Supporting Information

for

Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel–[1,5]-hydride shift cyclization

reaction

László Tóth^{1,2}, Yan Fu³, Hai Yan Zhang³, Attila Mándi², Katalin E. Kövér⁴, Tünde-Zita Illyés², Attila Kiss-Szikszai², Balázs Balogh¹, Tibor Kurtán^{2,5}, Sándor Antus^{*2}, and Péter Mátyus^{*1}

Address: ¹Department of Organic Chemistry, Semmelweis University, Hőgyes u. 7., 1092 Budapest, Hungary, Fax: +36 1 217-0851, ²Department of Organic Chemistry, University of Debrecen, Debrecen, P. O. Box 20, 4010 Debrecen, Hungary, ³CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Shanghai 201203, PR China, ⁴Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, Hungary and ⁵Porfirin Ltd., Mikszáth K. u. 7. III/3, 4032 Debrecen, Hungary

Email: Sándor Antus - antus.sandor@science.unideb.hu; Péter Mátyus -

peter.matyus@szerves.sote.hu

*Corresponding author

Spectroscopic data and details of calculations

Table of Contents

Figure S1. Computed structures and population of low-energy conformers of <i>trans-(2S</i> ,15aS)-71) 3
Figure S2 Computed structures and population of low-energy conformers of cis -(2 R ,15 aS)-7 b .	S3
Table S1 Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of <i>trans</i> - (2S,15aS)-7d, model compound of 7a	S4
Table S2 Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of <i>trans</i> - (2S,15aS)-7b	S5
Table S3 Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of <i>cis</i> - (2R,15aS)-7d	S7
Table S4 Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of <i>cis</i> - (2R,15aS)-7b	S8
Figure S3. ¹ H-NMR spectra of (rac)-9.	S10
Figure S4. ¹³ C-NMR spectra of (<i>rac</i>)-9	S 11
Figure S5. IR spectra of (<i>rac</i>)-9 recorded as KBr disc	S12
Figure S6. ¹ H-NMR spectra of (<i>rac</i>)-10	S13
Figure S7. ¹³ C-NMR spectra of (<i>rac</i>)-10	S14
Figure S8. IR spectra of (<i>rac</i>)-10 recorded as KBr disc	S15
Figure S9. ¹ H-NMR spectra of (<i>rac</i>)-5	S16
Figure S10. ¹³ C-NMR spectra of (<i>rac</i>)-5.	S17
Figure S11. IR spectra of (<i>rac</i>)-5 recorded as KBr disc	S18
Figure S12. ¹ H-NMR spectra of (<i>rac</i>)-7a	S19
Figure S13. ¹³ C-NMR spectra of (<i>rac</i>)-7a	S20
Figure S14. IR spectra of (<i>rac</i>)-7a recorded as KBr disc	S21
Figure S15. ¹ H-NMR spectra of (<i>rac</i>)-7b	S22
Figure S16. ¹³ C-NMR spectra of (<i>rac</i>)-7b	S23
Figure S17. IR spectra of (<i>rac</i>)-7b recorded as KBr disc	S24
Figure S18. ¹ H-NMR spectra of (<i>rac</i>)-7c.	S25
Figure S19. ¹³ C-NMR spectra of (<i>rac</i>)-7c.	S26
Figure S20. IR spectra of (<i>rac</i>)-7c recorded as KBr disc.	S27

Figure S1. Low-energy conformers (> 1%) of *trans*-(2*S*,15a*S*)-7**b** optimized at B3LYP/6-31G(d) *in vacuo*. Boltzmann-weights for the same conformers in the B3LYP/TZVP PCM/CHCl₃ calculations are 95.8% and 3.6%, respectively.

Figure S2. Low-energy conformers (> 1%) of *cis*-(2R,15aS)-7b optimized at B3LYP/6-31G(d) *in vacuo*. Boltzmann-weights for the same conformers in the B3LYP/TZVP PCM/CHCl₃ calculations are 82.5% and 14.1%, respectively.

