Supported the Contract of the Contract of the Information of the Infor

zhang et al. 1073/para.
Shang et al.

SI Appendix

ANA PNAS

Assumptions and Corollaries. Throughout the binary-choice model, we assume that (z_a, z_b) , $(y_{a,i}, y_{b,i})$, $\log(fz_a + (1-f)z_b)$, and $log(f_{y_{ai}} + (1-f)y_{bi})$ have finite moments up to order 2 for all $f \in [0, 1]$ and i. We assume further that, for all $f \in [0, 1]$, $\mathbb{E}[fz_a + f(z_a)]$ $(1-f)z_b$] = $\mathbb{E}[f y_{a,i} + (1-f) y_{b,i}]$ for all *i*, so that we can compare growth rates of populations in different environments. More specifically, the optimal log geometric average growth rate increases as the portion of idiosyncratic risk increases:

$$
\alpha_{\lambda_1}(f_{\lambda_1}^*) \geq \alpha_{\lambda_2}(f_{\lambda_2}^*)
$$
 if $0 \leq \lambda_1 \leq \lambda_2 \leq 1$.

To prove this result, for any given f, take the first derivative of $\alpha_{\lambda}(f)$ with respect to λ :

$$
\frac{\partial \alpha_{\lambda}(f)}{\partial \lambda} = \mathbb{E}_{z} \left[\frac{z^{f} - \mathbb{E} \left[y^{f} \right]}{\lambda z^{f} + (1 - \lambda) \mathbb{E} \left[y^{f} \right]} \right].
$$

Evaluate the first derivative at $\lambda = 0, 1$, and recall that our assumptions imply that $\mathbb{E}_{z}[z^f] = \mathbb{E}_{y}[y^f]$:

$$
\frac{\partial \alpha_{\lambda}(f)}{\partial \lambda}\Big|_{\lambda=0} = \mathbb{E}_{z} \left[\frac{z^f - \mathbb{E}_{y} \left[y^f \right]}{\mathbb{E}_{y} \left[y^f \right]} \right] = 0,
$$

$$
\frac{\partial \alpha_{\lambda}(f)}{\partial \lambda}\Big|_{\lambda=1} = \mathbb{E}_{z} \left[\frac{z^f - \mathbb{E}_{y} \left[y^f \right]}{z^f} \right] = 1 - \mathbb{E}_{y} \left[y^f \right] \mathbb{E}_{z} \left[\frac{1}{z^f} \right] \le 0,
$$

where the last step uses Jensen's Inequality. Now, take the second derivative of $\alpha_{\lambda}(f)$ with respect to λ :

$$
\frac{\partial^2 \alpha_\lambda(f)}{\partial \lambda^2} = \mathbb{E}_z \left[\frac{-\left(z^f - \mathbb{E}\left[y^f\right]\right)^2}{\left(\lambda z^f + (1-\lambda)\mathbb{E}\left[y^f\right]\right)^2} \right] \leq 0.
$$

Therefore, for any given $f, \alpha_\lambda(f)$ is a nonincreasing concave function in the interval $0 \le \lambda \le 1$. Because $\alpha_{\lambda}(f_{\lambda}^{*})$ is the maximum of $\alpha_{\lambda}(f)$ over all f, it follows that $\alpha_{\lambda_1}(f_{\lambda_1}^*) \ge \alpha_{\lambda_2}(f_{\lambda_2}^*)$ whenever $\lambda_1 \le \lambda_2$, as desired.

Proof of Eqs. 2 and 3. The total number of offspring of type f in generation t is simply the sum of all of the offspring from the type f individuals of the previous generation:

$$
\begin{split} n_t^f & = \sum_{i=1}^{n_{t-1}^f} x_{i,t}^f = \lambda \sum_{i=1}^{n_{t-1}^f} z_{i,t}^f + (1-\lambda) \sum_{i=1}^{n_{t-1}^f} y_{i,t}^f \\ & = \lambda \left(z_{a,t} \sum_{i=1}^{n_{t-1}^f} I_{i,t}^f + z_{b,t} \sum_{i=1}^{n_{t-1}^f} \left(1 - I_{i,t}^f \right) \right) \\ & + (1-\lambda) \left(\sum_{i=1}^{n_{t-1}^f} I_{i,t}^f y_{a,i,t} + \sum_{i=1}^{n_{t-1}^f} \left(1 - I_{i,t}^f \right) y_{b,i,t} \right), \end{split}
$$

where we have added time subscripts to the relevant variables to clarify their temporal ordering. As n_{t-1}^f increases without bound, the Law of Large Numbers implies that

$$
n_t^f \stackrel{P}{=} n_{t-1}^f \left(\lambda \left(f z_{a,t} + (1-f) z_{b,t} \right) + (1-\lambda) \left(f \mathbb{E}_y [y_a] + (1-f) \mathbb{E}_y [y_b] \right) \right) = n_{t-1}^f \left(\lambda \left(f z_{a,t} + (1-f) z_{b,t} \right) + (1-\lambda) \mathbb{E}_y [y^f] \right),
$$

where $\frac{p}{q}$ denotes equality in probability. Through backward recursion and assuming that $n_0^f = 1$ without loss of generality, the population of type f individuals in generation T is given by

$$
n_T^f \stackrel{P}{=} \prod_{t=1}^T \Big(\lambda \big(f z_{a,t} + (1-f) z_{b,t} \big) + (1-\lambda) \mathbb{E}_y \big[y^f \big] \Big).
$$

Taking the logarithm on both sides and again, using the Law of Large Numbers, we get

$$
\frac{1}{T}\log n_T^f \stackrel{P}{=} \frac{1}{T}\sum_{t=1}^T \log \Bigl(\lambda \bigl(fz_{a,t} + (1-f)z_{b,t}\bigr) + (1-\lambda)\mathbb{E}_y\bigl[y^f\bigr]\Bigr) \stackrel{P}{\to} \mathbb{E}_z\Bigl[\log \Bigl(\lambda z^f + (1-\lambda)\mathbb{E}_y\bigl[y^f\bigr]\Bigr)\Bigr],
$$

where $\stackrel{p}{\rightarrow}$ denotes convergence in probability, which completes the proof of Eq. 2. Eq. 3 simply rewrites Eq. 2.

