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Predictions from Magariyama and Kudo. We calculated the pre-
dicted dependence of swimming velocity on polymer concen-
tration using the theory of Magariyama and Kudo (1) (Fig. S1)
and show that, as they claimed, there is a peak. However, we also
show a calculation that they did not report, namely, the predicted
dependence of body rotation frequency as a function of polymer
concentration. The latter is a rapidly increasing function, which is
clearly unphysical and contradicts the observation by BT (2), as
well as data shown here (Fig. 4).

Characterizing the PVP.
Intrinsic viscosity and overlap concentration. The viscosity of a polymer
solution at low concentrations can be written as a virial expansion
of η in c

η= ηs
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where ½η� and kH are the intrinsic viscosity and the Huggins co-
efficient, respectively, and ηs is the viscosity of the solvent, which
here is motility buffer. The linearity at low c can be expressed in
two different ways

η− ηs
ηsc

= ½η�+ kH ½η�2c ðHugginsÞ; [S2]

lnðη=ηsÞ
c

= ½η�+
�
kH −

1
2

�
½η�2c ðKraemerÞ: [S3]

These two linear plots should extrapolate to ½η� at c= 0. The in-
trinsic viscosity measures the volume of a polymer coil normalized
by its molecular weight, so that cp ≈ ½η�−1. A modern text names
this as the best experimental method for estimating the overlap
concentration (3).
We first regraph the ηðcÞ data given by SD (4) as HK plots (Fig.

S2A). For here and below, concentrations in wt% and grams per
deciliter are interchangeable at the sort of concentrations we are
considering. It is clear that their lowest c data point must be in-
accurate. Discarding this point gives the expected linear depen-
dence in both plots and a uniquely extrapolated value of ½η�=
1:055 at c= 0, giving cp = 0:95  g=dL. Reference to our cp values
below suggests that SD’s PVP360k has somewhat lower molecular
weight than our material with the same label.
According to current industry standards (5), PVP360k should

have viscosities of ≈3–5 and ≈300–700 mPa·s at 1 and 10 wt.% in
water, respectively. SD’s reported viscosities at 1 and 10 wt.% at
2.5 and 249 Pa·s, respectively, are lower than these values, again
consistent with their material having lower molecular weight
than our PVP360k.
We characterized all four PVPs used in this work by measuring

their low-shear viscosity in motility buffer as a function of con-
centration. For PVP360k (K-90) at 1 and 10 wt.%, we found η≈ 4
and 370 mPa·s, agreeing well with the published standards (5). We
now graph the measured viscosities of our four PVPs at low
concentrations as HK plots (Fig. S2 B–E). In each case, the ex-
pected behavior is found; the extrapolated values of ½η� and the
overlap concentrations calculated from these are given in Table
S1. The scaling of ½η� vs.M is consistent with a power law (Fig. S2F)
½η�∼Ma, with a= 0:781. Because ½η�≈ r3=M, r∼Mν with
ν= ð1+ aÞ=3. We find ν= 0:593, which is consistent with the

renormalization group value of ν= 0:588 for a linear polymer
in a good solvent.
Coil radii, second virial coefficient, and molecular weight.We performed
static and dynamic light scattering (SLS and DLS, respectively)
experiments to measure the radius of gyration, Rg, the molecular
weight, Mw, the second virial coefficient, A2, and the hydrody-
namic radius, Rh, of PVP360k in water and motility buffer (6).
Rh was measured by DLS, and Rg, Mw, and A2 were measured
using the Zimm plot of SLS data. Results are summarized in
Table S2. The positive A2 is consistent with our conclusion
above that water is a good solvent for PVP. There may be a
mild degree of aggregation in motility buffer (larger radii and
slightly smaller A2).

Native Polymer Results. Fig. S3A shows v and Ω vs. polymer con-
centration, c, for as-bought, or native, PVP360k. Although ΩðcÞ
decays monotonically, a peak is observed in v at c≈ 0:5wt%, or
roughly cp for this molecular weight. The latter ostensibly re-
produces SD’s observations (4): their data are also plotted in Fig.
S3A. In native PVP160k (Fig. S3B), the peak in vðcÞ broadens, and
now there is a corresponding broad peak in ΩðcÞ as well. These
peaks broaden out into plateaus for native PVP40k and PVP10k
(Fig. S3 C and D). We also performed experiments with native
Ficoll with the manufacturer-quoted molecular weights of 70k and
400k and observed similar nonmonotonic, broadly peaked re-
sponses in both vðcÞ and ΩðcÞ (Fig. S4).
The Effect of Small-Molecule Energy Sources.Here we show vðcÞ for
E. coli swimming in glycerol solutions of a range of concen-
trations (Fig. S5). The plot is indeed reminiscent of what is seen
for native PVP10k and PVP40k. Indeed, we suggest that the in-
creases at low concentrations in all four polymers have the same
origin as the increase observed at low glycerol concentration: the
availability of a small-molecule energy source. The decrease at
high glycerol is an osmotic effect (as observed for other small
molecules, e.g., sucrose) (7), whereas that seen in the 10k, 40k,
and 160k polymers can be entirely accounted for by low-Re
Newtonian hydrodynamics (polymeric osmotic effects at our
concentrations are negligible).