Tables

		Standard Orientation		
Confoi	rmer A	(Ångstroms)		
Ι	Atom	X	Y	Ζ
1	С	1.877613	-1.936478	-2.305506
2	С	3.235946	-2.181183	-2.508297
3	С	4.177468	-1.600925	-1.657664
4	С	3.759724	-0.764479	-0.623027
5	Н	1.143020	-2.405060	-2.954347
6	Н	3.553140	-2.825092	-3.323043
7	Н	5.237380	-1.791301	-1.801270
8	Н	4.469357	-0.293244	0.049089
9	С	0.480525	1.478316	-0.872731
10	С	1.327253	1.512783	0.409322
11	0	2.025182	0.256440	0.643615
12	С	2.398599	-0.518403	-0.427019
13	С	1.433017	-1.119212	-1.257204
14	Н	1.124309	1.405059	-1.755443
15	Н	-0.022859	2.440012	-0.941635
16	С	-0.057932	-0.972252	-1.016289
17	N	-0.509407	0.407565	-0.890426
18	Ν	0.768155	-3.880898	0.702833
19	С	-0.173601	-3.309465	-0.132108
20	С	-0.617175	-1.880054	0.186767
21	С	-0.177653	-1.369035	1.553308
22	Ν	0.779257	-2.119065	2.226588
23	С	1.306858	-3.351488	1.873538
24	0	-0.591066	-3.912411	-1.105896
25	0	-0.642488	-0.365368	2.061528
26	0	2.143386	-3.933207	2.531312
27	С	-2.694114	-0.418384	-0.219461
28	С	-1.864011	0.639208	-0.676231
29	С	-2.454841	1.902893	-0.916865
30	С	-3.805418	2.121260	-0.711439
31	С	-4.601938	1.069722	-0.258516
32	С	-4.049376	-0.184009	-0.013695
33	Н	-1.860667	2.723597	-1.299312
34	Н	-4.253481	3.087472	-0.907277
35	Н	-4.693249	-0.975443	0.353601
36	С	4.013443	4.902816	0.480949
37	C	4.141167	3.938756	-0.521639
38	C	3.282838	2.839883	-0.552646
39	C	2.286805	2.685/23	0.423944
40	C	2.170983	3.656616	1.426211
41	C III	3.025241	4.759783	1.455442
42	H	4.681854	5.759240	0.502314
43	H	4.909888	4.043293	-1.282680
44	П	3.400203	2.095161	-1.334881
45	П	1.400705	5.544957	2.191941
40	H U	2.921075	5.302908	2.241289
4/	п u	1.123009	-1./20000	0.073777
40	и Ц	_0 561//2	-1/10700	-1 882054
50	Н	0.648432	1 58/035	1 262034
51	п С	_2 158123	-1 803600	0.063265
52	н	-2.136123	-2 487314	-0.746521
52	и Ц	-2.+33073	-2.40/314	0.740321
54	N	-6.025064	1 28/735	-0 035033
55	0	-6.025004	2 41/775	-0.033335
56	0	-6.702371	0.326492	0.347060
	· · · · · · · · · · · · · · · · · · ·	0.102011	0.0000	0.0 .7000

Table S1. Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of *trans*-(2*S*,15a*S*)-7d, model compound of 7a, calculated at B3LYP/6-31G(d) level of theory *in vacuo*.

B3LYP Energy = -1673.11036861 a.u.; E+ZPVE = -1672.678981 a.u.

