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1 Food-web models

We describe here the main structural (also called static) models found in the
literature for generating networks with some of the statistical features of food
webs. We then discuss some aspects of the Preferential Preying Model (PPM)
which we put forward in the main text (described in Methods). In all these
models, the number of links L can only be set in expected value. As is often
done, throughout this work we discard all generated networks which have a
number of links greater or smaller than this target L by more than five percent.
In Section 3 we describe several network measures and compare the performance
of the models using the food-web data listed in Section 2.

1.1 The Cascade Model

In the Cascade Model, each species i is assigned a random number ni drawn
from a uniform distribution between 0 and 1 [1]. For any pair (i, j), we set i to
be a consumer of j with a constant probability p if ni > nj , and with probability
zero if ni ≤ nj . With S species, we obtain an expected number of links L if we
set

p =
2L

S(S − 1)
.

This was the first attempt to show how networks with a structure in some senses
similar to real food webs could come about via simple rules.

Stouffer and co-workers later modified this model so that the number of
prey would be drawn from the Beta distribution used by the Niche Model (see
below), and called the new version the Generalized Cascade Model [2]. Since this
amendment improves the model’s predictions as regards distributions of prey
and predators (without, to the best of our knowledge, involving any drawbacks),
throughout this paper we use the Generalized Cascade Model.

1.2 The Niche Model

In the Niche Model, each species i is awarded a niche value ni as in the Cas-
cade Model [3]. However, instead of choosing species with lower niche values
randomly for prey, i is constrained to consume the subset of species j such that
ci − ri/2 ≤ nj < ci + ri/2 – i.e., all those lying on an interval of the niche
axis of size ri and centred at ci, and none without. The range is defined as
ri = xini, where xi is drawn from a Beta distribution with parameters (1, β).
For S species and a desired number of links L, we must set

β =
S(S − 1)

2L
− 1.

The centre of the interval ci is drawn from a uniform distribution between ri/2
and min(ni, 1− ri/2).

The rationale behind this model was that food webs were thought to be
interval – i.e., the species could be arranged in an ordering such that the prey
of any given predator were contiguous [4]. The Niche Model achieves this by
construction. More recent analysis has shown that food webs are not generally
perfectly interval, although they do usually exhibit a certain degree of intervality
[5, 6]. Nevertheless, the Niche Model has been tremendously successful, since it
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outperforms the Cascade Model in approximating measurable features of food
webs, and even compares well to more elaborate models which take the Niche
Model as a basis [7]. It is still the model most commonly used whenever synthetic
networks similar to food webs are required.

1.3 The Nested Hierarchy Model

The Nested Hierarchy Model provides a way to take into account that phyloge-
netically similar species should have prey in common [8]. It gives each species
a niche value and a range, exactly as in the Niche Model. However, instead
of establishing links directly to species within the range, first the number of
prey to be consumed by each species is determined, in proportion to the range,
kini ∝ ri, so as to generate an expected number of links L. These links are
then attributed in the following way. The species with lowest niche value has
no prey, while the one with the highest has no predators (so there is always at
least one basal species and one apex predator). Starting from the species with
second smallest niche value and going up in order of n, we take each species i
and apply the following rules to determine its kini prey:
1. We choose a random species j already in the network (so nj ≤ ni) and set it
as the first prey species of i.
2. If j has no predators other than i, we repeat 1 until either the chosen prey
does have other predators, or we reach kini . Else we go to 3.
3. We determine the set of species which are prey to the predators of j. We
select, randomly, species from this set to become also prey of i until we either
complete kini , or we go to 4.
4. We continue choosing prey species randomly from among those with lower
niche values. If we still have not reached kini when these run out, we continue
choosing them randomly from those with higher niche values.

In this model, two consumers that share prey are assumed to be phyloge-
netically related, while the extra links that must at times be sought mimic the
effects of independent adaptation. We find it a particularly interesting model
because phylogenetic constraints should indeed be taken into account, and as
it stands our Preferential Preying Model (described below) does not do this.
One problem we find with the Nested Hierarchy Model, however, is that a given
species i is assumed to be related to a certain set A of species which share
common prey with i; but i will also belong to the set B of common prey of a
different set of consumers, and nothing constrains A and B to overlap. In other
words, the species related to i due to its prey are not the ones related to i due
to its predators, whereas in nature it is to be expected that phylogenetically
similar species should have both prey and predators in common. In fact, it has
recently been reported that common predators are statistically more significant
than common prey [9].

1.4 The Generalized Niche Model

The Generalized Niche Model was proposed to account for the fact that em-
pirical food webs turned out not to be maximally interval, as predicted by the
Niche Model [5]. A contiguity parameter c was introduced, which would deter-
mine the proportion of prey to be allocated according to the Niche Model, the
rest ensuing from the Generalized Cascade Model. In other words, the Niche
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Model would be implemented as before but with reduced ranges ri = cxini.
Then, for each species, the number of extra prey kcascadei = (1 − c)xiniS is
drawn randomly from among the available species with niche values lower than
ni, as in the Generalized Cascade Model. For c = 1 we have the Niche Model,
while c = 0 results in the Generalized Cascade Model.

The Generalized Niche Model has been shown to emulate real food webs very
successfully, at least as regards certain features, such as community structure
[10]. It is also often used as a convenient model for generating synthetic networks
with a view to studying food webs in silico [11].

1.5 The Minimum Potential Niche Model

The Minimum Potential Niche Model is similar to the Generalized Niche Model
in that it is a modification of the Niche Model which breaks up complete in-
tervality by means of a parameter, f [12]. However, the motivation is slightly
different. The idea is that in reality there is more than one niche dimension con-
straining possible predation links (hence the lack of complete, one-dimensional
intervality), which implies that some of the links determined by the Niche Model
are actually “forbidden links”. The species are all allocated niche values ni and
ranges ri = xini as in the Niche Model. The species at the extremes of this
range are always consumed. However, the rest is considered a potential range
and the β parameter used in the Beta distribution from which xi is drawn is
now

β =
S(S − 1)

2(L+ F )
− 1,

where F = fP , P being the total number of potential links given the ranges,
minus the species at the extremes. Once all the species have their ranges, each
species within will be consumed with a probability 1−f . Therefore, f = 0 results
in the original Niche Model, but f > 0 produces a proportion of forbidden links.

Allesina et al. suggested a framework for comparing niche-based models [12];
they computed the likelihood that the Cascade, Niche and Nested Hierarchy
models have of generating the links in a set of ten real food webs, and found
theirs (the Minimum Potential Niche Model) to be superior – and, in fact, the
only one capable of generating all the observed links.

1.6 The Preferential Preying Model

In the main text we propose the Preferential Preying Model (PPM) in order to
capture the trophic coherence of empirical food webs. The details are given in
Methods, so here we confine ourselves to displaying the scheme diagrammatically
in Fig. S1. We go on to list several possible amendments which could be made
to this basic version of the model and which may be of use to researchers wishing
to use the PPM for purposes other than our main one here – namely, to highlight
the importance of trophic coherence and its relevance to food-web stability.

1.6.1 Possible amendments to the PPM

• Basal species. All the niche-based models discussed allow the number
of producers, B, to emerge freely (although they are not, generally, par-
ticularly successful in predicting B [7]). We chose here to begin with a
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Figure S 1. Diagram showing how networks are assembled in the Preferential
Preying Model (PPM), as described in Methods in the main text. In Panel A
a new node, labelled i, is introduced to the networks, and is randomly assigned
node 4 as its first prey species. In Panel B, the probabilities of next choosing
node 5 or node 6 are calculated, as functions of their trophic distance to node
4 (β = 1/T ). Node 5 is the closest, and in this case is taken as the second prey
species, as shown in Panel C.

set number of basal species, as in the Preferential Attachment Model [13].
We imagine that for most applications where synthetic networks are re-
quired it would be useful to have control over this parameter (which is
itself related to trophic coherence, as we show in Section 3.2.3). However,
if a freely emerging B were preferred – for instance, for a rigorous com-
parison against models which do not allow this value to be set easily –
it is straightforward to take the minimum κi equal to zero for incoming
species, thereby allowing a proportion of them to become producers.

