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Supplementary Materials and Methods 

Patient Samples 

Six diagnostic bone marrow and saliva samples collected during remission from children 

with B-ALL diagnosed at Lucile Packard Children's Hospital were collected on protocol 

11062 approved by the Stanford University Institutional Review Board.  Informed 

consent was obtained prior to specimen collection and samples were deidentified before 

use in our study, in accordance with the Declaration of Helsinki.  Mononuclear cells were 

isolated using Ficoll-Paque (GE Life Sciences) according to manufacturer’s instructions, 

followed by cryopreservation in 90% fetal calf serum and 10% DMSO, as previously 

described (1). 

 

Identification of Putative Variants in Exome Sequencing Data 

DNA was extracted from tumor and saliva samples using the Qiamp DNA mini kit with 

RNAse A treatment according to the manufacturer’s instructions (Qiagen).  Exome-

enriched sequencing libraries were prepared using the Nextera Expanded Exome Kit 

(Illumina) and were sequencing on a HiSeq 2000 or 2500 with 2X100 paired-end reads 

(Illumina).  Adapter sequences and poor quality bases were trimmed using Trimmomatic 

(http://www.usadellab.org/cms/?page=trimmomatic), and aligned to human reference 

hg19 using BWA (http://bio-bwa.sourceforge.net).  Duplicates were marked using Picard 

(http://picard.sourceforge.net), followed by local realignment and base recalibration with 

GATK (http://www.broadinstitute.org/gatk/).  Putative SNVs were called by comparing 



germline and leukemia samples using MuTect 

(http://www.broadinstitute.org/cancer/cga/mutect), and annotated using Annovar 

(http://www.openbioinformatics.org/annovar/).  Putative somatic Indels and locations 

with loss of heterozygosity were called with VarScan2 (http://varscan.sourceforge.net).  

On target coverage was calculated using Picard CalculateHsMetrics.  Mutation motifs 

were determined by downloading the sequencing using the UCSC table browser 

(http://genome.ucsc.edu/), followed by sequence stacking using Weblogo 

(http://weblogo.berkeley.edu). 

 

Single-Cell Capture and WGA 

Cells from the samples that underwent bulk sequencing were thawed quickly in a 37 

degree C water bath followed by dilution in RPMI supplemented with 10% FBS.  The 

cells were then washed 5 times with C1 DNA-seq wash buffer (Fluidigm).  Cells were 

counted and loaded in small C1 DNA-seq chips according to the manufacturer’s 

instructions using an on chip LIVE/DEAD viability stain (Invitrogen).  Each capture site 

was imaged using a Leica microscope where phase contrast, as well as fluorescent images 

with GFP and Y3 filters were acquired to determine the number of cells captured, as well 

as the viability of each of the captured cells, as previously described (2).  The cells then 

underwent lysis, neutralization, and MDA WGA according to the manufacturer’s 

instructions (Fluidigm) using the GenomePhiv2 MDA kit (GE Life Sciences).  Three C1 

chips were run per patient. 

 

 



Targeted Resquencing to Confirm SNVs in Bulk Samples 

All putative coding SNVs, as well as all other SNVs with greater than 5 supporting reads 

underwent validation using microfluidic PCR-based targeted resequencing of bulk DNA 

with the Access Array System.  In addition, the same methods were used to identify 

confirmed SNVs in the single cells.  Target-specific assays were designed by Fluidigm 

(Patients 1,2,6), as well as using primer3plus (http://probes.pw.usda.gov/batchprimer3/) 

(Patients 3,4,5), followed by oligo purchase from IDT and multiplexing according to 

guidelines in the Access Array manual (Fluidigm).  All samples were loaded with the 

Access Array loader and underwent PCR cycling in FC1 system, followed by sample-

specific barcoding using standard PCR, all according to the manufacturer’s instructions 

(Fluidigm).  Amplicons were run on the MiSeq using 2X150bp paired-end reads 

(Illumina) using custom sequencing primers according the Access Array manual 

(Fluidigm).  All data underwent quality trimming, as well as adapter removal using 

Trimmomatic.  Reads were then aligned to hg19 using BWA, followed by sorting, 

compressing, and indexing using Picard.  An mpileup file was created using samtools 

(http://samtools.sourceforge.net/), followed by putative SNV, InDel, and LOH calls using 

VarScan2 with options (--min-var-freq 0.005 --min-coverage-normal 5  --min-coverage 5  

--p-value 0.1 --min-avg-qual 35) to maximize loci capture before applying more stringent 

filtering criteria at later steps.  The mutation calls were then annotated using Annovar.  

