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Supplementary Figure 1. Schematic outline. Main processing steps carried out to 
integrate several sources of disturbance data over the Amazon region 
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Supplementary Figure 2. Example of image processing to extract and detect tree-fall 
gaps in lidar data. (a) Digital canopy surface model and (b) digital terrain model were 
extracted from lidar cloud points to produce the (c) digital canopy model or tree height. 
(d) Forest sunflecks31 (in this case 52 in number) detected by lidar were separated from 
(e) tree-fall gaps (in this case 3) using a minimum gap-size threshold of 20 m2. Lidar grid 
image of 200 m by 200 m (4 ha). 
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Supplementary Figure 3. Relation between disturbance area and loss in aboveground 
biomass in the Amazon. Data sets are from several studies of disturbances across the 
Amazon, from branch and tree falls to landscape scale blow-downs. Small disturbances: 
(1) in red, forest plot inventories (n=484 censuses of 135 * 1ha plots10) distributed over 
the Amazon and (2) in black, 96 tree-fall gaps from two large forest inventory plots (total 
area 167 ha) in the Tapajós National Forest23. Intermediate disturbances: (3) in orange, 
small and intermediate disturbances from 48,374 ha of lidar24 data. Large disturbances: 
(4) in blue, 279 blow-downs bigger than 5 ha from an East-West mosaic of 27 Landsat 
scenes of the Amazon26; and (5) in green, 330 blow-downs greater than 30 ha from 136 
Landsat scenes in the Brazilian Amazon25. A relation between area and biomass loss (Mg 
C) was tested from 96 tree-fall gaps (0.003 - 0.13 ha) where both area and aboveground 
biomass were measured. The linear regression fit is Biomass Loss = -0.1528 + 122.5073 
(Disturbance Area) (n=96, r=0.37), in units of Mg C and ha for loss biomass and 
disturbance area, respectively. 
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Supplementary Figure 4. Amazonia land cover map. (a) Map using historical Landsat 
and MODIS images from the Pan-Amazon project for the year 2010. (b) Undisturbed 
forests of tropical regions, excluding other types of land cover. Map colors represent the 
following categories: undisturbed forest (dark green), deforestation (yellow), savannas 
or/and grass vegetation (pink), secondary forest (light green) and water (blue). 
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Supplementary Figure 5. Landsat images and blow-down distribution. (a) Spatial 
distribution of 72 Landsat scenes with the occurrence of blow-downs from the total 136 
surveyed scenes of the Brazilian Amazon26. (b) The area of blow-down disturbance is 
proportional to the size of the circles. Landsat images with blow-downs outside of the 
Brazilian Amazon border were omitted from the spatial point analysis. 
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Supplementary Figure 6. Kernel bandwidth distribution. (a) Mean square error (MSE) 
of the Gaussian kernel smoothing algorithm28,32 from the spatial distribution of 330 blow-
downs data26. (b) The bandwidth with smaller MSE around 200 km is the less biased 
bandwidth for this spatial data. (c) East-West perspective graph of the intensity of blow-
downs in the Amazon produced by a smoothing kernel interpolation. 
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Supplementary Figure 7. K-function distribution of the spatial patterns of blow-downs. 
(a) K-function and simulated envelops of the spatial distribution of 330 blow-downs26. (b) 
Monte Carlo simulation (T=1000) of the K-function28. Color lines in a are the theoretical 
Poisson K(pois) of K-function in blue and the border-corrected estimate K(bord) in green, 
translational-corrected estimate K(trans) in red and the original Ripley isotropic 
correction K(iso) in black. Color lines in b are the original K-function28 in black and red 
dash lines with upper and lower envelops in grey. The graph suggests that for all spatial 
simulations32 the occurrences of blow-downs are clustered significantly.  
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Supplementary Figure 8. Clustering of large disturbances blow-downs in the Brazilian 
Amazon. Blow-down clusters modeled with Kernel bandwidth of (a) 100, (b) 150, (c) 200 
and (d) 250 km. Spatial patterns of blow-downs overlaid on a land-use and vegetation 
map produced by the Brazilian Space Agency INPE18. Color bar is the intensity of large 
disturbances in the Amazon (number of blow-downs per km2). Legend of scale-bar for all 
maps of blow-down density is 500 km. 
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Supplementary Figure 9. Frequency distributions (in log-scale) of area and biomass 
loss from five sources of natural disturbance data sets. Small disturbances: (1) in red (a-
b), forest plot inventories (n=484 censuses of 135 * 1ha plots10) distributed over the 
Amazon and (2) in black (c-d), 96 tree-fall gaps from two large forest inventory plots 
(total area 167 ha) in the Tapajós National Forest23. Intermediate disturbances: (3) in 
orange (e-f), small and intermediate disturbances from 48,374 ha of lidar24 data in 
southern Peru. Large disturbances: (4) in blue (g-h), 279 blow-downs bigger than 5 ha 
from an East-West mosaic of 27 Landsat scenes of the Amazon26; and (5) in green (i-j), 
330 blow-downs greater than 30 ha from 136 Landsat scenes in the Brazilian Amazon25. 
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Supplementary Figure 10. Simulations of the Amazon aboveground biomass change. 
Simulations using the full frequency distribution of natural disturbance (small, 
intermediate and large-scale disturbances) assuming several scenarios of blow-downs 
occurrence and ages of tree-fall gaps from lidar data. Prediction examples of (a) the mean 
mass balance AGBΔ  for annual time-steps and (b) mass balance trajectory of 