• Numbers of prey. We have drawn the number of prey for each incoming
species from a Beta distribution, as in all the niche-based models, because
Stouffer et al. [2] have shown that this method yields a particularly good
fit to food-web data (we have also verified that this holds true for our
46 food-web dataset). However, were the model to be applied to systems
other than food webs, it may be preferable to use, for instance, a Poisson
or a Pareto distribution, depending on the in-degree distributions of the
networks to be emulated.

• Boltzmann factor. The functional form we have used to determine the
second and subsequent prey of an incoming species (an exponential in the
trophic distance divided by the parameter T ) is arbitrary; careful fitting
to data may suggest a better function. There is also no reason other
than simplicity to use the same value of T for each incoming species: one
could also draw a different value Ti for each incoming species form some
distribution, perhaps dependent on the trophic level of its first prey.

• Cycles. Directed loops in food webs are relatively rare, yet often present.
The PPM as described does not generate any of these cycles, but it could
easily be amended to do so by assigning each incoming species a small
number of predators as well as prey from amongst the species already in
the network. However, directed loops require some predators to consume
prey at higher trophic levels than theirs, so the more coherent a network,
the fewer directed loops are to be expected.
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• Phylogeny and body size. In this simple incarnation, the PPM ignores
the main effects that most of the other models are based on, but these
could be taken into account in a “Generalized Preferential Preying Model”.
Something akin to a phylogenetic signal could be induced by introducing
a bias in the Boltzmann factor such that an incoming node tended to copy
the prey and predators of a randomly chosen species already in the network
– perhaps limiting in the Nested Hierarchy Model in the case where only
prey are copied. The Niche, Generalized Niche and Minimum Potential
Niche models assume that the niche ordering (usually thought to represent
body size, possibly in combination with other biological features) to some
extent constrains species to find prey within closed intervals thereof. A
bias could likewise be introduced in the Boltzmann factor of the PPM such
that intervals of the sequence of entry were preferred, if this constraint in
empirical networks turned out to be more than a spurious effect of trophic
coherence.

1.6.2 Negative temperatures

As discussed in the main text, the PPM can generate any level of trophic coher-
ence between that of a maximally coherent structure (with T → 0) and one as
incoherent as would be obtained if attachment were random (at T → ∞). How-
ever, as shown in Table S1, some food webs (five out of the 46 in our dataset)
exhibit higher values of q even than this latter case. The PPM can also generate
greater incoherence than obtained at high positive T with negative values of this
parameter, as illustrated in Fig. S2. The curves of q and R would be continuous
if instead of T we used its inverse, β = 1/T . With this parameter, β = 0 cor-
responds to random attachment, with q falling monotonically from maximum
incoherence at β → −∞ to maximum coherence at β → +∞. A comparison of
the two panels in Fig. S2 shows that the effect of trophic coherence on stability
seems to saturate at about the q obtained with random attachment: greater
incoherence has little effect on R.
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Figure S 2. Left: Trophic coherence, as measured by q, of networks
generated with the PPM with the parameters of Chesapeake Bay [14, 15],
against T , for a range which includes T < 0. Right: Stability, as measured by
R, for the networks of the panel on the left.

7



2 Food-web data

We have compiled a dataset of 46 food webs available in the literature, pertaining
to several ecosystem types. The methods used by the researchers to establish
the links between species vary from gut content analysis to inferences about the
behaviour of similar creatures. In Table S1 we list the food webs used along
with references to the relevant work. We also list, for each case, the number
of species S, of basal species B, the mean degree K, the ecosystem type, the
trophic coherence q, the value of the parameter T found to yield (on average)
the empirical q with the Preferential Preying Model, and the numerical label
used to represent the food web in several figures below.

Food web S B K Type q T Reference Label
Akatore Stream 84 43 2.70 River 0.16 0.26 [16, 17, 18] 18
Benguela Current 29 2 7.00 Marine 0.76 0.87 [19] 11
Berwick Stream 77 35 3.12 River 0.18 0.25 [16, 17, 18] 34
Blackrock Stream 86 49 4.36 River 0.19 0.25 [16, 17, 18] 27
Bridge Brook Lake 25 8 4.28 Lake 0.59 1.15 [20] 14
Broad Stream 94 53 6.01 River 0.16 0.16 [16, 17, 18] 35
Canton Creek 102 54 6.83 River 0.16 0.18 [21] 2
Caribbean (2005) 249 5 13.31 Marine 0.75 0.70 [22] 17
Caribbean Reef 50 3 11.12 Marine 0.99 -0.24 [23] 13
Carpinteria Salt Marsh Reserve 126 50 4.29 Marine 0.65 -8.27 [24] 33
Catlins Stream 48 14 2.29 River 0.20 0.27 [16, 17, 18] 19
Chesapeake Bay 31 5 2.19 Marine 0.47 0.67 [14, 15] 5
Coachella Valley 29 3 9.03 Terrestrial 1.34 -0.02 [25] 12
Crystal Lake (Delta) 19 3 1.74 Lake 0.28 0.33 [26] 37
Cypress (Wet Season) 64 12 6.86 Terrestrial 0.63 0.73 [27] 42
Dempsters Stream (Autumn) 83 46 5.00 River 0.23 0.30 [16, 17, 18] 36
El Verde Rainforest 155 28 9.74 Terrestrial 1.02 -0.82 [28] 15
Everglades Graminoid Marshes 63 5 9.79 Terrestrial 0.66 0.47 [29] 44
Florida Bay 121 14 14.60 Marine 0.59 0.48 [27] 26
German Stream 84 48 4.20 River 0.21 0.29 [16, 17, 18] 28
Grassland (U.K) 61 8 1.59 River 0.40 0.72 [30] 4
Healy Stream 96 47 6.60 River 0.22 0.24 [16, 17, 18] 29
Kyeburn Stream 98 58 6.42 River 0.18 0.18 [16, 17, 18] 30
LilKyeburn Stream 78 42 4.81 River 0.23 0.29 [16, 17, 18] 31
Little Rock Lake 92 12 10.84 Lake 0.69 0.75 [31] 8
Lough Hyne 349 49 14.66 Lake 0.62 0.66 [32, 33] 46
Mangrove Estuary (Wet Season) 90 6 12.79 Marine 0.67 0.47 [27] 43
Martins Stream 105 48 3.27 River 0.32 0.49 [16, 17, 18] 20
Maspalomas pond 18 8 1.33 Lake 0.48 -9.22 [34] 39
Michigan Lake 33 5 3.91 Lake 0.38 0.21 [35] 40
Mondego Estuary 42 12 6.64 Marine 0.74 10.07 [36] 41
Narragansett Bay 31 5 3.65 Marine 0.66 1.18 [37] 38
Narrowdale Stream 71 28 2.18 River 0.25 0.38 [16, 17, 18] 21
N.E. Shelf 79 2 17.76 Marine 0.82 0.67 [38] 10
North Col Stream 78 25 3.09 River 0.28 0.34 [16, 17, 18] 22
Powder Stream 78 32 3.44 River 0.22 0.28 [16, 17, 18] 23
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Scotch Broom 85 1 2.62 Terrestrial 0.45 0.49 [39] 16
Skipwith Pond 25 1 7.88 Lake 0.68 0.23 [40] 6
St. Marks Estuary 48 6 4.60 Marine 0.69 1.02 [41] 9
St. Martin Island 42 6 4.88 Terrestrial 0.59 0.60 [42] 7
Stony Stream 109 61 7.61 River 0.17 0.18 [43] 3
Sutton Stream (Autum) 80 49 4.19 River 0.15 0.19 [16, 17, 18] 32
Troy Stream 77 40 2.35 River 0.18 0.30 [16, 17, 18] 24
Venlaw Stream 66 30 2.83 River 0.23 0.33 [16, 17, 18] 25
Weddell Sea 483 61 31.81 Marine 0.75 1.01 [44] 45
Ythan Estuary 82 5 4.82 Marine 0.46 0.38 [45] 1

Table S 1. Details of the 46 food webs used throughout the paper. From left
to right, the columns are for: name, number of species S, number of basal
species B, mean degree K, ecosystem type, trophic coherence q, value of the
parameter T found to yield (on average) the empirical q with the Preferential
Preying Model, references to original work, and the numerical label.
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3 Network measures

3.1 Trophic coherence

In the Methods section of the main text we define the network structural prop-
erty of trophic coherence. Here we simply illustrate the difference between a
maximally coherent network and a highly incoherent one in Fig. S3.

