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1. Model definitions
The baseline population dynamic model as presented in the main text (Fig. 1) is described by the 
following set of differential equations:
dS
dt

= bN 1− qN( ) − β S δ i I + δa A( ) − mS + γ i I + γ a A

dI
dt

= β S δ i I + δa A( ) − m +α i + γ i + µ( ) I
dA
dt

= µ I − m +αa + γ a( )A

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 (S1)

An extended model describing acquired immunity  with memory  (Fig. S1) is given by  the following 
set of differential equations:
dS
dt

= bN 1− qN( ) − β S δ i I + δa A( ) − mS + γ i I

dI
dt

= β S δ i I + δa A( ) − m +α i + γ i + µ( ) I
dA
dt

= µ I + β R δ i I + δa A( ) − m +αa + γ a( )A
dR
dt

= γ a A − β R δ i I + δa A( ) − mR

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

 (S2)

All symbols are defined in Table S1. In the following I refer to model (S1) as the SIAS model, and 
(s2) as the SIARA model.
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Figure S1. Schematic of the extended population dynamic model with immune memory. Hosts that 
have mounted an immune response (A) move into the (R) compartment following recovery; upon 
reinfection, they mount an immune response immediately.
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Table S1. List of symbols used in the models.

Symbol Description Default 
value

S Density of susceptible hosts

I Density of infected hosts in the initial phase

A Density of infected hosts with an active immune response

R Density of recovered hosts with immune memory (extended model only)

N Total host population density

b Maximal birth rate per capita 1

q Susceptibility to crowding (density-dependent reduction in birth rate) 0.05

m Host death rate per capita 0.1

β Host susceptibility to infection 0.2

δi Infectivity of hosts before immune activation 1

δa Infectivity of hosts after immune activation 1

αi Additional death rate (virulence) of hosts before immune activation 0.4

αa Additional death rate (virulence) of hosts following immune activation 0.4

γi Baseline recovery rate of hosts without immune response 0

γa Recovery rate with an active immune response 1

µ Rate of activation of the immune response 1

R0 Basic reproductive ratio of the pathogen 4

K Carrying capacity1 of the host population 18

1 The carrying capacity  is defined as the stable equilibrium of the host population in the absence of 

infection. For both models it is equal to K =
b − m
bq

.

3



2. Pathogen basic reproductive ratio
In order to determine the pathogen's basic reproductive ratio, I used next generation matrices as 
described by Hurford et al. [1]. While there are simpler heuristics to derive the expression of R0, the 
use of the next-generation theorem is more systematic and can also be used to determine invasion 
criteria for host and pathogen evolution. In brief, I re-write the system of differential equations in 
vectorial form dx/dt = Ax, where x(t) is the vector of state variables of the system and A is a matrix 
of constant coefficients. The next-generation theorem states that, if A can be written as F–V where 
F≥0, V-1≥0 and if all the eigenvalues of -V have negative real parts, then all the eigenvalues of A 
have negative real parts if and only if all the eigenvalues of FV-1 lie within the unit circle [1].
In practice, "F is a matrix which gives the rate at which new individuals appear in class j, per 
individual of type i. The matrix V describes the movement of existing individuals among the 
different classes, as well as the loss of these individuals. […] Hence, FV-1 is sometimes referred to 
as the next-generation matrix. Moreover, ρ(FV-1) = R0, which has an interpretation as the expected 
lifetime reproductive output of a newborn individual." [1]
To calculate R0 for the pathogen in either model, I assume that the host population is fully 
susceptible and at the carrying capacity K. The state vector for the pathogen is x = (I  A)T, the 
reproduction matrix is 

F =
βδ i K βδa K
0 0

⎛

⎝
⎜

⎞

⎠
⎟

and the transition matrix is 

V =
m +α i + γ i + µ 0

−µ m +αa + γ a

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. 

The dominant eigenvalue of FV-1 is then R0 =
β K δ i m +αa + γ a( ) + δa µ⎡⎣ ⎤⎦
m +α i + γ i + µ( ) m +αa + γ a( )  (S3).

Note that the same expression could be obtained by reasoning from first principles, writing R0 as the 
sum of reproductive ratios during the two phases of infection:

R0 =
βδ iK

m +α i + γ i + µ
+

µ
m +α i + γ i + µ

⎛
⎝⎜

⎞
⎠⎟

βδaK
m +αa + γ a

where the factor between brackets is the probability of reaching the second phase of infection.