Conformer A		Standard Orientation		
Conformer A		(Ångstroms)		
Ι	Atom	Х	Y	Z
1	С	1.862775	-1.540671	-2.568441
2	C	3.219378	-1.768063	-2.799962
3	C	4.165682	-1.277079	-1.900194
4	C	3.754151	-0.545010	-0.786498
5	H	1.125110	-1.944372	-3.255784
6	H	3.530925	-2.331419	-3.674284
7	H	5.224698	-1.454088	-2.066988
8	H	4.46/39/	-0.139263	-0.076333
9	<u> </u>	0.478179	1./21045	-0.803473
10	<u> </u>	2.028058	0.355685	0.409349
12	C	2.020930	-0.315300	-0.561691
13	C	1 424298	-0.829877	-1 442968
14	H	1 116020	1 732887	-1 693451
15	<u>н</u>	-0.023265	2.685722	-0 774382
16	C	-0.065831	-0.702777	-1.184444
17	Ň	-0.514425	0.658864	-0.921206
18	0	0.752749	-3.760632	0.209153
19	С	-0.167480	-3.108433	-0.536256
20	С	-0.630136	-1.725943	-0.076365
21	С	-0.193217	-1.340478	1.329520
22	0	0.776636	-2.095538	1.914958
23	С	0.917228	-3.485905	1.612233
24	0	-0.530690	-3.584557	-1.586141
25	0	-0.641466	-0.385853	1.915251
26	C	-0.127151	-4.281266	2.392822
27	C	-2.703371	-0.228966	-0.351787
28	C	-1.868173	0.869635	-0.689238
29	C	-2.456712	2.153209	-0.795551
30	<u> </u>	-3.808508	2.350464	-0.5/8431
31	<u> </u>	-4.610208	1.25/941	-0.247887
32		-4.039783	-0.0134/1	-0.135344
34	Н	-1.859149	3 333110	-0.672528
35	H	-4.233732	-0.840349	0.142909
36	C	4.034258	4.991408	0.824432
37	C	3.048694	4.767843	1.786449
38	C	2.190519	3.673904	1.665365
39	С	2.299598	2.792802	0.582636
40	С	3.293086	3.027556	-0.380356
41	С	4.155489	4.116762	-0.257742
42	Н	4.705668	5.840747	0.917299
43	Н	2.949786	5.440503	2.634130
44	H	1.429200	3.497613	2.421754
45	H	3.405404	2.352798	-1.224326
46	H	4.922293	4.283959	-1.009551
4/	H	-0.572403	-1.059938	-2.088/92
48	H	0.666325	1.622/35	1.332511
49	<u> </u>	2.350591	-3.835388	1.949989
51	11 H	-0.003538	-4.100270	2 107635
52	Н	-0.017505	-5 349248	2.185733
53	Н	2.540484	-3.669016	3.010200
54	Н	2.523766	-4.912718	1.732069
55	Н	3.033968	-3.247932	1.351623
56	С	-2.170077	-1.637351	-0.206621
57	Н	-2.442870	-2.234610	-1.083437
58	Н	-2.644581	-2.113833	0.659482
59	N	-6.034488	1.449919	-0.016742
60	0	-6.715789	0.457709	0.258524
61	0	-6.484317	2.595855	-0.109336

Table S2. Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of *trans*-(2*S*,15a*S*)-**7b** calculated at B3LYP/6-31G(d) level of theory *in vacuo*.

B3LYP Energy = -1717.41808982 a.u.; E+ZPVE = -1716.938660 a.u.

G . 1		Standard Orientation		
Confor	Conformer B		(Ångstroms)	
Ι	Atom	X	Y	Ζ
1	C	0.757476	0.793089	2.760935
2	С	0.425583	0.503770	4.087268
3	С	-0.851806	0.052817	4.410191
4	С	-1.797304	-0.119031	3.399154
5	Н	1.746886	1.175265	2.551161
6	Н	1.172009	0.640591	4.864118
7	Н	-1.114280	-0.168369	5.440918
8	Н	-2.803176	-0.467368	3.611985
9	C	-1.401047	-0.684533	-0.965442
10	С	-2.305412	-1.105728	0.212170
11	0	-2.443810	0.011287	1.116996
12	C	-1.458360	0.161173	2.077599
13	<u> </u>	-0.175800	0.636207	1.730268
14	H	-1.870449	0.178127	-1.454064
15	H	-1.34//86	-1.4//944	-1./1386/
16	<u> </u>	0.042862	0.923994	0.240297
1/	N	-0.056985	-0.301307	-0.563403
10	0	1 122246	2.975019	-1.943994
20	<u> </u>	1.155240	1.903120	-1.099550
20	C	1.557445	2 990960	0 550428
21	0	0.585062	3 941346	0.219248
23	C	0.196027	4 171929	-1 148160
24	0	1.624260	1.372513	-2.607651
25	0	2.298186	3.197942	1.431937
26	С	1.177823	5.169329	-1.758821
27	С	2.308420	-0.710478	-0.256833
28	С	1.002536	-1.199039	-0.525384
29	С	0.828689	-2.579917	-0.772764
30	С	1.902187	-3.455043	-0.749358
31	С	3.174126	-2.959804	-0.467340
32	С	3.373546	-1.601184	-0.226828
33	Н	-0.158307	-2.980606	-0.968691
34	Н	1.767931	-4.514179	-0.930899
35	H	4.380076	-1.24/944	-0.031385
36	<u> </u>	-6.1/9652	-2.291693	-1.279362
3/	C	-5.935884	-0.955200	-0.950520
30	C	-4.092207	-0.30/200	-0.437344
40	C	-3 932549	-2.855026	-0.589485
41	C	-5 174344	-3 242150	-1 094213
42	Н	-7 149392	-2.591754	-1 666917
43	Н	-6.717310	-0.211993	-1.090854
44	Н	-4.508615	0.468367	-0.190010
45	Н	-3.157553	-3.603151	-0.434048
46	Н	-5.358177	-4.286050	-1.333346
47	Н	-0.798632	1.546116	-0.074599
48	Н	-1.835297	-1.937794	0.751706
49	C	-1.240657	4.661582	-1.121482
50	Н	1.173482	6.098424	-1.182654
51	Н	2.193476	4.759878	-1.750871
52	H	0.897844	5.382037	-2.794036
53	H	-1.306645	5.583822	-0.538419
54	Н	-1.584012	4.855919	-2.1409/8
55	H	-1.88/430	3.90/338	-0.004991
57	<u> </u>	2.389340	1.085422	-0.041/11
58	П Ц	3.007	0.025553	-0.730700
50	N N	4 300780	-3 870845	-0.425512
60	0	5 419553	-3 400530	-0.159366
61	0	4 100130	-5.065009	-0 657637
÷.	ÿ		2.030003	