Figure S 3. Two example networks generated with the Preferential Preying
Model, illustrating the extremes of trophic coherence: the network on the left
was generated with T = 0.001 and has q = 0 (all links are between species
exactly one trophic level apart) while the one on the right is for T = 10
(almost random attachment) and has q = 0.7.

In Fig. S4 we show the empirical values of q observed in each of the 46
food webs (also displayed in Table S1) along with the predictions of each of the
food-web models discussed above and in the main text.

3.2 Stability

Let us assume that we have a set of ordinary differential equations governing
the evolution of the population of each species in an ecosystem, as measured,
for instance, by its total biomass xi. In vector form, we can write this as

d

dt
x = f(x).

The dynamics will have a fixed point at any configuration x∗ such that f(x∗) =
0. Let us suppose that the system is placed at this fixed point but suffers a
small perturbation ζζζ(t):

x(t) = x∗ + ζζζ(t).

For small enough |ζζζ(t)|, its dynamics will be given by the linearised equation:

d

dt
ζζζ(t) = J(x∗)ζζζ(t),
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Figure S 4. Trophic coherence, as measured by q, for each of the food webs
listed in Table S1. The corresponding predictions of each food-web model
discussed in Section S1 – Cascade, Niche, Nested Hierarchy, Generalized
Niche, Minimum Potential Niche and Preferential Preying – are displayed with
bars representing one standard deviation about the mean. Empirical values
are black squares. The labelling of the food webs is indicated in the rightmost
column of Table S1.

where J(xxx∗) is the Jacobian matrix [∂fi/∂xj ] evaluated at xxx∗. The fixed point
will be locally stable if all the eigenvalues of J(xxx∗) have negative real part [46].

Let us consider a fairly general dynamics for xxx∗ given by a consumer-resource
model:

d

dt
xi = ηij

∑
j

aijF (xi, xj)−
∑
j

ajiF (xj , xi) +G(xi). (1)

The first term on the right accounts for the increment in species i’s biomass
through consumption of its resources, the second term is the biomass lost to
its consumers, and the function G represents any factors which are not due to
interaction with other species. Since we are interested here in effects of inter-
actions between species, we shall simply assume G(x) = γx with γ a constant.
The function F describes how the interaction between a consumer and a re-
source species depends on their respective biomasses. The parameter η is the
efficiency of predation – the proportion of biomass lost by a resource which goes
on to form part of the consumer. We shall in general consider this parameter
to be constant for all pairs of species (ηij = η, ∀i, j), but in Sections S3.2.2 and
S3.2.4 we look into the effects of varying its value. In the main text, we set this
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parameter to η = 0.2.
The Jacobian, J , will be obtained by taking the partial derivatives of Eq.

(1), for each i, with respect to each xj .
In the simple case where the interaction between species is given by a sum,

F (xi, xj) = xi + xj ,

we have
Jij = (ηaij − aji)(1 + δij) + γδij ,

where δij is the Kronecker delta (equal to one when i = j, or else zero). Positive
terms added to or subtracted from the main diagonal of J simply shift its spec-
trum of eigenvalues to the right or left, respectively. Therefore, we concentrate
on the matrix

W = ηA−AT , (2)

where AT is the transpose of A, and consider λ1, the eigenvalue of W with
the largest real part. Then, R = Re(λ1) can be regarded as a measure of
the minimum degree of self-regulation at each node which this dynamics would
require in order for the system to be stable. In other words, the smaller R, the
more stable we shall say the system is.

In this simple case defined by F (xi, xj) = xi + xj the Jacobian is indepen-
dent of the point xxx∗ where it is evaluated. However, this will not, in general,
be the case and for other dynamics we would need to specify this point in or-
der to characterise the stability of the system. For instance, in a generalised
Lotka-Volterra dynamics, the interaction is proportional to the biomass of both
consumer and resource,

F (xi, xj) = xixj ,

and the Jacobian becomes

Jij = (1 + δij)wijxi + γδij , (3)

where wij are the elements of the matrix W as given by Eq. (2). Note that this
expression depends on the biomass of species i (though not on j’s) at the point
of interest.

To capture the nonlinearities expected in a prey species’ functional response,
consumer-resource models often describe the interaction as

F (xi, xj) = xiH(xj),

where H is the Hill equation,

H(x) =
xh

xh
0 + xh

,

with x0 the half-saturation density. The Hill coefficient h determines whether
the functional response is of type II (h = 1) or type III (h = 2) [47]. Now we
find that the Jacobian is

Jij = [η̃(xi, xj)aij − aji]H(xi) (4)

if i 6= j, where the effective efficiency of predation is

η̃(xi, xj) =
xi

H(xi)

∂H(xj)

∂xj
η =

hxh
0xi

xh+1
j

H(xj)
2

H(xi)
η,
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and, for the main diagonal elements,

Jii = {h[1−H(xi)] + 1}H(xi)wii + γ.

In each of these kinds of dynamics it is necessary to evaluate the Jacobian at
a particular point: Equations (3) (Lotka-Volterra) and (4) (types II and III)
are similar in form to the matrix W of Eq. (2), but their terms are modified
by the biomass of the predator, or the biomasses of both prey and predator,
respectively. One might suggest that we only need identify a fixed point and
evaluate the equations there. But, in general, a feasible fixed point (in which
xi > 0 for all i) will not exist. Feasible fixed points could be defined by at-
tributing weights to the elements of the interaction matrix A, but this would
involve decisions on how to do this in a realistic way which might render the
results somewhat arbitrary. (For a discussion on the feasibility of fixed points,
see Section S3.2.5.)

Throughout most of the paper we focus simply on the matrix W as given
by Eq. (2), for although the dynamics it describes exactly is not very realistic
(corresponding to the interaction term F (xi, xj) = xi+xj in Eq. (1)), it captures
the essential behaviour of better motivated dynamics without requiring any
assumptions about the fixed point. In fact, if all species had the same biomass
at the fixed-point, then Eqs. (3) (Lotka-Volterra) and (4) (types II and III)
would also reduce to the matrix W as given by Eq. (2), for an appropriate
choice of the parameter η. However, so as to test the robustness of our results
to details of the dynamics, in Section S3.2.1 we look into the effects of different
distributions of biomass according together with Lotka-Volterra, type II or type
III dynamics. We find that the relationship between trophic coherence and
stability reported in the main text is robust to these considerations, although
the dependence of biomass on trophic level introduces interesting effects, in
particular for the complexity-stability scaling.

In the main text we describe how stability in directed networks (and food
webs in particular) is determined to a large extent by their trophic coherence.
In Fig. S5 we compare the predictions of each of the food-web models described
in Section 1 for each of the food webs listed in Table 1. Another network
feature which influences stability, as mentioned above, is the existence of self-
links (representing cannibalism, in the case of food webs), since this is a form
of self-regulation. We disentangle this effect from that of trophic coherence, we
remove all self-links from the food webs and again measure the real part of the
leading eigenvalue, Rnc. The predictions of each model are shown in Fig. S6.

In Section 4 we give a proof that a maximally coherent network (q = 0) with
constant interaction strengths can always be stabilised with an infinitesimal
degree of self-regulation.