Those putative calls were compared to the exome sequencing sample using custom Bash 

scripts that required concordance of the location and base change between the exome and 

confirmation data, as well as a minimum of 3 reads comprising more than 1% of all reads 

at that position to support the variant call.    



Estimating ADO 

Allele-discriminating taqman assays were used to call polymorphisms and determine 

ADO rate at 46 commonly heterozygous loci, as previously described (3).  In addition, 

Access Array resequencing assays for 96 loci were performed as described above to 

estimate the ADO rate.  A custom R script was used to call heterozygous sites in the bulk 

sample if they had two alleles that each had at least 3 reads that comprised at least 10% of 

all reads at that location in at least 80% of replicates.  The sites that were found to be 

heterozygous for each patient were then assayed in each of the single cells where we 

required the same base change be detected in at least 2 reads, which must also comprise 

at least 1% of the reads.  These thresholds were determined by evaluating the upper limit 

of read count and percent of reads that were found in locations known to be absent to 

maximize the sensitivity by allowing for some allelic imbalance while minimizing false 

positive variant calls.  The ADO rate for each cell was then calculated using 1-(number of 

alleles detected/(number of heterozygous sites identified in the bulk sample*2)).  Cells 

with an estimated ADO rate less than 30% were retained for further analyses (Fig. S1). 

 

Relating mixture of multivariate Bernoulli Distributions to Clonal Structures 

Probabilistic modeling can be used to estimate an unknown probability distribution based 

on a finite set of data. The estimated probability distribution gives insights into the 

process that generated the data. The advantage of a mixture model for clonal analysis in 

single cells is that its components can represent different clones that makes up the true 

distribution, which would be impossible to estimate by a single parametric distribution. 



We concentrated on mixtures of multivariate Bernoulli distributions, because our single 

cell mutational profile was binary in nature.    

 

Single cell mutational profiles can be presented as binary vectors x ∈ {0, 1} , in which 1 

denotes the presence of a mutation and 0 a normal base. The probabilities of the 

outcomes of a single cell observation x = (x1 , . . . , xd ) are modeled as θi = P(xi = 1), i = 

1, . . . , d. Since θ represents the success rate of observing the mutation, 1- θ gives an 

estimation of the allele dropout rate. 

 

The probability of the observed single cell mutational profile x is estimated using 

multivariate Bernoulli distribution: 

 

 
(1) 

 

The finite mixture of multivariate Bernoulli distributions representing different clones is 

defined as: 

 

 
(2) 
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where πj are the proportions of clones such that  πj  ≥ 0 and .When the number 

of different clones J is fixed and we have mutational profiles from N cells. The log-

likelihood of the parameters can then be written as: 

 

 
(3) 

 

Finite Mixture Model based clustering of binary data 

To infer the parameters of the mathematical model, optimization  was carried out using 

EM algorithm. EM based clustering of single cells were implemented in R using flexmix 

package.  

 
require(flexmix)          # For model bases clustering 
pti_fmm         <- stepFlexmix     (Incidence    ~ 1              , 
                                                     weights    = ~ Freq         ,  
                                                     data         = pti_mb_clus.df , 
                                                     model      = FLXMCmvbinary(truncated = TRUE ), 
                                                     control     = list         (minprior  = 0.005),  
                                                     k              = 1:7,  
                                                     nrep         = 5) 

 
The stepFlexmix function was used to perform the model-based clustering in steps. Each 

step the number of clones is reflected in the k parameter which was specified to range 

from 1 to 7 clones. The probability of the data fitting the model for each of the k 

parameter is stored and will be used for inferring the number of clones. 

 

Estimation of Number of Clones 
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One main challenge in analyzing these single cell data is the determination of the 'correct' 

number of clones. With the underlying probability model driving the clustering process, 

the challenge of determining the number of clones are reduce to model selection 

problems in the probability framework. Essentially, using the code above, we are using 

the variable k to change the number of clones in the statistical model. We are interested 

in selecting the statistical model with the associated number of clones k that the data most 

likely originate from. The EM-algorithm implemented allows us to obtain the likelihood 

of data given the model. However, the choice of number of clones cannot be entirely 

assessed in this manner. By increasing the number of clones, we can always make the 

model fit better. The Bayesian information criterion  (BIC) penalizes models with larger 

numbers of free parameters, and in this case the number of clones. Consequently, the 

model with the lowest BIC was chosen as the model with the minimum number of clones 

required to explain the data. With the selected model, we will be able to assign each cell 

to their respective clonal population. 