B3LYP Energy = -1717.41427030 a.u.; E+ZPVE = -1716.934998 a.u.

Conformer A		Standard Orientation (Ångstroms)		
Ι	Atom	Х	Y	Z
1	С	3.432189	-0.394337	-1.833627
2	С	4.661339	0.264956	-1.850140
3	С	4.807022	1.479960	-1.180527
4	С	3.714154	2.040514	-0.520622
5	Н	3.325285	-1.341882	-2.354280
6	Н	5.498532	-0.170025	-2.387906
7	Н	5.761177	1.999042	-1.184324
8	Н	3.787144	2.995291	-0.009181
9	С	-0.029739	1.445198	-1.740367
10	С	0.438735	2.529093	-0.730447
11	0	1.430934	1.971681	0.153553
12	С	2.487493	1.375508	-0.503802
13	С	2.330419	0.129866	-1.141009
14	Н	0.702930	1.372879	-2.550493
15	Н	-0.961173	1.759573	-2.208635
16	С	1.042491	-0.685694	-1.081320
17	Ν	-0.175006	0.128939	-1.132634
18	Ν	3.261636	-2.442646	0.910401
19	С	2.237828	-2.602761	-0.003966
20	С	1.007671	-1.699032	0.151337
21	С	0.950112	-0.959918	1.486619
22	Ν	2.146851	-0.843808	2.186603
23	С	3.317621	-1.562482	1.989084
24	0	2.336428	-3.407936	-0.913200
25	0	-0.069864	-0.474744	1.934236
26	0	4.292849	-1.459481	2.701292
27	С	-1.493714	-1.767195	-0.367216
28	С	-1.414222	-0.444502	-0.878893
29	С	-2.623597	0.262455	-1.087565
30	С	-3.854393	-0.328792	-0.863436
31	С	-3.908531	-1.643146	-0.401937
32	С	-2.735205	-2.345164	-0.137641
33	Н	-2.612422	1.299497	-1.394226
34	Н	-4.773723	0.218240	-1.031556
35	Н	-2.805909	-3.352526	0.257262
36	С	-2.804765	4.284800	1.515385
37	С	-2.116870	3.189053	2.038637
38	C	-1.056706	2.613545	1.335596
39	C	-0.672455	3.137868	0.096422
40	C	-1.359643	4.245109	-0.419951
41	C	-2.423709	4.813100	0.280525
42	H	-3.629878	4.727120	2.067089
43	H	-2.408040	2.772285	2.999022
44	H	-0.534/22	1.757572	1.745818
45	H	-1.055928	4.6/28//	-1.3/3894
46	H	-2.945016	5.6/2/28	-0.132111
4/	H	2.119084	-0.282533	3.031336
48	H	4.095891	-2.999576	0./59/45
49	Н	1.058/59	-1.30818/	-1.943981
50	H	0.909640	3.328/96	-1.322968
51		-0.255318	-2.368014	-0.045262
52	H	-0.024241	-5.2/2/19	-0.851246
53	H	-0.432078	-3.166952	0.855324
54	N	-5.195788	-2.277205	-0.166964
55	0	-5.2016//	-3.440338	0.248579
56	0	-6.214723	-1.618983	-0.397947

Table S3. Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of *cis*-(2R,15aS)-7d, model compound of 7a, calculated at B3LYP/6-31G(d) level of theory *in vacuo*.

B3LYP Energy = -1673.10783505 a.u.; E+ZPVE = -1672.676362 a.u.