3.2.1 Biomass distribution

As discussed in Section S3.2, the Jacobian corresponding to most kinds of bio-
logically plausible dynamics will depend on details of the fixed point. In other
words, we need to know the biomass of each species in order to evaluate the Ja-
cobian. Since only a fraction of the energy produced by a species can be used by
its consumers, ecosystems can often be regarded as pyramids in which biomass
is a decreasing function of trophic level [48]. More specifically, if we assume that
the biomass of a species is a constant fraction of the combined biomass of its
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Figure S 5. Stability, as measured by R, for each of the food webs listed in
Table S1. The corresponding predictions of each food-web model discussed in
Section S1 – Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum
Potential Niche and Preferential Preying – are displayed with bars
representing one standard deviation about the mean. Empirical values are
black squares. The labelling of the food webs is indicated in the rightmost
column of Table S1.

resources, biomass will be exponentially related to trophic level. We can thus
write

xi = ea(si−1), (5)

with a a parameter determining the difference in biomass between predator and
prey species (for a = 0 there is no dependence of biomass on trophic level), and
set the basal species to unity biomass. A negative value of a then corresponds
to a pyramid in which biomass decreases with trophic level (note that a graph-
ical representation of this situation will look like a pyramid if the size of each
echelon corresponds to the logarithm of its biomass). Although terrestrial food
webs have this distribution, in certain aquatic environments inverted pyramids
can arise, corresponding to a positive a. This is due to the effect of increas-
ing longevity with trophic level, which can compensate to some extent for the
inefficiency of predation [48].

In order to examine the robustness of results to fluctuations in this expo-
nential law, we can consider instead a biomass given by

xi = (1 + ξi)e
a(si−1), (6)
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Figure S 6. Stability after removal of all self-links, Rnc, as measured by R,
for each of the food webs listed in Table S1. The corresponding predictions of
each food-web model discussed in Section S1 – Cascade, Niche, Nested
Hierarchy, Generalized Niche, Minimum Potential Niche and Preferential
Preying – are displayed with bars representing one standard deviation about
the mean. Empirical values are black squares. The labelling of the food webs
is indicated in the rightmost column of Table S1.

where the variables ξi are randomly drawn from a normal distribution with
mean zero and standard deviation σx. We can then use these values of xxx to
evaluate the Jacobian for each kind of dynamics and study the behaviour of its
leading eigenvalue, R.

Jacobian
√
S

√
K q q (no self-links)

W 0.064 0.461 0.596 0.804
WI 0.045 0.219 0.431 0.730
WII 0.088 0.359 0.456 0.658
WIII 0.107 0.426 0.608 0.582
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Table S 2. First column: Jacobian used to compute stability of the empirical
food webs of Table S1. W is simply the interaction matrix, as used throughout
the main text; WI , WII and WIII correspond to types I, II and III,
respectively (where Lotka-Volterra is type I). For these cases, we assume an
uncorrupted biomass pyramid, as given by a = −0.2 in Eq. (5). Second, third
and fourth column, respectively: value of the correlation coefficient r2

obtained for R (stability) against
√
S (where S is the number of species),

√
K

(where K is the mean degree), and q (incoherence parameter). Fourth column:
as the third column, after removing all self-links. Compare with Fig. 1 of the
main text.

Table S2 shows the correlations between stability and the various network
measures shown in Fig. 1 of the main text over the 46 food webs in the dataset.
The first row displays the values for the simple case where the Jacobian is
considered equal to the interaction matrix W . The second, third and fourth
rows are for the cases of Lotka-Volterra, type II and type III dynamics, with
biomass distributed according to Eq. (5) and a = −0.2. The general pattern
shown in Fig. 1 of the main text is conserved for these more realistic dynamics.

In Fig. 7 we show the values of R obtained from the Lotka-Volterra Jacobian
given by Eq. (5) with different values of a, corresponding to pyramid, flat and
inverted pyramid distributions of biomass. The empirical values found for the
Chesapeake Bay food web [14, 15] with each distribution are compared to the
predictions of the Preferential Preying Model against T (left panel), and the
Generalized Niche Model against contiguity c (right panel). The effect of the
parameter T on stability in the PPM networks remains qualitatively the same
as the results reported in the main text for the matrix W given by Eq. (2).
The more squat the biomass pyramid (the more negative the parameter a),
the more stable are both the empirical and PPM networks. This is in keeping
with observations of ecosystems [48]. In the Generalized Niche Model networks,
however, the effect is opposite: it is the inverted pyramid (positive a), which is
most stable. We do not have an explanation for such an effect, but note that it
marks a qualitative difference between the networks generated with this model
and real food webs.

In Fig. 8 we look into how the biomass distribution affects the diversity-
stability relationship. All networks are generated with the Preferential Preying
Model and T = 0.01. The first row of panels is for the case where biomass decays
with trophic level as an uncorrupted exponential (σx = 0), for Lotka-Volterra,
type II and type III dynamics (top panels from left to right). As compared with
the constant biomass case (a = 0), a decaying distribution is seen to increase
the slope whereby R falls with S. In other words, placing more biomass at the
bottom of the food web than at the top not only increases stability, but also
strengthens the positive diversity-stability relationship exhibited by trophically
coherent networks. This occurs for all three kinds of dynamics, although the
effect is strongest for type III and weakest for type II. For an inverted pyramid
(positive a), R is approximately constant with S.

We go on to analyse the effect of corrupting the exponential distribution of
biomass with a noise of standard deviation σx. The second row of panels is for
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Figure S 7. Value of R obtained for the Lotka-Volterra Jacobian given by Eq.
(3), with biomass distributed according to Eq. (5) for a = −0.2 (pyramid), 0
(flat), and 0.2 (inverted pyramid). In each panel, the diamonds represent the
values for the empirical food web of Chesapeake Bay [14, 15]. Circles in the
panel on the left show the corresponding results for PPM networks against T
using the same parameters; triangles in the panel on the right are for networks
generated with the Generalized Niche Model against contiguity, c.

σx = 0.1. Although the slope is now less pronounced in all cases, this degree of
noise does not undermine the positive diversity-stability relationship for any of
the dynamics considered. Finally, in the bottom row we apply a higher noise,
σx = 0.4. Now the relationship is inverted and diversity decreases stability. It
is not, perhaps, surprising that noise in the distribution of biomass (large σx)
should have a similar effect on scaling as incoherence in the trophic structure
(large T ). However, it is interesting that the noise level at which the transition
from a positive to a negative diversity-stability relationship occurs does not
seem to depend on a or on the kind of dynamics.

3.2.2 Efficiency

According to the definition of R above, we must give a value to the parameter
η in order to measure stability. The value of this parameter affects the kind
of interaction we intend to model with the interaction matrix, W = ηA − AT ,
and has a strong bearing on the values of R measured. The definition of W
captures the fact that the effect of a prey species on one of its predators is a
proportion η of the effect of the predator on the prey. If we are considering the
flow of biomass from prey to predator, this should be a relatively small fraction
– for instance, the “ten percent law” is often used as a rough estimate of the
efficiency of predation [49]. On the other hand, our definition of stability is only
strictly independent of the fixed point for a dynamics such as the one described
above. For a more realistic dynamics, we might expect a multiplicative factor
to appear relating the fixed-point biomass of a prey species to that of one of its
predators. The parameter η might therefore be increased (or decreased) by this
effect.