AGB(year = N ) = ΔAGB(i)
i=1

N

∑ for a few members of the sample are presented. 
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Supplementary Tables 

 

Supplementary Table 1. Statistical summary of all data sets used to estimate the full 
frequency spectrum of disturbance over the Amazon. 484 censuses of 135 ~1 ha plots 
distributed over the Amazon9,10,21,22, 48,374 ha of tropical forest sampled in Southern of 
Peru by airborne lidar24, 96 tree-fall gaps in a167 ha plot in East central Amazon23, 279 
blow-downs ≥ 5 ha detected in 27 Landsat scenes25 and 330 large disturbances ≥ 30 ha 
inspected in 137 Landsat images26. Minus sign denotes biomass losses.  

 

Statistic summary  
RAINFOR  

(484 censuses)  
167 ha 

plot 
Airborne  

lidar 
Blow-downs 
in 27 images 

Blow-downs 
in 136 images 

Disturbances Class Size Small Small  Intermediate Large Large 
Raw data for modeling 484 96 30,130 279 330 
Min. disturbance area (ha) 0.0003 0.003 0.002 5 30 
Max disturbance area (ha) 0.09 0.13 9.48 2,223 2,651 
Mean disturbance area (ha) 0.016 0.026 0.009 79 213 
Median disturbance area (ha) 0.013 0.022 0.003 37 123 
SD of disturbance area (ha) 0.012 0.018 0.079 179 279 
Sum of disturbance area (ha) 7.53 2.51 294.50 21,931 70,421 
Min. biomass loss (Mg C) -0.055 -0.061 -0.1 -324.9 -3,068 
Max biomass loss (Mg C) -11.69 -19.90 -1,162 -389,131 -463,876 
Mean biomass loss (Mg C) -2.32 -3.05 -1.04 -12,091 -30,198 
Median biomass loss (Mg C) -1.99 -1.63 -0.29 -5,239 -17,672 
SD of biomass loss (Mg C) -1.61 -3.61 -9.75 -31,347 -42,893 
Sum of biomass loss (Mg C) -1,126 -293.67 -31,474 -3,373,601 -9,965,230 
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Supplementary Table 2. Summary of Amazon forest simulator results and statistical 
significance of simulated mean aboveground biomass gains for a range of extreme 
scenarios. We analyze three cases of large-disturbance blow-downs25,26, (the large-end 
tail of the disturbance frequency distribution): observed (i) no large disturbance events , 
(ii) only in central Amazon (~20% of the Amazon region), (iii) everywhere in the 
Amazon with the same frequency of events as in the Central Amazon (i.e. 5 times more 
frequent than detected). For intermediate-range disturbances occurring across the entire 
Amazon region distributed according to lidar surveys24 (plots 1,4,5 and 12) of 
depositional-floodplain (DFP) forests (15,178 ha), and assuming an extreme case of a 
mean gap age of only 1 year. We also assumed an mean mass gain8,10,11 of 2.75 Mg C ha-1 
yr-1. The simulator of forest mortality is based on the frequency distribution of 
disturbance area. To convert area losses to biomass losses we assumed a forest mass 
density of 170 Mg C ha-1 for all simulations, nearly 50% greater than the actual biomass 
density in the lidar landscape used to estimated intermediate disturbance dynamics8,11. 
Assessment of each scenario is based on a set of 109 annual equivalent samples. 
Significance is assessed with a t-test considering tsim = (dM/dt)/(σ/sqrt(N)) where dM/dt is 
ensemble mean mass gain, σ the standard deviation of the mass gain distribution and N 
the number of observations. For N we use either conservatively N =135 the total number 
of observational plots or N =1545, the total number of plot census years reflecting the 
stochastic nature of disturbance and therefore the near independence of plot results from 
year-to-year. Gain results are statistically significant at the 95% level if tsim ≥ t{0.975,N=135} 
≈ t{0.975,N=1545}=1.96 and at the 99% level if tsim ≥ t{0.995,N=135} ≈ t{0.995,N=1545} = 2.58.  
 