Dialyzed Ficoll Results. Swimming speed and body rotation fre-
quency as a function of concentration are shown for two purified
Ficolls in Fig. S6.

Shear-Thinning Calculations.
Predicting Ω(v) for flagellum experiencing buffer viscosity. Here we
outline the procedure used to calculate the rotation rate of the
cell body for a bacterium swimming in shear-thinning PVP360k
solution as a function of the swimming speed. We assume that the
flagellum sees a viscosity η′ that is different from the low-shear-
rate viscosity η experienced by the bacterial body. This assump-
tion is partly motivated by bulk and microrheological measure-
ments (Fig. 6), showing that at the shear rates generated by the
flagellum, shear thinning can be expected at least down to the
micrometer scale. Empirically, the low- and high-shear viscosities
plotted in Fig. 6 can be fitted by

�
ηlow−shear =−5:32+ 6:33 expð0:39cÞ _γ→ 0 s−1;

ηhigh−shear = 0:96+ 0:69c+ 0:44c2 _γ = 104 s−1;
[S4]

where c is in wt% and η in centipoise (cP).
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In this two-viscosity model, the force and torque balance
equations solve to Eq. 13
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The friction coefficients in Eq. S5 are given by (8)

â= knL sinψ tanψ
	
1+ γ cot2 ψ



; [S6]
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and γ = kt=kn. Here, L= 7  μm and λ= 2  μm are the total length
and pitch of the flagellum, respectively, ψ = 41∘ is the angle made
by the flagellar filament with the flagellar axis, r= 20  nm is the
estimated radius of the composite filament in a flagella bundle,
and c= 2:4 is the Lighthill constant. All parameters are taken
from a previous experimental paper (8), where this set of param-
eters were shown to be consistent with the Purcell model.
Using the measured values of ΩðcÞ for PVP360k, η′= ηs, η=

ηlow−shear, and Eq. S5 is sufficient to calculate the corresponding
vðΩÞ. Results show good agreement with the measured values
(Fig. 3), thus predicting a peak in the swimming velocity on an
increase in the viscosity of the polymer solution. For a better

illustration, we compare the predicted and measured values of v
as a function of the viscosity experienced by the body (ηlow−shear)
in Fig. S7. Our theory is successful in predicting a peak in the
swimming velocity in the right position and of the right shape.
Deducing the viscosity the flagellum sees from measurements. Now we
relax our previous assumption that η′ is equal to the viscosity of
the solvent, and use Eq. S5 to extract the viscosity of the fluid
surrounding the flagellar filament. Using the measured values
of ΩðcÞ and vðcÞ, Eq. S5 can be solved for η′. The results are
shown in Fig. 6. Indeed, for most of the concentration range
studied, η′≈ ηs.

Dark-Field Flicker Microscopy. Under dark-field illumination, the
image of a swimming bacterium appears to flicker. By calculating
the power spectrum of the spatially localized time-dependent in-
tensity fluctuations of low-magnification images of a quantized
pixel box (containing approximately one cell) and then averaging
over all cells in the images, we are able to measure the body ro-
tational frequency Ω=2π averaged over ∼ 104 cells based on
aK 10-s movie. This method is similar to what was done by Lowe
et al. (9), who measured the power spectrum of single swimming
cells. However, here we use low-magnification dark-field imaging,
which allows high-throughput measurement of Ω=2π.
Dark-field movies were recorded (Nikon Plan Fluor 10×Ph1

objective, NA = 0.3, Ph3 phase-contrast illumination plate) at
either 500 or 1,000 Hz on an inverted microscope (Nikon TE300
Eclipse) with a Mikrotron high-speed camera (MC 1362) and
frame grabber (Inspecta 5, 1-Gb memory) at room temperature
(22 ± 1 °C). The images correspond to an area of ≈ 720×
720 μm, containing around 104 bacteria. Approximately 4,000
frames were captured, at a resolution of 512 × 512 pixels.
To process a video sequence, each frame was divided into

square tiles of side length l (typically five pixels), and the pixel
values in each tile were summed to give a single number. This
process was repeated for every frame in the video sequence,
yielding intensity as a function of time for each tile. The power
spectrum of these data was calculated for each tile separately,
before averaging over all tiles to give smoothed data for the
whole video sequence. The power spectrum is then normalized
by the frequency squared to remove any contribution from
Brownian motion due the nonmotile cells, inherently present in
the bacterial suspensions. An example is shown in Fig. S9. We
identify the first peak as the body rotational frequency Ω=2π in
line with previous studies (9).