Examples for Common Distributions of Relative Fecundity. Define $R = \omega_a^{\lambda}/\omega_b^{\lambda}$ to be the relative fecundity of two actions. We can characterize the growth-optimal behavior f^* for common distribution of R. Fig. S1 plots f^* for five distributions of R as a function of distribution parameters.

Lognormal distribution. Let R follow the lognormal distribution log $N(\Delta \alpha, \Delta \beta^2)$. The expectations of R and $1/R$ are

$$
\mathbb{E}[R] = \exp\left(\Delta\alpha + \frac{\Delta\beta^2}{2}\right) \text{ and}
$$

$$
\mathbb{E}[1/R] = \exp\left(-\Delta\alpha + \frac{\Delta\beta^2}{2}\right).
$$

Therefore, the optimal behavior f^* is given by

$$
f^* = \begin{cases} 1 & \text{if } \frac{\Delta \beta^2}{2} < \Delta \alpha \\ \text{between 0 and 1} & \text{if } \frac{\Delta \beta^2}{2} \ge |\Delta \alpha| \\ 0 & \text{if } \frac{\Delta \beta^2}{2} < -\Delta \alpha. \end{cases}
$$

γ-Distribution. Let R follow the *γ*-distribution $\gamma(\alpha, \beta)$, where $\alpha > 0, \beta > 0$. The expectation of $1/R$ exists only for $\alpha > 1$, and therefore, the parameter space is restricted to $\alpha > 1, \beta > 0$:

$$
\mathbb{E}[R] = \frac{\alpha}{\beta} \text{ and}
$$

$$
\mathbb{E}[1/R] = \frac{\beta}{\alpha - 1}.
$$

Therefore, the optimal behavior f^* is given by

$$
f^* = \begin{cases} 1 & \text{if } \beta < \alpha - 1 \\ \text{between 0 and 1} & \text{if } \alpha - 1 \le \beta \le \alpha \\ 0 & \text{if } \beta > \alpha. \end{cases}
$$

As special cases of γ -distribution, we automatically have the results for the exponential, χ^2 , and Erlang distribution.

Pareto distribution. Let R follow the Pareto distribution Pareto (x_m, α) , where $x_m > 0$, $\alpha > 0$. The expectation of R exists only for $\alpha > 1$, and therefore, the parameter space is restricted to $x_m > 0, \alpha > 1$:

$$
\mathbb{E}[R] = \frac{\alpha x_m}{\alpha - 1} \text{ and}
$$

$$
\mathbb{E}[1/R] = \frac{\alpha}{(\alpha + 1)x_m}.
$$

Therefore, the optimal behavior f^* is given by

$$
f^* = \begin{cases} 1 & \text{if } x_m > 1 - \frac{1}{\alpha + 1} \\ \text{between 0 and 1} & \text{if } 1 - \frac{1}{\alpha} \le x_m \le 1 - \frac{1}{\alpha + 1} \\ 0 & \text{if } x_m < 1 - \frac{1}{\alpha}. \end{cases}
$$

β'-Distribution. Let R follow the β'-distribution $β' (α, β)$, where $\alpha > 0, \beta > 0$. The expectation of R exists only for $\beta > 1$, and the expectation of $1/R$ exists only for $\alpha > 1$; therefore, the parameter space is restricted to $\alpha > 1, \beta > 1$:

$$
\mathbb{E}[R] = \frac{\alpha}{\beta - 1} \text{ and}
$$

$$
\mathbb{E}[1/R] = \frac{\beta}{\alpha - 1}.
$$

Therefore, the optimal behavior f^* is given by

$$
f^* = \begin{cases} 1 & \text{if } \beta < \alpha - 1 \\ \text{between 0 and 1} & \text{if } \alpha - 1 \le \beta \le \alpha + 1 \\ 0 & \text{if } \beta > \alpha + 1. \end{cases}
$$

Weibull distribution. Let R follow the Weibull distribution Weibull (k, λ) , where $k > 0, \lambda > 0$. The expectation of $1/R$ exists only for $k > 1$, and therefore, the parameter space is restricted to $k > 1, \lambda > 0$:

$$
\mathbb{E}[R] = \lambda \Gamma\left(1 + \frac{1}{k}\right) \text{ and}
$$

$$
\mathbb{E}[1/R] = \frac{1}{\lambda} \Gamma\left(1 - \frac{1}{k}\right),
$$

where $\Gamma(.)$ is the *γ*-function. Therefore, the optimal behavior f^* is given by

Fig. S1. Optimal behavior f* for several distributions of relative fecundity $R = \omega_a^2/\omega_b^1$. In A–E, different colors correspond to deterministic (f* = 0 or 1) or randomizing (0 < f* < 1) behavior given the particular p randomizing ($0 < f^* < 1$) behavior given the particular parameters of the distribution.