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Figure S1, related to Figure 1: A) Heatmap representation of the coefficients used
to extract the first principal components of the matrices described in Figure 1A.
Coefficients 1, 2 and 3 represent the contribution that each of on-dox sorts 1, 2 and
3 made in defining the first principal component of the matrices. Biological
replicates are shown in three different plots. Results from each of 12 separately
processed shRNA sets are displayed. B) Significantly enriched (top) and depleted
(bottom) nucleotides within potent shRNAs (with respect to weak shRNAs). Results
from each of 12 separately processed shRNA sets are displayed. C) Heatmap
representations of the predictive capacity (with respect to shRNA potency) of each
pair of positions within the target region. Heatmap cells are colored colors to
represent the number of nucleotide combinations that were significantly predictive,
as calculated with via linear regression (p-value <0.05) at each position-pair. Results
from each of 12 separately processed shRNA sets are displayed.
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Figure S2, related to Figure 2: A) Variable importance in each first tier module of
the shERWOOD algorithm. Each bar represents either the importance of individual
nucleotide composition (blue), nucleotide pair composition (red) or nucleotide
triplet composition (green) at a different position in the shRNA guide. The left most
bars of each class represent the nucleotide, pair or triplet beginning at the second
position of the guide. The right most bars represent those ending at the 22nd
position of the guide. B) Example extractions of target regions for a single
transcript gene (top) and two multiple transcript genes (middle and bottom). For
the middle gene, a target region (composed of >250 bp present in >80% of
transcripts) was identified on the first algorithm iteration. For the bottom gene, a
second algorithm iteration was required, where the smallest transcript was not
considered. C) Example shRNA off-target algorithm implementation. In case A, all
rank 1-4 are non-multimappers, so no shuffling occurs. In case B, all rank 1-8
shRNAs are multimappers (indicting that the gene is a paralogue), so no shuffling
occurs. In case C, some but not all rank 1-4 and rank 5-8 shRNAs are multimappers
and shuffling occurs to select a set of 4 shRNAs that include the highest scoring non-
multimappers. D) Schematic of the retroviral vector employed in the validation
RNAi screens. E) Plot of shRNA log-fold changes with respect to shRNA-guide GC-
content. The red line represents a one-dimensional polynomial fit to the control
shRNA population data-points. F) Plot of shRNA log-fold changes with respect to
shRNA-guide GC-content after the polynomial fit described above was subtracted
from all data-points. G) shRNA hits calling by an Empirical-Bayes Moderated T-Test
(FDR < 0.05).
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Figure S3, related to Figure 3: A) Schematic representation of an shRNA guide
loaded into argonaute. B) shRNA predicted potencies (data-point colors) for all
human genes with-respect to gene length (x-axis) and %GC content (y-axis), as
predicted under the normal (left) and 1U (right) strategies. C) Histogram of
~26,000 emitted values from a mixed-gaussian model fitted to the shERWOOD-1U
selected shRNA sensor measurements. D) Clustering of the shERWOOD-1U selected
shRNA sensor measurements by the mixed-gaussian model into poor (blue) and
potent (red) shRNA classes. E) Histogram of sensor-scores for shRNAs selected to
train the 1U-classifier algorithm. Blue bars represent the weak shRNAs and red bars
represent the potent shRNAs. The training set was selected by applying a 70%
confidence cutoff to the clustering data described in D.
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Figure S4, related to Figure 4: Schematic representation of the cloning schemes
for traditional miR30 and ultramiR shRNA scaffolds.



Supplemental Methods
Extraction of shRNA efficacy from Sensor Data

To define a potency measurement for each shRNA, a matrix was constructed
wherein rows correspond to shRNAs and columns represents the enrichment level
of each shRNA at each iteration of the sensor (logz fold change with respect to the
initially infected shRNA population). Columns of the matrix were then mean
centered. Following this, principal component coefficients were extracted using the
singular value decomposition (SVD) algorithm. Scores for each shRNA were then
extracted by multiplying their sort values in the mean centered matrix with the first
column of coefficient matrix (this corresponds to the first principle component
loadings).

Linear Regression Analysis of Position Pairs

For a given position-pair, for each combination of nucleotides, a binary matrix was
developed that represented, for each shRNA (rows in the matrix), whether the first
nucleotide was present at the first position (first column), whether the second
nucleotide was present at the second position (second column) and whether both
nucleotides were present at both positions (third column). For example, when
assessing the combination of Adenine at position 1 and Guanine at position 2, for
each shRNA, if Adenine is located at position 1 then the first column assigned a value
of 1 (zero if not). If the shRNA contains a Guanine at position II, the second column
is assigned a value of 1 (zero if not). Finally, if Adenine is present at position 1 and
Guanine at position 1, then column 3 is assigned a value of 1 (zero if not).

For each position-pair/nucleotide-combination, linear regression was applied to
develop two models. In the first model only the first two columns of the coded
matrix were included as inputs, whereas in the second model all columns were
included. Following this, the sum-squared errors (SSEs) of the two models were
compared via a rank sum test, and if the second model showed an increase in
predictive capacity (p-value <0.05), the corresponding position pair score was
incremented by one. The final predictive value of each position pair is the total
number of nucleotide combinations that were found to be predictive at those
positions (minimum of zero maximum of 16).