As mentioned above, throughout the paper we use the value η = 0.2. How-
ever, simulations of the PPM show that using the value of the parameter T
which best approximates the empirical degree of trophic coherence is enough to
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Figure S 8. Scaling of R with S in PPM networks generated with T = 0.01,
K = S0.4, and B = 0.25S. In each panel, from top to bottom, lines are for
a = 0.2, 0, −0.2 and −0.4. From left to right, columns of panels are for
Lotka-Volterra, type II and type III dynamics, as given by Eqs. (3) and (4).
From top to bottom, rows of panels are for levels of biomass noise σx = 0, 0.1
and 0.4 in Eq. (6). In types II and III, the half-saturation is set at x0 = 1/2.

predict the empirical R for a wide range of η. In Fig. S9 we show R against
T for PPM networks constructed with the parameters of the Chesapeake Bay
food web [14, 15] for four cases. We also plot, with an asterisk, the empirical
value of R observed in each case, always at the value T = 0.67 found to adjust
the empirical trophic coherence, q = 0.47 (see Table S1). The top left panel is
for the case of η = 0, which represents a situation in which the biomass of prey
species is completely unaffected by the biomass of their predators. We show in
the proof we include in Methods that a perfectly coherent network with η = 0
would have only zero eigenvalues. As incoherence increases, R grows somewhat,
though it remains small compared to most cases in which the parameter η sim-
ulates a measure of feedback from predators to prey. The top right panel is
for η = 0.7, implying a relatively high efficiency and a strong negative feedback
acting on prey species. At η = 1, all the eigenvalues of W would have zero real
part because it would be an antisymmetric matrix (intuitively, any increase in
one node’s biomass will be compensated by a decrease in another, so perturba-
tions will be maintained and neither dampened nor amplified). At η > 1 we
simulate a situation such that a predator extracts more biomass form its prey
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Figure S 9. Real part of the leading eigenvalue, R, of the interaction matrix
W = ηA−AT against the parameter T , from averages over networks
generated with the PPM for the parameters of the Chesapeake Bay food web
[14, 15]. In each panel a different value of the parameter η is used, and the
corresponding empirical value of R is represented with a blue asterisk at the
value T = 0.67, found to predict the empirical trophic coherence q = 0.47 (as
shown in Table S1). Top left: η = 0; top right: η = 0.7; bottom left η = 2;
bottom right η = −1.

than the latter loses. As we would expect intuitively, this scenario of runaway
growth is significantly more unstable than the ones described above. However,
the behaviour of R with T is qualitatively similar to that observed for 0 < η < 1.
Finally, the bottom right panel corresponds to the case η = −1, implying that
predation reduces the biomass of a predator as well as that of its prey. We know
from the proof described in Methods that at q = 0 all the eigenvalues of W are
purely real for any η < 0. Similarly, the behaviour of R with T is now inverted:
the most coherent networks are now the most unstable.

In the panels corresponding to η = 0, 0.7 and −1, the value of T which
adjusts the empirical trophic coherence also predicts the empirical R very accu-
rately (as we have found for all the food webs in our dataset when using η = 0.2;
see main text). The case of η = 2 is slightly out: the PPM predicts a slightly
higher value of R at T = 0.67, although it is not out by much more than a
standard deviation. This case of η > 1 is unlikely to be relevant for ecology;
but the small discrepancy serves to remind us that the PPM does not capture
all the structural features of real food webs.
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3.2.3 Herbivory

Links from basal species (producers) to species which only consume basal species
(herbivores) will necessarily have a trophic distance equal to one (see Methods in
the main text). Since the proportion of basal species, B/S, varies considerably
among food webs, we can expect this measure to have a strong bearing on trophic
coherence. On the other hand, a large number of basal species may provide a
more stable configuration than a network in which many species depend on just
a few producers. Might this be the underlying reason for the relation between
trophic coherence and stability?

Figure S10A is a scatter plot of q against B/S for the food webs listed in
Table S1. There is indeed a significant negative correlation (r2 = 0.559). Figures
S10B and S10C show how stability, as measured both before and after removing
self-links, varies with the proportion of basal species in the same dataset. The
correlations are also significant (r2 = 0.475 for R and r2 = 0.505 for Rnc),
but slightly lower than we observe in Fig. S10A. In any case, they are much
weaker than the correlations shown in Fig. 1 of the main text between trophic
coherence and stability. We can therefore conclude that trophic coherence is the
most powerful explanatory variable of stability, while the effect of the proportion
of basal species is either less important, or simply an artefact of its correlation
with trophic coherence.
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Figure S 10. Scatter plots, for the food webs listed in Table S1, of three
network measures against the proportion of basal species, B/S, with Pearson’s
correlation coefficient in brackets. A: Trophic coherence, q, against B/S
(r2 = 0.559). B: R (real part of the leading eigenvalue of W ) against B/S
(r2 = 0.475). C: Rnc (real part of the leading eigenvalue of W after self-links
have been removed) against B/S (r2 = 0.505).

3.2.4 Weighted networks

Although we have been considering the food webs as unweighted networks (the
elements in A are either zero or one), in reality certain interactions will be
more important than others, and the efficiency η need not be the same for
all links. A simple way to look into how these considerations might affect
our results is as follows. We make the change Wij → (1 + ξij)Wij , with ξij
drawn from a Gaussian distribution of mean zero, standard deviation σ and
no correlation between ξij and ξji. For a given network we then obtain the
value of R for many different realizations of the noise {ξ}. In the left panel
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of Fig. S11 we show the average and standard deviations of R thus defined
for three different levels of noise – σ = 0.0, 0.2 and 0.4 – for PPM networks
with the parameters of the Chesapeake Bay food web [14, 15]. We also show
(with diamonds) the corresponding averages and standard deviations obtained
by performing the same test on the empirical food web. As is to be expected,
increased noise leads to a higher average R (lower stability) and a wider standard
deviation. However, the behaviour of the average R against the parameter T
remains similar with increasing noise, and the value T = 0.67 which best adjusts
the empirical trophic coherence (as given by Table S1) continues to predict the
empirical average R at each σ. This is not, however, the case for the Generalized
Niche Model. We show the mean and standard deviation of R generated with
this model against its contiguity parameter c for the same food web. Whereas
the empirical and simulated average values of R correspond at c . 1 when there
is little noise, as σ increases the model average R grows faster than the empirical
value. This suggests that trophically coherent networks, such as the Chesapeake
Bay food web or those generated by the PPM, are more robust to fluctuations
in interaction strengths than those generated with niche-based models.

The allometric relationship according to which metabolic rates decline with
increasing body size has been shown to reduce predation strength per unit
biomass, thereby contributing to stability [50]. Since body size tends to aug-
ment (exponentially) with trophic level, this would mean that a more coherent
structure would also involve a more homogeneous distribution of link strengths
(for a given predator). Therefore, in a more realistic setting in which body sizes
and link strengths are considered, we expect the stabilising effect of trophic
coherence to be greater than we have shown here for binary networks.
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Figure S 11. Value of R obtained after defining the modified interaction
matrix W̃ij = (1 + ξij)Wij , where ξij is drawn from a Gaussian distribution of
mean zero and standard deviation σ, and averaging over realizations of the
noise {ξ}. In each panel, the diamonds represent the average values for the
empirical food web of Chesapeake Bay [14, 15], with standard deviations as
error bars, for noise levels σ = 0, 0.2 and 0.4. The panel on the left shows the
corresponding results for PPM networks against T using the same parameters,
while the panel on the right is for those generated by the Generalized Niche
Model against contiguity, c.
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3.2.5 Feasibility

We have been discussing the potential stability of fixed points of ecosystem
dynamics, but for this to be relevant such a fixed point has to be feasible. That
is, there must exist a fixed point such that every species has a positive biomass.
To determine a potential fixed point one must, in general, know the details of
the dynamics (as mentioned above). However, even with these specifications,
given an unweighted network is is highly unlikely that the fixed point will involve
only positive biomasses. However, nature does not have this problem, among
other reasons because species’ biomasses co-evolve with the interaction weights.
If we are granted a certain freedom to set these weights, even if other details of
dynamics are set, the problem of finding a fixed point becomes under-specified,
and configurations allowing for feasible fixed points might be located. We saw
above that the stability of real food webs and those generated by the PPM
seem to be more robust to random changes in interaction strengths than their
niche-based model counterparts. This suggests that, given a prescription to
modify interaction weights, trophic coherence might enhance the feasibility of
fixed points as well as their stability. Such an exercise lies beyond the scope of
this paper, but we believe it is a promising avenue of research to be undertaken
in the future.