Assumed annual mean mass gain8,10,11: 2.75 Mg C ha-1 yr-1 and intermediate-scale 

disturbances13,20 modeled with: 

 

Intermediate-Scale Disturbances Large-Scale Blow-downs25,26 

Lidar data24 from terra firme and floodplains 
(gaps age30 ~ 1 yr old) 

None Central 
Amazon 

All Amazon 
Region 

dM/dt* 0.66 0.66 0.65 
σ* 9.76 10.89 14.68 
tobs(N=135) 0.79 0.70 0.51 
tobs(N=1545) 2.65 2.38 1.74 
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Supplementary Methods 

 

Data integration We quantified the frequency distribution of small17,33–35 and large 

disturbances25–27,36 from several sources of data. Our data ranges from permanent tree 

plots9,10,21–23 to satellite25,26 or airborne lidar24 data (Supplementary Table 1). We quantify 

not only data of disturbance area, but also the aboveground biomass loss in Mg C 

associated with these events. 

 

A flowchart summarizes all processing steps used to harmonize the data of natural 

disturbances over the entire Amazon region (Supplementary Figure 1). Five data sources 

were used to estimate disturbances: at small-scale (1) data set from two large plots23 (167 

ha) in Tapajós region, and (2) 484 repeat censuses of the tropical forest network10,21,22,37; 

at intermediate: (3) lidar from Southern Peruvian Amazon24 (48,374 ha); and at large-

scale: (4) blow-downs > 30 ha (n=330) covering the entire Brazilian Amazon, and (5) 

fine resolution blow-downs > 5 ha (n=279) covering a East-West Amazon forest region 

transect. Because each data source was collected and produced in different ways, we 

applied several intermediate steps to estimate and normalize the data. Our final goal was 

to use the probability distribution of area and biomass loss of natural disturbances to 

understand the trajectory of the Amazon forest carbon balance. 

 

RAINFOR plots We used the extensive historical data set of the RAINFOR plots4,8–

10,21,22,37,38 based on net changes in biomass (Mg C ha-1 yr-1) which include two 

aboveground biomass flux terms39,40: biomass gain (from tree growth and recruitment) 

and biomass loss (from tree mortality). The biomass loss from these plots was assessed to 

provide information of tree mortality across the Amazon region. Those plots are typically 

1 ha in size and measurement details have been described elsewhere8,10,21,22,38. The 

available, published RAINFOR data (135 plots10) cover a total area of 226.2 ha with a 

mean total monitoring period of 11.3 years. Aboveground biomass and biomass dynamics 

were estimated from tree diameter and wood density (based on species identity) using a 
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published allometric equation41. Mortality rates have been corrected for census-interval 

effects42. The RAINFOR dataset used for this analysis has few if any plots within the 

large blow-down zone delineated in this paper, so presumably they cannot be recovering 

from large blow-downs. 

 

Translating biomass loss measured in RAINFOR plots to disturbance area The 

RAINFOR network does not record disturbance area - but biomass losses due to 

mortality events – thus here we estimated the area of those disturbances associated with 

the biomass loss as gap area of a given plot = {mean biomass loss (ha-1)} ÷ {mean total 

stock of biomass (ha-1)}. This approach assumes that all biomass disturbances are linearly 

correlated with area of the disturbances which is a rough approximation14. Moreover, 

ground data of tree-fall gap disturbance areas and biomass losses from two large plots in 

Tapajós National Forest (54 and 114 ha, n=96 gaps) suggests that this relation is not fully 

linear (Supplementary Figure 3). 

 

Large forest inventory plots data RAINFOR data21 do not account for biomass losses 

(disturbances) that do not result in complete tree death (e.g. coarse woody debris (CWD) 

produced by partial crown-falls). To evaluate carbon losses including both complete and 

partial mortality, we installed and surveyed two large forest inventory plots23 of 114 and 

53 ha, in unmanaged forest area in the eastern central Amazon, Tapajós National Forest 

(TNF) (Fig. 1 and Supplementary Figure 3). The first plot was installed in 2008 and the 

second in 2009. The methodology to assess the biomass losses (CWD) inside of the gaps 

areas has been described elsewhere23, with the main steps listed here:  

1) We mapped all gaps in both large plots using the Runkle gap definition43;  

2) We defined the modes of gap-formation17,33–35,43 based on the type of disturbance 

(partial or complete crown-fall, snapped bole-fall, and uprooted tree-fall);  

3) We classified all gaps within two age classes (< 1 and ≥ 1 year old);  

4) We measured the volume of all CWD for each gap identified in the field;  
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5) We used an allometric equation44 to estimate woody biomass losses by fresh tree–falls 

and snapped bole falls while for gaps with partial crown-fall we recorded the diameters of 

all wood pieces greater than 10 cm and length of the woody material;  

6) We classified the decomposition status45–47 of all CWD into five decay classes - from 

freshest (class 1) to most rotten (class 5) material;  

7) We used an average of CWD density measured for each decay class specifically 

developed for this site46–48; 

8) We calculated the sectional volume of each segment of CWD; and 

9) We estimated the mass of CWD from the product of the volume of material and the 

respective density for the material class46–48. 

