh/σ̂h, a ≤ h ≤ b the
semantics of ψ1 and ψ2 is the same.

(e) From 9d it follows that ∃i, a ≤ i ≤ b such that σi |= ψ2 if and only
if ∃i′, a ≤ i′ ≤ b, i′ = i such that σ̂i′ |= ψ2.

(f) From 9d it follows that ∀j, a ≤ j < i ≤ b such that σj |= ψ1 if and
only if ∀j′, a ≤ j′ < i′ ≤ b, i′ = i, j′ = j such that σ̂j′ |= ψ1.

(g) From 9e and 9f it follows that ∃i, a ≤ i ≤ b such that σi |= ψ2 and
∀j, a ≤ j < i ≤ b such that σj |= ψ1 if and only if ∃i′, a ≤ i′ ≤ b,
i′ = i such that σ̂i′ |= ψ2 and ∀j′, a ≤ j′ < i′ ≤ b, j′ = j such that
σ̂j′ |= ψ1.

6

(h) From 9a and 9g it follows that σ |= ψ1 U [a, b] ψ2 if and only if ∃i′,
a ≤ i′ ≤ b, such that σ̂i′ |= ψ2 and ∀j′, a ≤ j′ < i′ ≤ b, j′ = j such
that σ̂j′ |= ψ1.

(i) From 9b and 9h it follows that σ |= ψ1 U [a, b] ψ2 if and only if
σ̂ |= ψ1 U [a, b] ψ2.

10. σ |= F [a, b] ψ if and only if σ̂ |= F [a, b] ψ

Proof.

(a) σ |= F [a, b] ψ if and only if ∃i, a ≤ i ≤ b such that σi |= ψ;

(b) σ̂ |= F [a, b] ψ if and only if ∃i′, a ≤ i′ ≤ b such that σ̂i′ |= ψ;

(c) By Definition 9 dF [a, b] ψe = b + dψe. This means that according
to the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm
where the value of m is determined such that sufficient time points
are recorded for the evaluation of ψ considering any execution suffix
σh/σ̂h, a ≤ h ≤ b.

(d) From 10c it follows that the semantics of ψ is equivalent for suffix
executions σh and σ̂h, ∀h, a ≤ h ≤ b.

(e) From 10d it follows that ∃i, a ≤ i ≤ b such that σi |= ψ if and only
if ∃i′, a ≤ i′ ≤ b, i′ = i such that σ̂i′ |= ψ.

(f) From 10a and 10e it follows that σ |= F [a, b] ψ if and only if ∃i′,
a ≤ i′ ≤ b such that σ̂i′ |= ψ.

(g) From 10b and 10f it follows that σ |= F [a, b] ψ if and only if
σ̂ |= F [a, b] ψ.

11. σ |= G[a, b] ψ if and only if σ̂ |= G[a, b] ψ

Proof.

(a) σ |= G[a, b] ψ if and only if ∀i, a ≤ i ≤ b, σi |= ψ;

(b) σ̂ |= G[a, b] ψ if and only if ∀i′, a ≤ i′ ≤ b, σ̂i′ |= ψ;

(c) By Definition 9 dG[a, b] ψe = b + dψe. This means that according
to the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm
where the value of m is determined such that sufficient time points
are recorded for the evaluation of ψ considering any execution suffix
σh/σ̂h, a ≤ h ≤ b.

(d) From 11c it follows that the semantics of ψ is equivalent for suffix
executions σh and σ̂h, ∀h, a ≤ h ≤ b.

(e) From 11d it follows that ∀i, a ≤ i ≤ b, σi |= ψ if and only if ∀i′,
a ≤ i′ ≤ b, i′ = i, σ̂i′ |= ψ.

7

(f) From 11a and 11e it follows that σ |= G[a, b] ψ if and only if ∀i′,
a ≤ i′ ≤ b, σ̂i′ |= ψ.

(g) From 11b and 11f it follows that σ |= G[a, b] ψ if and only if
σ̂ |= G[a, b] ψ.

12. σ |= X ψ if and only if σ̂ |= Xψ

Proof.

(a) σ |= X ψ if and only if |σ| > 1 and σ1 |= ψ;

(b) σ̂ |= X ψ if and only if |σ̂| > 1 and σ̂1 |= ψ;

(c) By Definition 9 dX ψe = 1 + dψe. This means that according to the
assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm where the
value of m is determined such that sufficient time points are recorded
for the evaluation of ψ considering the execution suffix σ1/σ̂1.

(d) From 12c it follows that the semantics of ψ is equivalent for suffix
executions σ1 and σ̂1.

(e) From 12d it follows that σ1 |= ψ if and only if σ̂1 |= ψ.

(f) From 12a and 12e it follows that σ |= X ψ if and only if σ̂1 |= ψ.

(g) From 12b and 12f it follows that σ |= X ψ if and only if σ̂ |= X ψ.