3.2.6 Stability criteria

In the main text we discuss May’s result for random networks, according to
which the real part of the leading eigenvalue should scale as R ∼

√
SC =

√
K.

We also show that R does not exhibit a significant correlation with
√
S, although

we do observe a modest positive correlation (r=0.480) with
√
K. In Figs. S12A

and S12B we show scatter plots, for the food webs listed in Table S1, of the
leading eigenvalue after self-links have been removed, Rnc, against

√
S and

√
K.

In the former case the correlation is now negative but still insignificant, while
in the latter the correlation increases slightly to r2 = 0.508. However, food
webs are network in which all the links stand for predation (as opposed to other
ecological relationships, such as competition or mutualism). Allesina and Tang
have recently derived stability criteria for specific kinds of interactions [51]. In
particular, when the links stand for predation but are randomly placed among
the species, they find that the real part of the leading eigenvalue should scale
as

R ∼ (1 + ρ)
√
SV , (7)

where V is the variance of the off-diagonal elements of the interaction matrix
W , and ρ is Pearson’s correlation coefficient between the elements Wij and Wji.
Figure 12C is a scatter plot of Rnc against the prediction of Eq. (7). Somewhat
surprisingly, the correlation is very weak (r2 = 0.083). In Fig. 12D we swap
Rnc for R (the leading eigenvalue when cannibalism is included) and now the
correlation becomes significant (r2 = 0.230), although still relatively low. These
results provide further evidence that the structure of food web is non-random
in a way which is particularly relevant for their stability.

22



 0

 1

 1  20

Rnc

√ S

A

 0

 1

 1  20

Rnc

√ S

A

 1  5
√ K

B

 1  5
√ K

B

 0.5  2.5
(1+ρ)√SV

C

 0.5  2.5
(1+ρ)√SV

C

 0

 1

 0.5  2.5

R

(1+ρ)√SV

D

 0

 1

 0.5  2.5

R

(1+ρ)√SV

D

Figure S 12. Scatter plots, for the food webs listed in Table S1, of stability
measures against various network values, with Pearson’s correlation coefficient
in brackets. A: Rnc (real part of the leading eigenvalue after self-links have
been removed) against

√
S (r2 = 0.008). B: Rnc against

√
K (r2 = 0.508). C:

Rnc against Allesina and Tang’s prediction, given by Eq. (7) (r2 = 0.083). D:
R (real part of the leading eigenvalue without removing self-links) against
Allesina and Tang’s prediction (r2 = 0.230).

3.2.7 Missing links and trophic species

Despite important recent developments in food-web inference techniques, it is
often hard to ascertain from observation whether a given species consumes an-
other (and even more difficult to quantify the extent of predation). Furthermore,
the food webs we have used here for our analysis (described in Section 2) were
obtained with a variety of different techniques. To assess whether the patterns
we have observed in this dataset, shown in Fig. 1 of the main text, are robust
to possible experimental errors, we remove from each food web a percentage
of links, chosen randomly, and recompute each of the magnitudes of interest.
After averaging over 100 such tests for each food web, we then recalculate each
of the correlation coefficients shown in Fig. 1. These are shown in Table S3 for
different percentages of links removed. As we can see, the dependency of stabil-
ity on the other magnitudes is barely affected by the random deletion of links:
the correlation of R with size is never significant, while the correlation with
both complexity and coherence actually increases slightly with the percentage
of deleted links.

Missing links
√
S

√
K q q (no self-links)

0% 0.064 0.461 0.596 0.804
1% 0.061 0.484 0.598 0.814
5% 0.064 0.497 0.635 0.831
10% 0.014 0.545 0.752 0.857
20% 0.002 0.582 0.783 0.845

Table S 3. First column: percentage of links randomly deleted from the
empirical food webs of Table S1. Second, third and fourth column,
respectively: value of the correlation coefficient r2 obtained for R (stability)
against

√
S (where S is the number of species),

√
K (where K is the mean

degree), and q (incoherence parameter). Fourth column: as the third column,
after removing all self-links. Compare with Fig. 1 of the main text.

The nodes in the food webs found in the literature often represent “trophic
species”. This means that if two or more species in the community share their
full sets of prey and predators, they are coalesced into a single node, even if
they are in fact taxonomically distinct. However, with recent advances in em-
pirical techniques of food-web inference, larger networks are now being obtained
in which nodes represent taxonomic, rather than trophic, species. To find out
whether our empirical findings are affected by the degree of taxonomic resolu-
tion, we perform a similar test to that of link deletion: for each food web, we
randomly choose a percentage of species to be duplicated – that is, we intro-
duce a new species with the same sets of predators and prey. As before, we
average over 100 such tests and recalculate the correlation coefficient for each
pair of magnitudes of interest. In Table S4 we show these results for various
percentages of duplicated species. As with the deleted links, we find that the
correlations are fairly robust to these modifications, implying that they are not
severely affected by the taxonomic resolution of the food webs.
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Species duplicated
√
S

√
K q q (no self-links)

0% 0.064 0.461 0.596 0.804
20% 0.002 0.582 0.783 0.845
50% 0.122 0.406 0.713 0.797

Table S 4. First column: percentage of species duplicated (as described in
Section 3.2.7) in the empirical food webs of Table S1. Second, third and fourth
column, respectively: value of the correlation coefficient r2 obtained for R
(stability) against

√
S (where S is the number of species),

√
K (where K is the

mean degree), and q (incoherence parameter). Fourth column: as the third
column, after removing all self-links. Compare with Fig. 1 of the main text.

3.3 Mean chain length

A food chain is a directed path beginning at at basal species (one with no in-
coming links) and ending at an apex predator (one with no out-going links)
[52]. In other words, it is any one of the possible paths that biomass entering
the system through a basal species can follow until it is entirely dissipated. A
food web generally has a very large number of such chains; but a low mean
chain length (MCL) – an average over all of them, the length of a chain being
the number of links it comprises – has been associated with a high stability [53].

All food webs representing a more or less autonomous ecosystem necessarily
have at least one basal species; however, it can occur that there are in fact no
apex predators. This is because the top predators can eat each other. To get
round this we define an apex set as a group of predators such that no directed
paths leave the group, while they would if any member of the set were removed.
For instance, say predator A and predator B would both be apex in the usual
sense if it weren’t because they ate each other. With this definition they form,
together, an apex set. Thus, we define a food chain as a directed path beginning
at a basal species and ending in any species belonging to an apex set. In this
section, we shall use the term “apex predator” to refer to any member of an
apex set.

To find the apex sets in a given food web, we make use of random walkers:
imaginary beings that move through the network hopping from one node to
another along links (in the direction allowed). The walkers are called random
because at each hop they choose randomly between the different nodes they
can access. Random walkers are often used to study diffusion processes, and
here they can be thought of as representing the diffusion of biomass through the
food web. Given a network, we simulate many such random walkers beginning
at basal species, and for each node we keep a register of how many times it has
been visited. When the walkers reach an apex set, they cannot leave it, and
will forever continue to hop around among the members of the group (or they
might stay at a single species if it is apex in the original sense, since there is
nowhere to hop). Therefore, whereas most nodes will be visited a small number
of times which is independent of how long we allow each walker to “live”, the
number of times the apex predators are visited increases with walker longevity.
This provides a simple computational way of finding the apex predators which,
though stochastic, will always determine the sets exactly.
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Once we know the basal and apex species, we can proceed to find all the
chains and obtain the mean value of their length. At least this is possible in
principle – in practice, the number is often prohibitively large to be calculated
exhaustively. We therefore make use again of the random walkers. We just have
to simulate many walkers beginning at basal species and remove them when they
arrive at an apex predator, counting how many steps it took them to get there.
There is, however, a caveat. The chains actually used provide a biased sample
of all the chains in the food web: a long chain is more likely to be abandoned
somewhere along its length than a short one. More precisely, the probability
that a particular chain, µ, has of being used is inversely proportional to

πµ =
∏
i∈µ

kouti ,

the product extending over all the species i in µ (except the apex predator),
and where kouti is the number of predators of species i. So to take this bias into
account we calculate, for each walker w, not only the length of the path it uses,
λw, but the value πµ(w), where µ(w) is the path taken by w. After doing this for
N walkers, an estimate of the mean chain length (which will be more accurate
the larger N), is

MCL '
∑N

w=1 π
−1
µ(w)λµ∑N

w=1 π
−1
µ(w)

.