 

Biomass losses measured at the large forest inventory plots In the two large plots23 

(167 ha total area) we found 96 gaps. CWD amounts depended on the type of gap 

formation, crown-falls contained 0.11 Mg C ha-1 of CWD, snapped tree-falls 0.65 Mg C 

ha-1 and uprooted tree-falls 0.70 Mg C ha-1. The flux of CWD caused by the gaps was 

0.76 Mg C ha-1 year-1. The average mortality of trees (DBH ≥ 10 cm) per gap was 6.5, 

resulting in a total of 596 dead individual trees (3.57 trees ha-1; > 10 cm DBH) for the 

total surveyed area of 167 ha. From the total dead trees contained in the gaps of all ages, 

we estimated a mean annual tree mortality of 2.38 trees ha-1 year-1. 

 

Airborne lidar data To estimate the distribution of intermediate scale sized 

disturbances13,20 (between 0.01 and 5 ha of opened area) we used a large collection of 

airborne lidar24 data. Lidar (Light detection and ranging) is a remote sensing technology 

that measures distances by illuminating a target with a laser and analyzing the reflected 

light49. Recently, airborne lidar has been used to distinguish canopy gaps at large spatial 

scales24,50,51, providing a unique opportunity to understand the frequency distribution of 

natural disturbances or tree-fall gaps.  
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We used lidar data collected by the Carnegie Airborne Observatory (CAO) Alpha 

System52 (July 2009) in the Southern Peruvian Amazon24. The study was undertaken in 

the Madre de Dios watershed, in a region of well-known geologic and topographic 

variation in lowland forest close to the base of the Andes in Peru24. Briefly, the flights 

were conducted at 2000 m aboveground level at a speed of <95 knots. The lidar was 

operated with a 38-degree field of view and 50 kHz pulse repetition frequency, resulting 

in 1.1 m laser spot spacing24. We processed 4 blocks (Fig. 1g) covering a total of 48,374 

ha. To compare gap-size frequency distributions among forests in the lowland Peruvian 

Amazon, lidar data were classified in each block by geologic composition and an 

empirical lidar digital terrain model of ~15 m height24, resulting in two major types of 

forest areas24: “depositional-floodplain” (DFP) in 15,178 ha and erosional “terra firme” 

(ETF) in 33,196 ha (following the abbreviations in Asner et al24). Terra firme forests 

dominate Amazonia (RAINFOR8–11,21), we used the DFP data only for a sensitivity 

analysis of our forest simulator results to different forms of the Amazon disturbance 

frequency distribution.  

 

To quantify all types of disturbances at landscape scale with lidar (i.e. from small 0.01 ha 

to intermediate scales 5 ha), the original lidar data points were processed24 to generate 

raster images (pixel resolution = 1 m) of the digital canopy surface model (DSM) and 

digital terrain model (DTM). The DSM was based on interpolations of all first return 

points of the cloud data, where elevation is relative to a reference ellipsoid. The DTM 

was based on a 30 m x 30 m filter passed over each flight block and the lowest elevation 

estimate in each kernel was assumed to be the ground. Canopy heights (DCM) were 

estimated as the difference between the canopy surface model and the digital terrain 

model, i.e. as DCM=DSM-DTM24 (Supplementary Figure 2).  

 

Because lidar data analyses permit detection of all gaps extending from the top of the 

canopy to different heights aboveground24,50,51 (i.e. 1-2 m tree height), we defined gaps in 

our lidar data using the ecological definition of Brokaw33: gaps in lidar digital canopy 

model are openings in the forest canopy extending down to an average height 2 m 
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aboveground (Supplementary Figure 2c,d). The minimum gap size considered was 20 m2 

(Supplementary Figure 2e). 

 

Biomass loss associated with intermediate-scale disturbances To estimate biomass 

loss due to intermediate-size disturbance detected by lidar data (4 transects with a total of 

48,343 ha, n=30,130 gaps) we used an allometric equation of biomass loss (Mg C) based 

on gap size of disturbances (ha) collected on the ground in two large forest inventories23 

(Supplemental Fig. S3). We used a minimum gap size area threshold of 20 m2 of 

disturbance area to estimate CWD or biomass loss inside of tree-fall gaps areas detected 

by lidar. There are two reasons for using this approach: First, based on our previous 

analysis, measurable carbon loss was associated with a minimum gap area of ~20 m2 or 

bigger (see Espírito-Santo et al., 201323); and second whereas very small gaps (i.e. ~1 m2) 

- where most of the sunflecks31 occur - are probably more related with tree crown 

spacing31 than with biomass carbon dynamics. 

 

We estimated the necromass of small-intermediate disturbance areas detected by lidar24 

using a linear regression model of aboveground biomass loss (Mg C) as a function of 

gap-size area (ha) of central Amazon23 (167 ha plot, n=96) (Supplemental Fig. S3). The 

resulting equation to estimate necromass from tree-fall gaps23 has not been validated 

outside of our original study site and will slightly overestimate carbon loss in Peru where 

wood density averages 20% lower than in the Central Amazon14.  