13. σ |= X[k] ψ if and only if σ̂ |= X[k] ψ

Proof.

(a) σ |= X[k] ψ if and only if |σ| > k and σk |= ψ;

(b) σ̂ |= X[k] ψ if and only if |σ̂| > k and σ̂k |= ψ;

(c) By Definition 9 dX[k] ψe = k + dψe. This means that according to
the assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm where the
value of m is determined such that sufficient time points are recorded
for the evaluation of ψ considering the execution suffix σk/σ̂k.

(d) From 13c it follows that the semantics of ψ is equivalent for suffix
executions σk and σ̂k.

(e) From 13d it follows that σk |= ψ if and only if σ̂k |= ψ.

(f) From 13a and 13e it follows that σ |= X[k] ψ if and only if σ̂k |= ψ.

(g) From 13b and 13f it follows that σ |= X[k] ψ if and only if σ̂ |=
X[k] ψ.

14. σ |= (ψ) if and only if σ̂ |= (ψ)

8

Proof.

(a) σ |= (ψ) if and only if σ |= ψ;

(b) σ̂ |= (ψ) if and only if σ̂ |= ψ;

(c) By Definition 9 d(ψ)e = dψe. This means that according to the
assumptions of Lemma 1 ŝ0 = s0, ŝ1 = s1, ..., ŝm = sm where the
value of m is determined such that sufficient time points are recorded
for the evaluation of ψ.

(d) From 14c it follows that the semantics of ψ is equivalent for both σ
and σ̂.

(e) From 14d it follows that σ |= ψ if and only if σ̂ |= ψ.

(f) From 14a and 14e it follows that σ |= (ψ) if and only if σ̂ |= ψ.

(g) From 14b and 14f it follows that σ |= (ψ) if and only if σ̂ |= (ψ).

Lemma 2. The number of state transitions required to verify a BLSTL logic
property is finite.

Proof. From Lemma 1 it follows that a BLSTL logic property ψ can be verified
against a model simulation σ based on a finite prefix σ̂. The minimum time
interval captured by σ̂ is bounded and can be computed using Definition . Since
we assume the time divergence property holds for all the considered systems only
a finite number of state transitions can occur in a bounded interval of time.

Well-defined model checking problem

Theorem 1. The spatio-temporal model checking problem is well-defined.

Proof. It was shown that the number of required model executions in order
to verify if a PBLSTL logic property φ holds is finite. Moreover considering
Lemmas 1 and 2 only a finite prefix and a finite number of state transitions has
to be considered for each model execution. Thus the evaluation of φ is reduced
to the problem of evaluating non-temporal properties over a finite number of
states for each model execution. This implies evaluating arithmetic expressions
and/or detecting spatial entities which are both decidable. Hence the model
checking problem is well-defined.

References

[1] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Pey-
ronnet. Approximate probabilistic model checking. In Bernhard Steffen and
Giorgio Levi, editors, Verification, Model Checking, and Abstract Interpre-
tation, number 2937 in Lecture Notes in Computer Science, pages 73–84.
Springer Berlin Heidelberg, Venice, Italy, January 2004.

9

[2] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay,
André Platzer, and Paolo Zuliani. A bayesian approach to model check-
ing biological systems. In Pierpaolo Degano and Roberto Gorrieri, editors,
Computational Methods in Systems Biology, number 5688 in Lecture Notes
in Computer Science, pages 218–234. Springer Berlin Heidelberg, Bologna,
Italy, January 2009.

[3] Christopher Langmead. Generalized queries and bayesian statistical model
checking in dynamic bayesian networks: Application to personalized
medicine. Computer Science Department, August 2009.

[4] Sucheendra K. Palaniappan, Benjamin M. Gyori, Bing Liu, David Hsu, and
P. S. Thiagarajan. Statistical model checking based calibration and analy-
sis of bio-pathway models. In Ashutosh Gupta and Thomas A. Henzinger,
editors, Computational Methods in Systems Biology, number 8130 in Lec-
ture Notes in Computer Science, pages 120–134. Springer Berlin Heidelberg,
Klosterneuburg, Austria, January 2013.

[5] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model check-
ing of black-box probabilistic systems. In Rajeev Alur and Doron A. Peled,
editors, Computer Aided Verification, number 3114 in Lecture Notes in Com-
puter Science, pages 202–215. Springer Berlin Heidelberg, Boston, MA, USA,
January 2004.

[6] H̊akan L. S. Younes. Probabilistic verification for “Black-Box” systems. In
Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided Verifi-
cation, number 3576 in Lecture Notes in Computer Science, pages 253–265.
Springer Berlin Heidelberg, Edinburgh, Scotland, UK, January 2005.

[7] H̊akan L.S. Younes and Reid G. Simmons. Statistical probabilistic model
checking with a focus on time-bounded properties. Information and Com-
putation, 204(9):1368–1409, September 2006.

10