Conformer A		Standard Orientation		
Conformer A		(Ångstroms)		
Ι	Atom	Х	Y	Z
1	С	3.285862	0.226919	-2.018875
2	С	4.445873	1.000718	-1.981320
3	С	4.483387	2.157981	-1.203328
4	С	3.350284	2.546246	-0.489105
5	Н	3.266522	-0.676217	-2.621474
6	Н	5.312725	0.698285	-2.561204
7	H	5.381704	2.767990	-1.166660
8	H	3.336498	3.453474	0.106981
9	<u> </u>	-0.350026	1.692372	-1./11284
10	<u> </u>	1.100147	2.122500	-0.012707
11	<u> </u>	2 103203	1 766647	0.526212
12	C	2.193293	0.57/383	-0.320212
14	Н	0.368209	1 767408	-2 533863
15	Н	-1 319930	1 946187	-2 137750
16	C	0.948167	-0.369824	-1.284931
17	N	-0.344653	0.320089	-1.222743
18	0	3.389284	-2.159082	0.374937
19	С	2.348874	-2.270291	-0.475866
20	С	1.051079	-1.510338	-0.172383
21	С	0.999429	-0.907983	1.225607
22	0	2.200913	-0.696158	1.838202
23	С	3.252342	-1.656610	1.719842
24	0	2.483090	-2.908810	-1.493629
25	0	-0.016714	-0.549176	1.761561
26	C	4.544319	-0.924379	2.034748
27	C	-1.456812	-1.748825	-0.585682
28	<u> </u>	-1.514050	-0.380414	-0.962391
29	<u> </u>	-2./86099	0.238256	-1.031564
30	C	-3.930003	-0.4/4/90	-0.802455
32	C	-2 631225	-1.827803	-0.347773
33	Н	-2.875248	1.298704	-1.224305
34	Н	-4.918343	0.006539	-0.861377
35	Н	-2.597452	-3.492772	-0.054019
36	С	-3.313094	3.859951	1.870793
37	С	-2.437961	2.863474	2.304900
38	С	-1.342578	2.489410	1.523813
39	С	-1.113959	3.118150	0.295051
40	С	-1.988478	4.127287	-0.131568
41	C	-3.085935	4.493545	0.647330
42	H	-4.164582	4.1450/3	2.482846
43	H	-2.00/945	2.30/104	3.2304/1
44	н Н	-0.0/104/	4 636550	-1 076700
46	Н	-3 754395	5 278874	0 304499
47	Н	1.005452	-0.947444	-2.218871
48	Н	0.391688	3.622652	-1.134808
49	С	2.965769	-2.838247	2.643078
50	Н	5.390976	-1.610585	1.949325
51	Н	4.504229	-0.526299	3.052115
52	Н	4.677363	-0.098894	1.331149
53	Н	2.882796	-2.491741	3.676715
54	H	2.025016	-3.326096	2.365031
55	H	3.771449	-3.573941	2.571620
56	C	-0.139195	-2.464528	-0.419935
57	H	0.106076	-3.044677	-1.315820
50	H	-0.215132	-3.180091	0.222.492
<u> </u>	N O	-3.083883	-2.388238	-0.233483
61	0	-4.27.5410	-3.700031	-0 345722
01		-0.10/145	-2.002127	-0.5+3722

Table S4. Cartesian coordinates of the low-energy DFT-optimized MMFF conformers of *cis*-(2*R*,15a*S*)-7**b** calculated at B3LYP/6-31G(d) level of theory *in vacuo*.

B3LYP Energy = -1717.41661743 a.u.; E+ZPVE = -1716.937000 a.u.