We made sure that this stochastic method converges to the right MCL by com-
paring the values returned with the results from exhaustive searches for those
networks where this was possible.

Figure S13 shows the predictions of MCL made by each food-web model for
the food webs listed in Table S1.

3.4 Modularity

Much attention has been paid in recent years to the community structure of
complex networks: how the nodes can be classified in groups – or modules –
such that a high proportion of links fall within groups. For a network with
S nodes and mean degree K = L/S, the configuration model holds that the
probability of there being a link from j to i is kini koutj /(KS) (where kini and
kouti are the numbers of i’s prey and predators, respectively) [54]. Using this,
and given a particular partition (i.e., a classification of nodes into groups) of
the network, one can define

Q =
1

KS

∑
ij

(
Aij −

kini koutj

KS

)
δ(µi, µj),

where µi is a label corresponding to the partition that node i finds itself in, and
δ(x, y) is the Kronecker delta [54]. The modularity of the network is taken to
be the maximum value of Q obtainable with any partition. Since searching ex-
haustively is prohibitive for all but very small and sparse networks, a stochastic
optimization method is usually called for. We use the algorithm of Arenas et
al. [55], although there are many in the literature and the most appropriate can
depend on the kind of network at hand [56].

Figure S14 shows the predictions of modularity made by each food-web
model for the food webs listed in Table S1.
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Figure S 13. Mean chain length of each of the food webs listed in Table S1.
The corresponding predictions of each food-web model discussed in Section S1
– Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum Potential
Niche and Preferential Preying – are displayed with bars representing one
standard deviation about the mean. Empirical values are black squares. The
labelling of the food webs is indicated in the rightmost column of Table S1.

3.5 Cannibals and apex predators

As we have discussed above, cannibalism contributes significantly to stability.
We show the number of species with self-links predicted by each food-web model
for the food webs listed in Table S1 in Fig. S15. We also measure the number
of apex predators – in the conventional sense of those with no consumers – and
display the model predictions in Fig. S16.

3.6 Mean trophic level

The last network feature we analyse is the mean trophic level, which is simply
an average over all the species in a food web of their trophic levels (i.e., s =
S−1

∑
i si). Thanks to Pauly and colleagues’ seminal paper “Fishing down

marine food webs” [57], the mean trophic level has come to be regarded as
an indicator of an ecosystem’s health, to the extent that the Convention on
Biological Diversity has mandated that signatory states report changes in this
measure (renamed the Mean Trophic Index) for marine ecosystems. The model
predictions for the mean trophic level are displayed Fig. S17.
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Figure S 14. Modularity of each of the food webs listed in Table S1. The
corresponding predictions of each food-web model discussed in Section S1 –
Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum Potential
Niche and Preferential Preying – are displayed with bars representing one
standard deviation about the mean. Empirical values are black squares. The
labelling of the food webs is indicated in the rightmost column of Table S1.

3.7 Comparison of network measures

For each of the food-web models and each network measure, we can compute the
Mean Average Deviation (MAD) of the theoretical prediction, Xtheo from the
empirical value, Xempi, simply as MAD = 〈|Xtheo −Xempi|〉, where 〈·〉 stands
for an average over the 46 food web listed in Table S1. The results for each
of the eight network measures are shown in the panels of Fig. S18. The first
panel sums up what we can observe in Fig. S4 – that the niche-based models
tend to overestimate the value of q significantly. The fact that none of these
models differs substantially as regards q from the predictions of the Cascade
Model implies that the various features which they are designed to capture –
such as intervality, multiple niche dimensions or phylogenetic constraints – have
very little bearing on trophic coherence. The Preferential Preying Model, on the
other hand, can reproduce the correct value of q in 45 out of 46 food webs by
adjusting its parameter T . The odd web out is that of Coachella Valley, which
is slightly more incoherent even than the PPM achieves with low, negative T .
This food web is also the only one in our dataset in which more than half the
species indulge in cannibalism. As can be seen from a comparison of Figs. S5
and S6, this allows the Coachella Valley food web to exhibit a relatively low R,
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Figure S 15. Number of cannibal species in each of the food webs listed in
Table S1. The corresponding predictions of each food-web model discussed in
Section S1 – Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum
Potential Niche and Preferential Preying – are displayed with bars
representing one standard deviation about the mean. Empirical values are
black squares. The labelling of the food webs is indicated in the rightmost
column of Table S1.

which it loses when we remove self-links.
The second and third panels show how the models fare as regards stabil-

ity, both with and without self-links. As discussed in the main text, the PPM
achieves significantly better results than the other models in both cases, some-
thing we attribute to its reproducing the correct level of trophic coherence.
Furthermore, in Figs. S5 and S6 we observe that the niche-based models tend
to predict less stability than the food webs exhibit, especially in the case with-
out cannibals. This is in keeping with the observation by Allesina and Tang [51]
that “realistic” food web structure (i.e., that generated with current structural
models) is not conducive to stability.

Next we look at mean chain length and modularity, two measures which
have been associated with ecosystem robustness. In particular, a low mean chain
length is thought to increase stability [53], while a high modularity might contain
cascades of extinctions [10]. In keeping with the first observation, the niche-
based models tend to predict longer chains than found in nature; however, they
also somewhat overestimate modularity. In any case, the PPM also outperforms
the other models on these two measures.
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Figure S 16. Number of apex predators in each of the food webs listed in
Table S1. The corresponding predictions of each food-web model discussed in
Section S1 – Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum
Potential Niche and Preferential Preying – are displayed with bars
representing one standard deviation about the mean. Empirical values are
black squares. The labelling of the food webs is indicated in the rightmost
column of Table S1.

The numbers of cannibals and of apex predators are not very well predicted
by any of the models. All but the Nested Hierarchy Model tend to overestimate
the cannibals and underestimate the apex predators. Finally, we look at the
mean trophic level – a measure which, as mentioned above, is used nowadays to
assess the health of marine ecosystems and to monitor the effects of overfishing
[57]. As we might expect from this measure’s relationship to trophic struc-
ture, the PPM does significantly better than the other models at predicting the
mean trophic level of food webs. In general, the niche-based models tend to
overestimate the mean trophic level, as shown in Fig. S17.

The standard deviations around the Mean Absolute Deviation measures of
Fig. S18, relative to each mean value, are displayed in Fig. S19. In Fig. S20,
we show the absolute values of the mean z-score obtained for each of the models
on the same measures.

The comparison we have made here is not as rigorous as one might wish to
establish the best food-web model, and this was not our intention. For instance,
we have not controlled for the number of parameters, nor attempted to derive
likelihoods for each model, as Allesina et al. have done [12]. There are also,
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Figure S 17. Mean trophic level of each of the food webs listed in Table S1.
The corresponding predictions of each food-web model discussed in Section S1
– Cascade, Niche, Nested Hierarchy, Generalized Niche, Minimum Potential
Niche and Preferential Preying – are displayed with bars representing one
standard deviation about the mean. Empirical values are black squares. The
labelling of the food webs is indicated in the rightmost column of Table S1.

of course, many other network measures of interest in ecology which could be
analysed [6, 58]. However, we believe it is sufficient to show that a) the failure
of current structural models to capture trophic coherence is an important short-
coming; and b) the Preferential Preying Model, which overcomes this problem,
generates networks at least as realistic as any of the other structural models. In
fact, the PPM significantly outperforms the others on six out of the eight mea-
sures we have analysed, and fares no worse on the remaining two. However, the
PPM does not capture some of the features known to be relevant in food webs,
in particular a phylogenetic signal [9]. The high degree of intervality exhibited
by many food webs [5] might be a spurious effect of phylogeny and trophic co-
herence (both of which we know, from preliminary simulations, to contribute
to intervality) or may need to be modelled explicitly, as in the Niche Model.
In any case, we hope to have shown that any attempt to build a model which
generates networks as similar as possible to real food webs must take account
of trophic coherence.