 

Finally, the lidar datasets available currently are not repeat surveys and therefore only 

permit a snapshot of forest structure. To use these data to inform forest biomass dynamics 

evidently requires making a number of important assumptions about how these maps of 

gaps translate into forest disturbance rates. To ensure that our test of the hypothesis that 

the plot network effectively measures biomass change is conservative, our assumptions 

deliberately err on the generous side to the magnitude and frequency of intermediate area 

disturbance. Our assumptions will tend to overestimate the rate of formation of 
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intermediate-sized gaps, and therefore should overestimate their contribution to Amazon 

biomass dynamics. Notably, we assume 

1) That the region surveyed is representative of Amazonia. In fact we know from our 

ground work that forests in western Amazonia have much faster biomass turnover and a 

greater proportion of tree death caused by exogenous disturbance than elsewhere (e.g., 

Phillips et al. 2004, Galbraith et al. 2013)53,54. 

2) That gap recovery rates are fast, with 50% closure within 3.6 years. This estimate is 

based on a transition matrix from Hubbell and Foster (1986)30, indicating that at Barro 

Colorado Island, Panama, the 1-year transition probability for 5*5m gaps to non-gaps 

was 0.177. Alternatively, a study from French Guiana suggests a half-life of between 5 

and 6 years (Fig 7 in Van de Meer and Bongers, 199655), and with all gaps closing after 

about 15 years. 

3) That gap recovery rates are independent of size within the ‘intermediate’ part of the 

spectrum. In practice, bigger gaps will take longer than small gaps to close so our 

approach is likely to overestimate the frequency of larger gap formation. 

4) Our estimated gap formation rates are translated into biomass dynamics estimates 

assuming an AGB value of 170 Mg C ha-1. In fact, in 16 * one-hectare plots in the same 

region where the lidar data were taken, mean AGB is 119 Mg C ha-1. This assumption 

alone therefore results in overestimating the impact of intermediate biomass disturbances 

in south-western Amazonia by more than 40%. 

 

Amazon forest area To scale up our results of natural forest disturbances from forest 

inventory plots10,21,23, lidar24 and satellite images25,26, to the entire forest area of the 

Amazon, we used a land cover map with 250 m spatial resolution for all countries that are 

part of the Amazon tropical forest biome18 (Supplemental Fig. S4). For the Brazilian 

Amazon region (approximately 60% of the entire Amazon) we used the land use map 

from the annual deforestation monitoring project (PRODES) of the National Institute for 

Space Research (INPE)18 to separate old-growth forest from non-forest areas or recently 

deforested areas. PRODES has monitored tropical deforestation in Brazil over the last 30 

years using historical Landsat images56 using visual interpretation and digital image 
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processing57. To expand the land use map to South America (Pan-Amazon Project, 

unpublished data18), multi-temporal MODIS images of 250 m resolution were processed 

by the INPE Pan Amazon project18 for the others regions and integrated to the PRODES 

database56. The land use map (Supplementary Figure 4) has the following categories: 

undisturbed forest, deforestation (general category of bare soils, secondary forests and 

burned areas), and other types of vegetation (savannas and grasses). According to this 

map the total area of undisturbed forest in northern South America is 6.8 x 106 km2 

covering the Amazon drainage region and the contiguous Andes and Guyana’s regions58 - 

the entire forested Brazilian Amazon is 3.5 × 106 km2.  

 

We used the entire Amazon region (6.8 x 106 km2) to scale up all natural disturbances 

(Supplementary Table 1) recorded in our data. Considering that most blow-downs are 

concentrated in Central Amazon, we assumed that large disturbances cover 1/5 of the 

total area of our entire domain of Amazon forests (see also Tab. 1 for more details). 

 

Basin-wide large disturbance data We developed a spatially explicit analysis of large 

disturbances (blow-downs) in the Brazilian Amazon tropical forest biome based on 

extensive samples of Landsat satellite images (30 m). We assessed the occurrence and 

spatial distribution of 330 events of large disturbances or blow-downs (≥ 30 ha) during 

the period from 1986 to 1989 based on 137 Landsat images28,32 (Supplementary Figure 5) 

using the original raw data from the first study that described the occurrence of blow-

downs in the Amazon26.  

 

We also analyzed the occurrence and spatial distribution of 278 large forest disturbances 

(≥ 5 ha) from 1999 to 2001 apparently caused by severe storms in a mostly unmanaged 

portion of the Brazilian Amazon using 27 Landsat images and digital image processing25.  