 
# Perform the information criterion for clonal number analysis---- 
my_ic_fun       <- function(pt_fmm){ 
  bic.df <- data.frame(nos_clus=seq(1:length(BIC(pt_fmm))),IC=BIC(pt_fmm)) 
  aic.df <- data.frame(nos_clus=seq(1:length(AIC(pt_fmm))),IC=AIC(pt_fmm)) 
  bic.df$measure <- rep("bic",dim(bic.df)[1]) 
  aic.df$measure <- rep("aic",dim(aic.df)[1]) 
  ic.df  <- rbind(bic.df,aic.df) 
  g <- ggplot(ic.df,aes(x=nos_clus,y=IC,group=measure,color=measure))+ 
       geom_point(data=subset(ic.df,IC%in%c(min(bic.df$IC),min(aic.df$IC))), 
                           color="black",size=7.5,alpha=0.2)+ 
       geom_point(size=3)+ 
       geom_line(alpha=0.7)+ 
       scale_colour_discrete(name  ="Measure", 
                            breaks=c("aic", "bic"), 
                            labels=c("Akaike", "Bayesian"))+ 
       ggtitle("Number of Clones Selection Using Bayesian/Akaike Information 
Criterion")+ 



       xlab   ("Number of clusters")  + 
       ylab   ("Information Criterion")+ 
       theme_bw() 
  g 
  return(g) 
} 

 
Hierarchical Clustering of single cell mutational profile 

Cluster analysis methods try to quantify the similarity between two single cell mutational 

profile and then try to group the cells so as to maximize within class similarity. The 

challenge is in finding an appropriate measure of similarity. In our case of binary data, 

we borrowed the jaccard distance used extensively in ecological studies. Hierarchical 

clustering with jaccard distance is implemented in R using the hclust and vegan package: 

 
# Generate the heatmaps---- 
# Returns: Heatmap[[1]] -> EM clustering heatmap 
# Returns: Heatmap[[2]] -> EM contrast with hclust 
# Returns: vector       -> hclust results 
# --------------------- 
my_heatmap      <- function(pt_cluster , pt_fmm_best , nos_clust,nos_mut){ 
  bin.mat          <-  as.matrix(pt_cluster[,-which(colnames(pt_cluster)=="clusters")]) 
  EM_cluster    <- factor       (flexmix::clusters (pt_fmm_best)) 
  nos_cluster    <- max         (as.numeric(flexmix::clusters(pt_fmm_best))) 
  row_order      <- order        (as.numeric(flexmix::clusters(pt_fmm_best))) 
  data.dist         <- vegdist     (bin.mat     , method = "jaccard") 
  data.dist.g      <- vegdist     (t(bin.mat)  , method = "jaccard") 
  row.clus          <- hclust       (data.dist   , "ward.D2") 
  col.clus           <- hclust       (data.dist.g, "ward.D2") 
  hclust_ass      <- cutree      (row.clus    , nos_clust) 
  color_scheme <- colorRampPalette(c("white", "#660000"), space = "rgb")(2) 
  p            <- annHeatmap2(bin.mat[row_order,], 
                  scale  = "none", col    = color_scheme, breaks = 2, 
                  legend = 3, 
                  dendrogram = list(Col   = list(dendro = as.dendrogram(col.clus)), 
                                                Row = list(status = "no") ), 
                  cluster    = list(Col = list(cuth   = col.clus$height[length(col.clus$height)-
nos_mut+1]),Row = list(grp    = EM_cluster[row_order],col    = 
brewer.pal(nos_cluster,"Set2")[seq(1,nos_cluster,by=1)]) ), 
                  ann        = list(Row = 
list(data=data.frame(EM_cluster=EM_cluster[row_order])))) 



  p_row        <- annHeatmap2(bin.mat, 
                  scale  = "none",  
                  col    = color_scheme, breaks = 2, 
                  legend = 3, 
                  dendrogram = list(Col = list(dendro = as.dendrogram(col.clus)), 
                                    Row = list(dendro = as.dendrogram(row.clus)) ), 
                  cluster    = list(Col = list(cuth   = col.clus$height[length(col.clus$height)-
nos_mut+1]    ), 
                                    Row = list(cuth   = row.clus$height[length(row.clus$height)-
nos_clust+1]) ), 
                  ann        = list(Row = list(data   = data.frame(EM_cluster=EM_cluster))) 
                  ) 
   return(list(p,p_row,hclust_ass)) 
} 