30



 0

 0.25

 0.5

 0.75

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(q)

 0

 0.1

 0.2

 0.3

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(R)

 0

 0.1

 0.2

 0.3

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(R (no cannibalism))

 0

 1

 2

 3

 4

 5

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(MCL)

 0

 0.1

 0.2

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(Mod)

 0

 1

 2

 3

 4

 5

 6

 7

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(Canni)

 0

 10

 20

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(Apex)

 0

 0.5

 1

C
M

G
N

M
N

M
N

H
M

M
P

N
M

P
P

M
c

MAD(Mean Trophic Level)

Figure S 18. Mean Average Deviation (MAD) form the empirical values
returned by each of the food web models discussed in Section S1 – Cascade,
Niche, Nested Hierarchy, Generalized Niche, Minimum Potential Niche and
Preferential Preying – for the network measures described in Section S1:
trophic coherence q, stability R, stability after removing self-links Rnc, mean
chain length, modularity, and numbers of cannibals and of apex predators.

4 Analytical theory for maximally coherent
networks

Let us consider a maximally coherent network, with q = 0. The S species will
thus fall into M discrete trophic levels, with mi species in each level i, so that
the number of basal species is B = m1, and S =

∑M
i=1 mi. Each link of the

predation (or adjacency) matrix A will lead from a prey node at some level i to
a predator node a level i+1. The interaction matrix W = ηA−AT (where the
efficiency η is assumed equal for all pairs of species) will therefore be an S × S
block matrix where the only nonzero blocks are those above and below the main
diagonal:

W =


0 ηA1 0 . . . 0 0

−At
1 0 ηA2 . . . 0 0

0 −At
2 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 ηAS−1

0 0 0 . . . −At
S−1 0

 . (8)
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Figure S 19. Standard deviation relative to mean, for the Mean Average
Deviation (MAD) measures displayed in Fig. S18.

Blocks Ai are mi ×mi+1 matrices representing the links between the species at
level i and those at level i+ 1.

Let us now consider the adjacency matrix Ã of the undirected network we
obtain by replacing each directed link (or arrow) in A with an undirected (sym-
metric) one:

Ã =


0 A1 0 . . . 0 0
At

1 0 A2 . . . 0 0
0 At

2 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 AS−1

0 0 0 . . . At
S−1 0

 . (9)

The eigenvalues {µi} of Ã are all real since the matrix is symmetric. Fur-
thermore, for every non-negative eigenvalue µj ≥ 0 there is another eigenvalue
µl = −µj since the network is bipartite (species can be partitioned into two
groups with no links within each of them: species in even trophic levels and
species in odd levels). Therefore, the eigenvalues of Ã2 are either positive and
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Figure S 20. Absolute value of the mean z-score returned by each of the food
web models discussed in Section S1 – Cascade, Niche, Nested Hierarchy,
Generalized Niche, Minimum Potential Niche and Preferential Preying – for
the network measures described in Section S1: trophic coherence q, stability
R, stability after removing self-links Rnc, mean chain length, modularity, and
numbers of cannibals and of apex predators.

doubly degenerate or zero. Moreover, the matrix Ã2 can be written as:

Ã2 =


D1 0 B1 0 . . .
0 D2 0 B2 . . .
Bt

1 0 D3 0 . . .
0 Bt

2 0 D4 . . .
. . . . . . . . . . . . . . . . . . . . . . .

 . (10)

where

Di =


A1A

t
1 for i = 1

At
i−1Ai−1 +AiA

t
i for 1 < i < M

At
M−1AM−1 for i = M,

Bi = AiAi+1.

(11)
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Now, the square of matrix W reads:

W 2 =


−ηD1 0 η2B1 0 . . .

0 −ηD2 0 η2B2 . . .
Bt

1 0 −ηD3 0 . . .
0 Bt

2 0 −ηD4 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . (12)

We introduce a diagonal matrix U with diagonal blocks

Uii = (−η)b
i−1
2 cIi, (13)

where Ii is the identity matrix of size mi, and bxc denotes the floor function of
x:

U =


I1 0 0 0 0 . . .
0 I2 0 0 0 . . .
0 0 −ηI3 0 0 . . .
0 0 0 −ηI4 0 . . .
0 0 0 0 η2I5 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . (14)

We can write
W 2 = −ηU−1Ã2U. (15)

Therefore, the eigenvalues of W 2 can be obtained by multiplying those of Ã2

by −η: they are either negative and doubly degenerate or zero. Denoting by λj

the eigenvalues of W , we can write

λ2
j = −ηµ2

j . (16)

This means that for every µj = 0 we have λj = 0, and for every pair of

real eigenvalues ±µj of Ã there is a pair of imaginary eigenvalues λj = ±i
√
ηµj

of W . In any case, for η > 0, all the eigenvalues of the interaction matrix W
have zero real part. If η = 0 all its eigenvalues would be zero, while for η < 0,
the imaginary parts would vanish and all the eigenvalues would be real, all the
nonzero ones coming in pairs λj = ±

√
|η|µj .
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A. Mart́ın González, M. Pizo, R. Rader, A. Rodrigo, J. Tylianakis,
D. Vazquez, and S. Allesina, “The dimensionality of ecological networks,”
Ecology Letters, vol. 16, pp. 577–583, 2013.

[34] J. Almunia, G. Basterretxea, J. Arısteguia, and R. Ulanowicz, “Benthic-
pelagic switching in a coastal subtropical lagoon,” Estuarine, Coastal and
Shelf Science, vol. 49, no. 3, pp. 363 – 384, 1999.

[35] D. Mason, “Quantifying the impact of exotic invertebrate invaders on food
web structure and function in the great lakes: A network analysis ap-
proach,” Interim Progress Report to the Great Lakes Fisheries Commission-
yr 1, 2003.

[36] J. Patricio, “Network analysis of trophic dynamics in south florida ecosys-
tems, fy 99: The graminoid ecosystem.,” Master’s Thesis. University of
Coimbra, Coimbra, Portugal, 2000.

[37] M. E. Monaco and R. E. Ulanowicz, “Comparative ecosystem trophic struc-
ture of three u.s mid-atlantic estuaries,” Marine Ecology Progress Series,
vol. 161, pp. 239–254, 1997.

[38] J. Link, “Does food web theory work for marine ecosystems?,” Mar. Ecol.
Prog. Ser., vol. 230, pp. 1–9, 2002.

[39] J. Memmott, N. D. Martinez, and J. E. Cohen, “Predators, parasitoids and
pathogens: species richness, trophic generality and body sizes in a natural
food web,” J. Anim. Ecol., vol. 69, pp. 1–15, 2000.

[40] P. H. Warren, “Spatial and temporal variation in the structure of a fresh-
water food web,” Oikos, vol. 55, pp. 299–311, 1989.

[41] R. R. Christian and J. J. Luczkovich, “Organizing and understanding a
winter’s Seagrass foodweb network through effective trophic levels,” Ecol.
Model., vol. 117, pp. 99–124, 1999.

[42] L. Goldwasser and J. A. Roughgarden, “Construction of a large Caribbean
food web,” Ecology, vol. 74, pp. 1216–1233, 1993.

[43] Townsend, Thompson, McIntosh, Kilroy, Edwards, and Scarsbrook, “Dis-
turbance, resource supply, and food-web architecture in streams,” Ecology
Letters, vol. 1, no. 3, pp. 200–209, 1998.

37



[44] U. Jacob, A. Thierry, U. Brose, W. Arntz, S. Berg, T. Brey, I. Fetzer,
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