 

Spatial distribution of large disturbances Previous analyses of large disturbances 

showed that blow-downs are extremely rare in Eastern Amazonia25,26. To account for 

clustering of large disturbances in the Amazon we reanalyzed the original data of large 

natural disturbances from Brazil26 using a spatial point analysis (SPA)25. A SPA consists 
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of a set of points (s1, s2, …, sN) in a defined study region (R) divided into sub-regions 

( A ⊆ R ). Y(A) is the number of events in sub-region A. In a spatial context, the number of 

points can be estimated by use of their expected value E(Y(A)), and covariance COV 

(Y(Ai), Y(Aj)), given that Y is the event number in areas Ai and Aj. The intensity of an 

event ( )sλ is the frequency per area of points of a specific location s, where ds is the area 

of this region, i.e.λ(s) = lim
ds→0

E(Y (ds))
ds

"
#
$

%
&
'

. Because SPA only requires the spatial location 

of each event, we used the center of each classified blow-down in the Landsat images. 

We used a Gaussian algorithm (kernel smoothing) with bandwidths between 100 and 250 

km to calculate the smooth intensity field from our data. The minimum mean square error 

(MSE) of the Gaussian kernel smoothing algorithm28,32 revealed that the bandwidths ~ 

200 km (Supplementary Figure 6) is the most indicated to estimate the intensity of blow-

downs in the Amazon. The probability density function k of Ripley28 also suggests that 

large-scale disturbance blow-downs in the Amazon are strongly clustered25 for the tested 

bandwidths (Supplementary Figure 7). 

 

To determine the spatial distribution of blow-down over the entire region of Brazilian 

Amazon excluding the regions of intense land-use activities1,59 (i.e. deforestation and 

fire) and other types of vegetation (i.e. savannas and sand forests) we used a land-use 

map (Pan-Amazon Project, unpublished data18) as described before. We excluded most of 

the anthropogenic disturbances caused by fires, but probably we did not remove some 

areas of undisturbed forests affected by the natural dynamics of fires (i.e. transitional 

regions of forest and savannas). Natural fires are expected to play a role in tree mortality, 

so future efforts should attempt to understand the scale and impact of natural fires on tree 

mortality in the Amazon14. 

 

The overlay of our most recent spatial grid of blow-downs (data from Nelson et al. 

199426) modeled with different kernel bandwidth28 (100, 150, 200 and 250 km) from our 

SPA model confirmed that most large disturbance blow-downs in the Amazon are far 

from the deforestation arc. Spatial patterns of clustering of blow-downs are influenced by 
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the choice of kernel bandwidth sizes (Supplementary Figure 8). However, the bandwidth 

with smaller MSE28 (200 km, Supplementary Figure 6) seems to be the most appropriate 

to resent the spatial pattern of blow-downs in the Brazilian Amazon. Yet, independent of 

the bandwidth choice, the analysis shows the same main spatial patterns of blow-downs. 

The density of large-scale blow-downs in the Amazon increases from East to West and 

South to North with the epicenter blow-downs around of Purus River region25,26. 

 

Biomass loss of large-scale disturbances For all events of large-scale blow-downs25,26 

(n=609, sum of blow-down records of Nelson et. al, 199426 and Espírito-Santo et al., 

201025), we estimated the biomass loss as the product of disturbance area and its 

respective mean aboveground biomass extracted from the regional map of biomass stock 

of the Amazon5 region with 1 km2 spatial resolution (Fig. 1). We assume 100% mortality 

in areas of blow-downs14,25,26,36,60. We anticipate that this mortality rate overestimates 

carbon loss12,14,20, and so provides an upper bound estimate of the significance of large 

natural disturbances12,13 to old-growth forest carbon accumulation rates. Although not 

perfect, we provide the closest estimation of biomass loss by blow-downs based on class 

size of large-scale disturbances and the spatial gradient of biomass distribution in the 

Amazon5. 

 

Disturbance area and biomass loss From tree-fall gaps to landscape blow-downs we 

provide the statistics of natural disturbances data for the various data sets in terms of area 

and biomass loss (Supplementary Figure 9). Because several data have the frequency 

distribution concentrated over small range of the data (skewed frequency distribution), 

we also provide the histograms of disturbances in a log transformation for a better 

visualization. In general, the frequency distributions of the different types of disturbances 

do not overlap completely (Supplementary Figure 9) and our data set covers all scales of 

natural disturbances. 
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Assessing uncertainties of the natural disturbance Our general approach to quantify 

uncertainties is to use simulation scenarios that bracket the likely range of outcomes 

associated with various specific sources of uncertainty.  

 

Uncertainties of our analysis are associated with combining datasets to obtain a region-

wide disturbance size frequency distribution and simulation results based on such 

distributions. In order to address the problem of combining data sets, we note that the 

methods for detecting disturbances used in this study are suitable for different spatial 

scales (e.g. Landsat suitable to detect large blow-downs) and mostly do not overlap with 

respect to disturbance size range. If the datasets do not overlap we scaled them to the full 

region by multiplication with Amazon forested area-to-area probed before combining 

them (forests censuses, lidar data, Landsat imagery). In this case there is no need to take 

into account uncertainties for the combination (not for assessing uncertainties related to 

the simulations though – which we address as explained under the simulation Table 1). 

Where there is overlap in the size range covered by different datasets (relevant only to 

different plot data) obtained with different methods we combined the data by weighting 

inversely with area probed.  