 
 
Multiple Correspondence Analysis of Single cell mutational profiles 

Multiple correspondence analysis (MCA) is a data analysis technique which can be 

considered as the counterpart of principal component analysis for categorical data such as 

the binary nature of our single cell profiles. It can be used to detect and represent 

underlying structures in our single cell profile by representing single cells as points in a 

2-dimensional Euclidean space. MCA is implemented in R using the MCA function in 

factoMineR package: 

 
# Perform MCA on the binary data---- 
res.mca     <- MCA(bin.mat, graph = TRUE) 

 
 
 
 
Directed Minimum Spanning Tree between Clones 

Based on the clonal profile generated by the EM based clustering method, mutational age 

of the individual clone can be ordered by quantifying the number of mutations detected in 

each clone. The directed minimum spanning tree between is then generated in R using the 

seqtrack function in the adegenet  package. 



 
# Perform the tree generation algorithm 
my_run_tree     <- function(clone_gen_dis,clone_time){ 
  clone_gen_dis <- as.matrix (vegdist(clone_gen_dis,method="jaccard")) 
  sqtk.res.add  <- seqTrack  (clone_gen_dis,  
                              x.names = row.names(clone_gen_dis),  
                              x.dates = clone_time) 
  g_pri         <- plot(sqtk.res.add,vertex.size=4) 
  return(list(g_pri,sqtk.res.add)) 
} 

 
Performance of EM based clustering Method on Simulated Data 

At each iteration of simulated data, 1 to 5 different clonal profiles are generated. Single 

cell mutational profile are generated by drawing from the multivariate Bernoulli describe 

above with different allele dropout rates. EM based clustering methods as described 

above are then applied and the number of inferred clones at different parameters are 

compared with the ground truth. 

 
Analysis of the sensitivity of the analysis methodology 

To deduce the sensitivity of this analysis methodology, we set the allele dropout rate to 

0.2 and simulated single cell mutational profile originating from two clones: One being a 

dominant clone at a higher proportion compared to the other. Using such setup, we varied 

the proportion of the smaller clone from 1% to 7% of the total number of cells.  Detection 

of the smaller clone would then depend on the number of mutations assayed as well as 

the total number of cells. The simulation results plot reflects the parameter space that can 

affect sensitivity.  

 
Calculation of P-value for Clonality between two clones 

The null hypothesis is that when comparing between two clones, the mutations count 

drawn from this pair have the same proportion as the clonal size. The alternative is that 



this proportion is different in at least one of the mutations. This is analogous to applying 

the chi-square statistic on a multi-sample Bernoulli model. The test statistic is given by: 

  
(4) 

Where with 0 representing one clone and 1 the other. m is the number of 

mutations.  is the observed counts of the mutation i from the clone j.  is the 

expected counts of the mutation i from the clone j. The expected counts can be calculated 

with the success probability being the ratio of clone sizes being compared. 

Implementation of the test was done using the prop.test function in R.  

 

Identification and Confirmation of Deletions 

To identify putative deletions in our exome sequencing data, we identified locations 

where 5 contiguous LOH calls had been made in VarScan with a Fischer’s Exact Test 

<0.01.  Depending on the number of heterozygous locations within the putative deletions, 

up to five heterozygous sites within those regions were used to confirm the deletions in 

the bulk and germline samples using the targeted resequencing approach outlined above 

where we required at least 30 reads in each of the two alleles, and a decrease of at least 

10 reads that resulted in a minimum 20% decrease in read percent in the putative allele 

with LOH.  The assays that were confirmed in the bulk sample were then used to call 

deletions in the single cells.  This was accomplished by first phasing each of the alleles 

based on their LOH for each deletion in the bulk sample using a custom R function.  We 

then created a binary matrix where the putative LOH allele was considered absent if there 

were less than 10 reads that made up less than 5% of the total reads at each of those sites.   