G . A		Standard Orientation		
Confor	Conformer B		(Ångstroms)	
Ι	Atom	Х	Y	Z
1	С	3.336209	0.721719	-1.817511
2	С	4.404360	1.605039	-1.663468
3	С	4.274075	2.713407	-0.826282
4	С	3.063813	2.943242	-0.175033
5	Н	3.446173	-0.137249	-2.471755
6	Н	5.330655	1.426728	-2.201573
7	Н	5.099802	3.407490	-0.697111
8	Н	2.915338	3.811009	0.460221
9	С	-0.467335	1.768702	-1.671394
10	<u> </u>	-0.246593	2.793681	-0.522075
11	0	0.823939	2.353221	0.327694
12	<u> </u>	1.994825	2.056054	-0.330151
13		2.122593	0.904586	-1.132907
14	H	0.2/3896	1.952278	-2.455918
15	н С	-1.440233	0.150872	-2.135125
17	U N	0.222756	-0.139872	1 220540
17	0	3 434305	-2 369221	0.288765
10	0	2 545609	-2.09221	-0.682406
20	C	1 228627	-1 383992	-0.316596
20	C	1 090359	-1.025809	1 160786
22	0	2.028190	-1 520058	2.017980
23	C	3.366017	-1.831617	1.624687
24	0	2.772626	-2.447784	-1.812353
25	0	0.134251	-0.456126	1.617464
26	С	4.228377	-0.576691	1.699120
27	С	-1.264507	-1.795044	-0.692515
28	С	-1.434240	-0.416190	-0.990612
29	С	-2.753778	0.100829	-0.999186
30	С	-3.848765	-0.710091	-0.759247
31	С	-3.656198	-2.063125	-0.480862
32	C	-2.368741	-2.593434	-0.431107
33	Н	-2.932041	1.156568	-1.149524
34	H	-4.852664	-0.304026	-0.767635
35	H	-2.242970	-3.643359	-0.191499
36	<u> </u>	-3./81399	3.536224	1.842830
3/	C	-2.851872	2.015155	2.288004
30	<u> </u>	-1.07/430	3 050966	0.340252
40	C	-2 413171	3 984244	-0.097156
41	C	-3 570066	4 222191	0.645083
42	H	-4.678921	3,722050	2.426648
43	Н	-2.990503	2.078382	3.219447
44	Н	-0.947991	1.643274	1.884104
45	Н	-2.244632	4.535714	-1.020783
46	Н	-4.297477	4.949630	0.294610
47	Н	1.191817	-0.610146	-2.283337
48	Н	0.048609	3.741264	-1.000526
49	С	3.833300	-2.945223	2.548189
50	Н	5.256357	-0.816373	1.413235
51	H	4.221722	-0.189959	2.722041
52	H	3.850399	0.199084	1.029032
53	H	3.804662	-2.601256	3.585386
54	Н	3.1/8010	-3.813033	2.442438
55	<u>п</u>	4.03003/	-3.23384/	2.292/48
50	<u></u> ц	0.10/203	-2.410029	-0.0/324/
58	н Н	0.370383	-2.011013	0.025012
50	N	-4 798690	-2.921076	-0.219828
60	0	-4 584290	-4 110433	0.037958
61	0	-5.924983	-2.416651	-0.271244

B3LYP Energy = -1717.41520537 a.u.; E+ZPVE = -1716.935371 a.u.

Figure S3.¹H-NMR spectra of (*rac*)-9 measured in CDCl₃ (400 MHz).

Figure S4. ¹³C-NMR spectra of (*rac*)-9 measured in CDCl₃ (100 MHz).

Figure S5. IR spectra of (*rac*)-9 recorded as KBr disc.

Figure S6.¹H-NMR spectra of (*rac*)-10 measured in CDCl₃ (400 MHz).

Figure S7. ¹³C-NMR spectra of (*rac*)-10 measured in CDCl₃ (100 MHz).

Figure S8. IR spectra of (*rac*)-10 recorded as KBr disc.

Figure S9.¹H-NMR spectra of (*rac*)-**5** measured in CDCl₃ (400 MHz).

Figure S10. ¹³C-NMR spectra of (*rac*)-5 measured in CDCl₃ (100 MHz).

Figure S11. IR spectra of (*rac*)-5 recorded as KBr disc.

Figure S12.¹H-NMR spectra of (*rac*)-7a measured in CDCl₃ (400 MHz).

Figure S13. ¹³C-NMR spectra of (*rac*)-7a measured in CDCl₃ (100 MHz).

Figure S14. IR spectra of (*rac*)-7a recorded as KBr disc.

Figure S15.¹H-NMR spectra of (*rac*)-7b measured in CDCl₃ (400 MHz).

Figure S16.¹³C-NMR spectra of (*rac*)-7b measured in CDCl₃ (100 MHz).

Figure S17. IR spectra of (*rac*)-7b recorded as KBr disc.

Figure S18.¹H-NMR spectra of (*rac*)-7c measured in CDCl₃ 400 MHz.

Figure S19. ¹³C-NMR spectra of (*rac*)-7c measured in CDCl₃ 100 MHz.

Figure S20. IR spectra of (*rac*)-7c recorded as KBr disc.