Viscosity Measurements. The viscosity of PVP360k measured
using conventional rheometry and DWSmicrorheology (Materials
and Methods) at different concentrations is shown in Fig. S8.
There is reasonable overlap between the two methodologies at
intermediate shear rates.
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Fig. S1. Normalized swimming speed v=v0, body rotational speed Ω=Ω0, and flagella rotational speed ω=ω0 vs. viscosity according to Magariyama and Kudo (1).

Fig. S2. (A–E) Huggins and Kraemer representation: (red circles) ðη− ηsÞ=ηsc and (black squares) lnðη=ηsÞ=c vs. polymer concentration. Lines are linear fits to the
data using Eqs. S2 and S3 simultaneously. Both quantities should be linear and extrapolate to a unique intrinsic viscosity ½η� at c= 0. (A) From the PVP viscosity
data of Schneider and Doetsch. Discarding the lowest-c point gives ½η�= 1:05±0:02. (B–E) Our PVP at four different molecular weights. (F) The scaling of in-
trinsic viscosity, ½η�, with molecular weight, M, for our PVPs.
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Fig. S3. (A–D) Swimming speed v (black circles) and body rotation frequency Ω=2π (red squares) of E. coli vs. concentration (in weight percent) of native PVP of
four molecular weights. Top axis: PVP concentration normalized to the overlap concentration c* (see Table S1). The stars (blue) in A are results for swimming
speed from SD (4).

Fig. S4. Speed v (red symbols) and body rotation frequency Ω (black symbols) given in absolute (Upper) and normalized values (Lower) as functions of
concentration for native Ficoll of two molecular weights: (A and B) M = 70k (one dataset) and (C and D) M = 400k (four datasets). Lines are guides to the eye.

Fig. S5. Swimming E. coli in glycerol. Speed v as a function of glycerol concentration.

Martinez et al. www.pnas.org/cgi/content/short/1415460111 4 of 6

www.pnas.org/cgi/content/short/1415460111


Fig. S6. Speed v (red circles) and body rotation frequency Ω (black squares) given in absolute (Upper) and normalized values (Lower) as functions of con-
centration for dialyzed Ficoll of two molecular weights: (A and B) M = 70k and (C and D) M = 400k. Lines are guides to the eye.

Fig. S7. Speed v vs. viscosity from experiments (black dots) and our theory (red diamonds) as discussed in SI Text.

Fig. S8. Viscosity of PVP360k as a function of shear rate obtained from bulk rheology (open symbols) and DWS microrheology (filled symbols) for several
polymer concentrations (see legend in weight percent).
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Fig. S9. Typical example of the power spectrum of the flickering dark-field image of individual cells averaged over ≈ 104 cells based on an ≈ 10-s dark-field
movie (Materials and Methods). The power spectrum is normalized by the frequency square to remove contribution from Brownian motion due to the inherent
presence of nonmotile cells in the suspension. The black line corresponds to a two-peak fit using Lognormal distribution.

Table S1. Intrinsic viscosity, [η], and Huggins coefficient, kH,
obtained by fitting simultaneously (global fitting) the viscosity
data using both Huggins and Kraemer equations

Solutions ½η� (dL/g) kH c*(g/dL or wt%)

PVP360k 1.84 ± 0.04 0.38 ± 0.02 0.55 ± 0.01
PVP160k 0.72 ± 0.01 0.38 ± 0.01 1.40 ± 0.02
PVP40k 0.263 ± 0.003 0.38 ± 0.02 3.8 ± 0.1
PVP10k 0.105 ± 0.006 0.42 ± 0.08 9.5 ± 0.5
SD (4) 1.05 ± 0.02 0.38 ± 0.02 0.95 ± 0.02

Table S2. Parameters obtained from SLS and DLS for PVP360k in
water or in motility buffer (MB)

Solutions Mw (g/mol) A2 (mol L/g2) Rg (nm) Rh (nm)

PVP360k in water 840 × 103 3.0 × 10−7 56 30
PVP360k in MB 1,500 × 103 2.6 × 10−7 79 37
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