Test Statistic= ∑
i= 1

m

∑
j= 0

1 (Oi , j− ei , j)2

ei , j

j ϵ{0,1}

Oi , j ei , j



To detect deletions in each clone, we required at least half of the LOH assays in that 

clone support each deletion.         

 

Single-Cell IgH Sequencing and Alignment 

Single–cell IgH sequencing was performed on each of the bulk and single cell samples 

using the BIOMED-2 primers in the Access Array System (4).  We added a common 

sequence to the primers for a subsequent barcoding PCR, according the manufacturer’s 

instructions (Fluidigm).  The samples were then sequenced on a MiSeq with 2X150 

paried-end reads.  Custom Bash scripts were used to collect the IgH reads and mark the 

sample of origin of each read.  Sequences were again trimmed using Trimmomatic, and 

files were converted to fasta format using prinseq (http://prinseq.sourceforge.net/).  Reads 

were then aligned to the IgH locus using IgBlast 

(ftp://ftp.ncbi.nih.gov/blast/executables/igblast/release/) with default options.  Custom 

Bash scripts were again used to parse the output file and call VH segments from the 5’ 

reads, as well as D and J segments from the 3’ read.   The reads were required to have 

130 bases aligned to the V segment, 5 to the D segment, and 10 to the J segment.  The 

best alignment was retained for each read, and only *01 alleles for the V segments were 

retained to prevent ambiguous calls.  The VDJ calls were then joined for each paired 

read.  The sequence diversity was examined in the bulk samples.  In addition, a consensus 

VDJ call, as well as the minimum number of VH segment mutations were determined for 

each cell.  Finally, to determine if there were multiple high frequency VH segments used 

in each sample, we classified up to two V segments as predominant sequences if the 



second VH segment was present in 75% of the number of cells of the most abundant VH 

segment.  All less abundant VH segments were classified as VH-replacement products.  

 

Supplementary References 
 
1. Gawad C, et al. (2012) Massive evolution of the immunoglobulin heavy chain locus in children 

with B precursor acute lymphoblastic leukemia. Blood 120(22):4407-4417. 
2. Treutlein B, et al. (2014) Reconstructing lineage hierarchies of the distal lung epithelium using 

single-cell RNA-seq. Nature. 
3. Fan HC, Wang J, Potanina A, & Quake SR (2011) Whole-genome molecular haplotyping of single 

cells. Nature biotechnology 29(1):51-57. 
4. van Dongen JJ, et al. (2003) Design and standardization of PCR primers and protocols for 

detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect 
lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 
17(12):2257-2317. 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Determination of ADO Rate and Identification of High Quality Cells in 
Single-Cell Sequencing Data  
a)  ADO rate measured in patient 4 using qPCR for 46 commonly heterozygous loci  b)  
ADO rate for all 6 patients using targeted resequencing of 96 commonly heterozygous 
loci   c)  Number and percent of cells above and below 30% ADO for each patient based 
on targeted resequencing 



 

 

 

 
 

 
Figure S2 Overview of Expectation Maximization Algorithm on a Multivariate 
Bernoulli Model 
  



 

 

 

 

 
Figure S3:  Determination of the Stability of Clonal Structures of Patient 3 After 
Increasing the Measured ADO Threshold  
  



 
 

Figure S4:  Simulation of Clone Number Estimates at Increasing ADO Rates and 
Mutations Numbers 
Number of simulated clusters are compared to estimated number of clusters using 
randomly generated data.  X=Y line (red) is included to show with the values would 
reside if there was complete agreement between the two cluster measurements, and 
standard error is represented in grey.  As the number of mutations decrease or ADO rate 
increases, the Akaike Infromation Criterion underestimate the true number of clones.  
Our data have an ADO rate of 0.2 and use between 10 and 105 mutations (median 46). 
 