Linear Regression Analysis of Position Triplets

For a given position-triplet, for each triplet of nucleotides, a binary matrix was
developed in a manner similar to described above for position pairs. However in
these matrices there is a column representing each individual nucleotides presence
at its corresponding position, each pairwise-nucleotide combination’s presence at
their corresponding positions and the triplet of nucleotide’s presence at the
corresponding positions (for a total of 7 columns).



For each position-triplet/nucleotide-combination, linear regression was applied to
develop two models. In the first model only the first six columns of the coded matrix
were included as inputs, whereas in the second model all columns were included.
Following this, the sum-squared errors (SSEs) of the two models were compared via
a rank sum test, and if the second model showed an increase in predictive capacity
(p-value <0.05), the corresponding position-triplet score was increased by one. The
final predictive value of each position triplet is the total number of nucleotide
combinations that were found to be predictive at those positions (minimum of zero
maximum of 64).

A Heuristic for Maximizing the Number of Transcripts Targeted Per Gene

We’ve developed a set of heuristics for selecting target regions that ensures the
majority of transcripts are targeted, while maintaining sufficient predictive space
for the identification of potent shRNAs. For a target gene, we search for genomic
regions (including splice sites) that are represented in at least 80% of transcripts. If
these areas’s lengths sum to at least 250 bases, we select these as the target regions
for the gene. If, however, there is no such set of regions, we iteratively remove the
smallest isoform from consideration and search for a set of sequences that are
shared by at least 80% of the remaining transcripts (whose summed length is
greater than 250 bp). This process continues iteratively until a set of regions is
identified, or only a single transcript remains. In the later case, shRNAs are
predicted for each individual transcript (Figure S2B). The removal of short
transcripts as a step in the heuristic is sub-optimal, however this step is necessary
to maintain a search space that allows for potent shRNA selection.

A Heuristic for Minimizing the Number of Off-Target Effects

We’ve developed a strategy that minimizes off-target effects, and takes into account
the fact that paralogues, with nearly identical sequences, likely share function and,
thus should be targeted in parallel in large genetic screens (with the assumption
that the particular paralogue whose targeting results in the phenotype of interest
can be identified during validation experiments).

The algorithm was designed with the goal of constructing of a genome-wide library
harboring four shRNAs per gene. For each gene, the top eight shRNAs within the
target regions, as defined above, are assigned a rank of 1-8 based on shERWOOD
scores. Following this, shRNAs are mapped to the transcriptome using the bowtie
algorithm, allowing up to three mismatches outside of the shRNA-seed, and
classified as a non-multi-mapper or multi-mapper (Langmead et al.,, 2009). If the
ranks 1-4 shRNAs are all non-multi-mappers, they are selected for the library. If the
ranks 1-8 shRNAs are all multi-mappers, they are assumed to target a set of
paralogues, and they are selected for the library. If some (but not all) of the ranks 1-
4 shRNAs are multi-mappers, and some of the ranks 5-8 shRNAs are non-multi-
mappers, the algorithm selects a delivery set, equal to the ranks 1-4 shRNAs, and
then iterates as follows: replace the lowest rank multi-mapping shRNA in the



delivery set with the highest ranking non-multi-mapping shRNA outside of the
delivery set. Continue until no non-multi-mappers exist outside of the delivery set
(Figure S2C).

Analysis of small RNA Processing

All small RNA libraries were constructed using [llumina’s SRNA cloning kit. Libraries
were sequenced on an I[llumina MiSeq. Following sequencing, reads were aligned to
an bowtie index containing all endogenous microRNA guide sequences as well as
sequences corresponding to the shRNA being studied using the bowtie algorithm
(allowing three mismatches). llumina adapter sequences were appended to each
sequence during the construction of the index. Reads were then normalized
between libraries as their log; fold difference to the 66th quantile of the count
distribution of the endogenous microRNAs.

RNAseq Library Construction and Analysis

Total RNA was purified and DNAse treated using the Qiagen RNeasy Mini Kit. RNA
integrity (RNA Integrity score > 9) and quantity was measured on an Agilent
Bioanalyzer (RNA Nano kit). The NuGEN Ovation RNA-Seq V2 protocol was carried
out on 100 ng of total RNA. cDNA was fragmented using the Covaris LE220 sonicator
according to the manufacturer’s instruction to yield a target fragment size of 200 bp.
The fragmented cDNA was subsequently processed using the NuGEN Ovation
Ultralow DR Multiplex System.

Each sample was sequenced on the [llumina HiSeq-2.0 platform, generating 76 nt
single-end (SE) reads. Reads were aligned to the mm10 genome using the Bowtie-2
alignment tool under default parameters (Langmead and Salzberg, 2012). Mapped
reads were then assigned to genes using HTSeq-count (using the latest version of
RefSeq.gtf file for gene coordinates)(Anders et al, 2014). Resultant counts were
then normalized and compared using DESeq (Anders and Huber, 2010). For a gene
to be considered over-expressed it had to show an at least 2-fold change with FDR <
0.05.
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