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SI Appendix
Assumptions and Corollaries. Throughout the binary-choice model,
we assume that ðza; zbÞ, ðya;i; yb;iÞ, logðfza + ð1− f ÞzbÞ, and
logðfya;i + ð1− f Þyb;iÞ have finite moments up to order 2 for all
f ∈ ½0; 1� and i. We assume further that, for all f ∈ ½0; 1�, E½ fza +
ð1− f Þzb�=E½ fya;i + ð1− f Þyb;i� for all i, so that we can compare
growth rates of populations in different environments. More
specifically, the optimal log geometric average growth rate in-
creases as the portion of idiosyncratic risk increases:
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To prove this result, for any given f, take the first derivative of αλðf Þ
with respect to λ:

∂αλðf Þ
∂λ

=Ez

"
zf −E

�
yf
�

λzf + ð1− λÞE
�
yf
�#:

Evaluate the first derivative at λ= 0; 1, and recall that our as-
sumptions imply that Ez½zf �=Ey½yf �:
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where the last step uses Jensen’s Inequality. Now, take the second
derivative of αλðf Þ with respect to λ:

∂2αλðf Þ
∂λ2

=Ez

"
−
�
zf −E

�
yf
��2�

λzf + ð1− λÞE�yf ��2
#
≤ 0:

Therefore, for any given f, αλðf Þ is a nonincreasing concave function
in the interval 0≤ λ≤ 1. Because αλðf pλ Þ is themaximumof αλðf Þ over
all f , it follows that αλ1ðf pλ1 Þ≥ αλ2ðf pλ2Þ whenever λ1 ≤ λ2; as desired.

Proof of Eqs. 2 and 3. The total number of offspring of type f in
generation t is simply the sum of all of the offspring from the
type f individuals of the previous generation:
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where we have added time subscripts to the relevant variables to
clarify their temporal ordering. As nft−1 increases without bound,
the Law of Large Numbers implies that
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where =
p
denotes equality in probability. Through backward re-

cursion and assuming that nf0 = 1 without loss of generality, the
population of type f individuals in generation T is given by

nfT =
p YT

t=1

	
λ
�
fza;t + ð1− f Þzb;t

�
+ ð1− λÞEy

�
yf
�


:

Taking the logarithm on both sides and again, using the Law of
Large Numbers, we get
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where →
p

denotes convergence in probability, which completes
the proof of Eq. 2. Eq. 3 simply rewrites Eq. 2.

Examples for Common Distributions of Relative Fecundity. Define
R=ωλ

a=ω
λ
b to be the relative fecundity of two actions. We can

characterize the growth-optimal behavior f p for common distri-
bution of R. Fig. S1 plots f p for five distributions of R as a
function of distribution parameters.
Lognormal distribution. Let R follow the lognormal distribution
log NðΔα;Δβ2Þ. The expectations of R and 1=R are
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Therefore, the optimal behavior f p is given by
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γ-Distribution. Let R follow the γ-distribution γðα; βÞ, where
α> 0; β> 0. The expectation of 1=R exists only for α> 1, and
therefore, the parameter space is restricted to α> 1; β> 0:

E½R�= α

β
and

E½1=R�= β

α− 1
:

Therefore, the optimal behavior f p is given by

f p =

8<
:

1 if   β< α− 1
between  0  and  1 if   α− 1≤ β≤ α
0 if   β> α:
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As special cases of γ-distribution, we automatically have the re-
sults for the exponential, χ2, and Erlang distribution.
Pareto distribution. Let R follow the Pareto distribution Paretoðxm; αÞ,
where xm > 0; α> 0. The expectation of R exists only for α> 1, and
therefore, the parameter space is restricted to xm > 0; α> 1:
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Therefore, the optimal behavior f p is given by

f p =

8>>>>>>><
>>>>>>>:

1 if   xm > 1−
1

α+ 1

between  0  and  1 if   1−
1
α
≤ xm ≤ 1−

1
α+ 1

0 if   xm < 1−
1
α
:

β′-Distribution. Let R follow the β′-distribution β′ðα; βÞ, where
α> 0; β> 0. The expectation of R exists only for β> 1, and the
expectation of 1=R exists only for α> 1; therefore, the parameter
space is restricted to α> 1; β> 1:

E½R�= α
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and

E½1=R�= β

α− 1
:

Therefore, the optimal behavior f p is given by

f p =

8<
:

1 if   β< α− 1
between  0  and  1 if   α− 1≤ β≤ α+ 1
0 if   β> α+ 1:

Weibull distribution. Let R follow the Weibull distribution
Weibullðk; λÞ, where k> 0; λ> 0. The expectation of 1=R exists
only for k> 1, and therefore, the parameter space is restricted
to k> 1; λ> 0:
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where Γð:Þ is the γ-function. Therefore, the optimal behavior f p
is given by
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Fig. S1. Optimal behavior f* for several distributions of relative fecundity R=ωλ
a=ω

λ
b. In A–E, different colors correspond to deterministic (f* = 0 or 1) or

randomizing (0< f* < 1) behavior given the particular parameters of the distribution.
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