 

 

 

 

 
Figure S5:  Simulation of Number of Cells Needed to Evaluate to Identify Lower 
Frequency Clone with Varied Number of Input Mutations 
Fixing our data at our estimated ADO rate of 0.2, we varied the number of mutations and 
cells evaluated to determine when we could reliably detect a minor clonal population.  At 
the median number of mutations we evaluated (40), we could detect a 1% clone with 200 
cells, 2% with 75 cells, and 4% with 50 cells.  Thus, on average, we would need to 
identify at least two to three different cells from the same clone to accurately detect that 
population, 
  



 
 
 
 
 
 
 
 
 

 
Figure S6:  Unsupervised Clustering of Single-Cell Mutation Calls to Identify 
Clonal Populations and Reconstruct Tumor Phylogenies in ALL Samples 
Cells were clustered on the y-axes and mutations on the x-axes, both by Jaccard distance.  
Mutation calls are represented by maroon boxes, and mutation or cell clusters are 
represented by different colors. The identification of distinct clusters of cells and 
mutations enabled the resolving of distinct clones, as well as the inference of inter-clonal 
relationships and undetectable ancestors as measured in the minimum spanning trees.  
The size of each clone is proportional to its relative abundance, and the length of edges 
are proportional to the Jaccard distance between clones.  Recurrently mutated genes in 
ETV-RUNX1 leukemias are shown in the clones where they were acquired, and green 
genes are mutated more than once in the same clone while red genes are mutated more 
than once in the same patient but in different clones.   
  



 

 

 

 

 

 

Figure S7:  Comparing the Median Measured and Inferred ADO Rates for Patient 3 
While Increasing the Measured ADO Threshold  
  



 

 

 

 

 

Figure S8:  Phasing of Mutations into Cells Based on Single-Cell Cooccurrence 
Measurements 
Bulk allele frequency distributions are depicted before (in black) and after (in color) 
phasing of mutations by clustering single-cell mutation profiles.  Most of the clusters of 
lower frequency mutations have overlapping allele frequency distributions, which 
precludes resolving them into distinct clones based on the bulk allele frequency data 
alone. 
  



 

 

 
Figure S9:  Comparing Allele Frequency Measured in Bulk Sample to Percent of 
Cells with each Mutation 
There is a strong correlation between the bulk allele frequency and percent of cells with a 
detected mutation.  In addition, mutation clusters identified in figure S6 group at the same 
allele frequencies measured by bulk and single cell approaches.  Single cell allele 
frequencies are corrected for ADO by dividing by (1-ADO rate measured for each 
patient). 
  



 
 
 
 
 
 

 
 
Figure S10:  Identification of Clone-Specific Punctuated Cytosine Mutagenesis 
Three mutations in a single clone of patient 4 (dashed red box) are localized to a 750bp 
stretch of a single exon and were acquired in the same clone.  All three are C->G 
mutations, and all three have a TCA motif. 
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Figure S11:  Fraction of cells Without a Called VDJ Sequence for each Clone 
Compared to the Fraction of Cells with VH Replacement 
  



 
 

 

 

 Figure S12:  Number of VH-Segment Mutations Detected and Correlation Between 
VH-Segment Mutations and Percent Cytosine Mutations for each Cell 
  



 

 

 

 

 

 

 

 

 

Table S1:  Summary of Patient Characteristics 

  

Sex Age&Dx Initial&WBC ETV65RUNX1 %&Cell&FISH+ Karyotype Remission Day&29&MRD Normal&Coverage Tumor&Coverage
Patient'1 M 6 44 N N/A 46'XY Y Negative 19.3 42.6
Patient'2 M 3 0.6 Y 82 cryptic't(12:21),'trisomy'21 Y unk 24.3 47.5
Patient'3 F 4 163 Y 87 del7p13K15(8/20),'KX'2/20? Y Negative 36.7 49.4
Patient'4 F 6 16 Y 90 46'XX Y Negative 37.5 55.7
Patient'5 F 5 11 Y 88 46XX,'del'5q13,'add'12p11,'del'14q24 Y Positive 34.9 55.7
Patient'6 F 3 140 Y 73 46'XX Y Negative 31.6 56



 

 

 

 

 

 

 

Table S2:  Summary of ADO Dropout Data Based on 3 Methods 

  

ADO$Estimate$Method Sample ADO$Rate ADO$Rate$After$Removing$Low$Quality$Cells
Taqman&based+genotyping+of+46+loci Patient+4 22.70% N/A
Taqman&based+genotyping+of+46+loci Lymphoblastoid+Cell+Line 15.60% N/A
Targeted+resequencing+of+96+loci Patients+1&6 33.30% 18.90%
Dropout+of+wildtype+allele+with+mutation+call Patients+1&6 24.40% 19.70%



 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S3:  Pairwise Inter-clonal P-Value Calculated by Comparing to the Null 
Hypothesis that the Clones are Identical 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S4:  ADO Estimated by Measuring the Intra-clonal Variant Call Loss Rate 