 

To address uncertainties related to our simulation we first briefly recapitulate our data 

sets and their spatial coverage. For smallest disturbances monitored by forest censuses 

(RAINFOR data10) spatial coverage is good with plots distributed well along the major 

axes of variation21 (soil fertility, dry season length, El Nino influence) (Fig 1a), but 

missing the core region of large blow-downs. Largest disturbances are observed with 

Landsat imagery25,26 which cover approximately 60 % of the Amazon forest region and 

the dataset includes 609 blow-downs (sum of blow-down records of Nelson et. al, 199426 

and Espírito-Santo et al., 201025). Spatial coverage is thus also representative for most of 

the Amazon region. In contrast, the lower end of the intermediate range is covered by 

data from a 114 and a 53 ha plot23 in Tapajós National Forest and by lidar data24 from 

southern Peru (Madre de Dios region). Thus the observations of the intermediate range 

are spatially biased (Fig. 1b,c). 
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Uncertainties to be addressed with a range of scenarios are thus due to: 

1) Spatial coverage. As mentioned above, in contrast to small scale and largest scale 

disturbances lidar data24 covering a substantial part of the intermediate range are only 

from one part of Western Amazonia. We address this with a scenario whereby we assume 

the disturbance size distribution of the intermediate range to be the one obtained when 

combining the lidar data from terra firme and floodplains, a dramatic although 

unrealistic case;  

 

2) Methodological issues. For forest censuses these include uncertainties in allometries 

which although non-trivial are unlikely to have much impact here(see for example 

Feldpausch et al. 201261). A concern with lidar data is the question how long a gap (or 

disturbance) is detectable by lidar. We address this issue by running our simulator 

assuming either (a) a detectability time of 1 year or (b) a detectability time of 3.6 year 

respectively. The 3.6 years are chosen based on observation of gap closure in 50 ha plot 

of Barro Colorado Island from Hubbell and Foster 198630. Gap closure varies regionally, 

as data from French Guiana suggest half-lives of small forest gaps in excess of 5 years55. 

The 1-year detectability scenario is thus probably biologically unrealistic. 

 

3) Dependence of disturbance size frequency distribution on our given data sample. We 

have calculated the uncertainties associated with calculating histograms formally and 

uncertainties are mostly not large with exception of the largest scales; we analyze the 

effect of this source of uncertainty with the following scenarios: (a) assumption of 

occurrence of largest scale disturbances throughout the region (i.e. not just in the 

Central Amazon), (b) the standard – in our view most likely case - and (c) omission of 

largest blow-downs altogether across the entire region. In light of extensive available 

data from two studies over two separate time periods using different analysis 

methods25,26, we assert that both the full region disturbance and no disturbance scenarios 

are improbable, although in fact RAINFOR plots are not in the remote higher frequency 

blow-down zone. 
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4) Dependence on observed growth statistics based on RAINFOR forest censuses. We 

address this by centering growth (G) around the Amazon region mean of 2.50 Mg C ha-1 

yr-1 and alternatively the Western Amazon region mean of 2.75 Mg C ha-1 yr-1 (see Gloor 

et al.10). 

 

5) Central Amazonia (where largest blow-downs are concentrated) versus rest of the 

Amazon region. To address this issue we use the same scenarios as described under (3). 

 

The results of the various simulation scenarios are summarized in Table 1 (see main 

manuscript for more details) and Table S2 (an extreme scenario that assumes the largest 

blow-downs occurring not only in Central Amazonia but throughout the Amazon regions 

and intermediate disturbances occurring at a rate that greatly over-represents the 

importance of floodplain forests). Sample trajectories for a range of scenarios are shown 

in Supplementary Figure 10. 	
  

 

 

 

 

 

 

 

 

 

 

 



25 
 

Supplementary References 
31. Chazdon, R. L. & Pearcy, R. W. The Importance of sunflecks for forest understory 

plants - photosynthetic machinery appears adapted to brief, unpredictable periods 
of radiation. Bioscience 41, 760–766 (1991). 

32. Baddeley, A. & Turner, R. Spatstat: an r package for analyzing spatial point 
patterns. J. Stat. Softw. 6, 1–42 (2005). 

33. Brokaw, N. V. L. The definition of treefall gap and its effect on measures of forest 
dynamics. Biotropica 14, 158–160 (1982). 

34. Fraver, S., Brokaw, N. V. L. & Smith, A. P. Delimiting the gap phase in the 
growth cycle of a Panamanian forest. J. Trop. Ecol. 14, 673–681 (1998). 

35. Van der Meer, P. J., Bongers, F., Chatrou, L. & Riera, B. Defining canopy gaps in 
a tropical rain-forest - effects on gap size and turnover time. Acta Oecologica - Int. 
J. Ecol. 15, 701–714 (1994). 

36. Chambers, J. Q. et al. Hyperspectral remote detection of niche partitioning among 
canopy trees driven by blowdown gap disturbances in the Central Amazon. 
Oecologia 160, 107–117 (2009). 

37. Phillips, O. L., Lewis, S. L., Baker, T. R., Chao, K. J. & Higuchi, N. The changing 
Amazon forest. Philos. Trans. R. Soc. B-biological Sci. 363, 1819–1827 (2008). 

38. Baker, T. R. et al. Variation in wood density determines spatial patterns in 
Amazonian forest biomass. Glob. Chang. Biol. 10, 545–562 (2004). 

39. Chave, J. et al. Assessing evidence for a pervasive alteration in tropical tree 
communities. PLoS Biol. 6, e45 (2008). 

40. Pyle, E. H. et al. Dynamics of carbon, biomass, and structure in two Amazonian 
forests. J. Geophys. Res. 113, G00B08 (2008). 

41. Chambers, J. Q., Santos, J., Ribeiro, R. J. & Higuchi, N. Tree damage, allometric 
relationships, and above-ground net primary production in central Amazon forest. 
For. Ecol. Manage. 152, 73–84 (2001). 

42. Malhi, Y. et al. The above-ground coarse wood productivity of 104 Neotropical 
forest plots. Glob. Chang. Biol. 10, 563–591 (2004). 

43. Runkle, J. R. Gap regeneration in some old-growth forests of the eastern United 
States. Ecology 62, 1041–1051 (1981). 



26 
 

44. Brown, S. Estimating biomass and biomass change of tropical forests: a primer. 
(Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, 
1997). 

45. Harmon, M. E., Whigham, D. F., Sexton, J. & Olmsted, I. Decomposition and 
mass of woody detritus in the dry tropical forests of the northeastern Yucatan 
Peninsula, Mexico. Biotropica 27, 305–316 (1995). 

46. Keller, M., Palace, M., Asner, G., Pereira, R. & Silva, J. N. Coarse woody debris 
in undisturbed and logged forests in the eastern brazilian Amazon. Glob. Chang. 
Biol. 10, p784–795 (2004). 

47. Palace, M., Keller, M., Asner, G. P., Silva, J. N. M. & Passos, C. Necromass in 
undisturbed and logged forests in the brazilian Amazon. For. Ecol. Manag. 238, 
309–318 (2007). 

48. Palace, M., Keller, M. & Silva, H. Necromass production: studies in undisturbed 
and logged Amazon forests. Ecol. Appl. 18, 873–884 (2008). 

49. Means, J. E. et al. Use of large-footprint scanning airborne lidar to estimate forest 
stand characteristics in the western cascades of Oregon. Remote Sens. Environ. 67, 
298–308 (1999). 

50. Kellner, J. R. & Asner, G. P. Convergent structural responses of tropical forests to 
diverse disturbance regimes. Ecol. Lett. 12, 887–897 (2009). 

51. Boyd, D. S., Hill, R. A., Hopkinson, C. & Baker, T. R. Landscape-scale forest 
disturbance regimes in southern Peruvian Amazonia. Ecol. Appl. 27, 1588–1602 
(2013). 

52. Asner, G. P. et al. Carnegie Airborne observatory: in-flight fusion of hyperspectral 
imaging and waveform light detection and ranging (wLiDAR) for three-
dimensional studies of ecosystems. J. Appl. Remote Sens. 1, 1–21 (2007). 

53. Phillips, O. L. et al. Pattern and process in Amazon tree turnover, 1976–2001. 
Philos. Trans. R. Soc. Biol. Sci. 359 , 477–491 (2004). 

54. Galbraith, D. et al. Residence times of woody biomass in tropical forests. Plant 
Ecol. &amp; Divers. 6, 139–157 (2013). 

55. Van der Meer, P. J. & Bongers, F. Formation and closure of canopy gaps in the 
rain forest at Nouragues, French Guiana. Vegetatio 126, 167–179 (1996). 

56. Tardin, A. T. et al. Levantamento de areas de desmatamento na Amazônia legal 
através de imagens do satélite Landsat. Inpe-1411, 14 (Instituto Nacional de 
Pesquisas Espaciais, 1979). 



27 
 

57. Shimabukuro, Y. E. & Smith, J. A. The least-squares mixing models to generate 
fraction images derived from remote sensing multispectral data. IEEE Trans. 
Geosci. Remote Sens. 29, 16–20 (1991). 

58. Ter Steege, H. et al. Continental-scale patterns of canopy tree composition and 
function across Amazonia. Nature 443, 444–447 (2006). 

59. Houghton, R. A. Aboveground forest biomass and the global carbon balance. 
Glob. Chang. Biol. 11, 945–958 (2005). 

60. Negrón-Juárez, R. I. et al. Widespread Amazon forest tree mortality from a single 
cross-basin squall line event. Geophys. Res. Lett. 37, L16701 (2010). 

61. Feldpausch, T. R. et al. Tree height integrated into pan-tropical forest biomass 
estimates. Biogeosciences 9 , 3381–3403 (2012).  

 