Even though the full expressions of the equilibrium points of either system cannot be obtained 
analytically, it can be shown by solving system (S1) that, the endemic equilibrium (S*, I*, A*) must 
satisfy the following relations:

S* = K
R0
, A* = µ I *

m +αa + γ a

.
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3. Pathogen evolution
To study pathogen evolution, I extend equations (S1) and (S2) to two strains of pathogens that 
compete for infection of susceptible hosts (S and R), assuming that  currently  infected hosts (I or A) 
cannot be reinfected. In addition, the two pathogen strains only  differ by the values of virulence (αi 
and αa) and infectivity (δi and δa) and are antigenically identical, so that hosts are equally 
susceptible to both strains.

Labelling the two strains with subscripts 1 and 2, the SIAS model can be written as:
dS
dt

= bN 1− qN( ) − β S δ i,1 I1 + δa,1 A1 + δ i,2 I2 + δa,2 A2( ) − mS + γ i I1 + γ a A1 + γ i I2 + γ a A2

dI1
dt

= β S δ i,1 I1 + δa,1 A1( ) − m +α i,1 + γ i + µ( ) I1
dA1
dt

= µ I1 − m +αa,1 + γ a( )A1
dI2
dt

= β S δ i,2 I2 + δa,2 A2( ) − m +α i,2 + γ i + µ( ) I2
dA2
dt

= µ I2 − m +αa,2 + γ a( )A2

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

Assuming that both strains have basic reproductive ratios R0,1 and R0,2 greater than unity, I consider 
the scenario where strain 1 is initially present and has reached endemic equilibrium (S*, I1*, A1*) and 
strain 2 is introduced at a very low prevalence.
Using the next generation theorem as before, the mutant's fitness can be written as:

Rm,2 =
β S* δ i,2 m +αa,2 + γ a( ) + δa,2 µ⎡⎣ ⎤⎦
m +α i,2 + γ i + µ( ) m +αa,2 + γ a( ) =

S*

K
R0,2 =

R0,2
R0,1

Hence the mutant will be able to invade if and only if its basic reproductive ratio is larger than that 
of the resident strain. The same analysis can be done easily with the SIARA model and leads to the 
same conclusion.

As explained in the main text, I chose to impose a 'classical' constraint on pathogen evolution by 
assuming that virulence α and infectivity δ are positively linked. In a single-stage infection (here 
when µ = 0), if infectivity increases less than linearly  with virulence, there is a single phenotype 
that maximises R0 and it is therefore an ESS [2, 3]. Here I consider two cases, depending on 
whether the pathogen has a plastic response or not.

a. Non-plastic virulence
First, if the pathogen cannot change its virulence, let αi = αa = α and δi = δa = δ(α). Then the first 
order condition for α to be an ESS is:
′δ α( )
δ α( ) =

1
α + m + γ i + µ

+
µ

α + m + γ a( ) α + m + γ a + µ( )  (S4)

Using the function δ α( ) = δ0
α

α + ε
, equation (S4) becomes a quartic polynomial. While it cannot 

be solved analytically, it  is possible to prove that equation (S4) has exactly  one positive root α* with 
0 <α * < ε m + µ + γ i( ) .
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Proof: Let A = m + γ i + µ, B = m + γ a ,C = m + γ a + µ . Equation S4 can then be re-written as:

α + B( ) α + C( ) α + ε A( ) α − ε A( ) = −µα α + ε( ) α + A( )
Let F4(α) be the quartic polynomial on the left-hand side and F3(α) the cubic polynomial on the 
right-hand side. Since the two polynomials have all but one negative roots, they are monotonic over 
the positive domain. For positive values of α, F4(α) is an increasing function, negative between 0 
and ε A  and positive beyond, while F3(α) is a decreasing function with F3(0) = 0 > F4(0). Hence 

there is a unique positive value of α such that F4(α) = F3(α) and it is lower than ε A . QED.

The second-order condition R0′′ α
*( ) < 0 boils down (after a few lines of tedious algebra) to γ a > γ i

which is the working assumption. I therefore conclude that a non-plastic pathogen has a single ESS 
α*, which satisfies 0 <α * < ε m + µ + γ i( ) .

b. Plastic virulence
If the pathogen can change its virulence during the second phase of infection, so that the values of 
αi and αa are evolving independently, then any  candidate ESS has to be a solution of the following 
system of two equations:

′δ i α i( ) = R0 α i ,αa( )
β K

′δa αa( ) = δa αa( )
αa + m + γ a

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (S5)

Using the function δ α( ) = δ0
α

α + ε
for both δi and δa, (S5) has a unique solution:

 

α i
* =

−µ εαa
* + ε f αa

*( ) f αa
*( ) m + γ i( ) + µαa

* 2m +αa
* + γ i + γ a( ) + ε µ m + γ a( ) + µ2αa

*⎡⎣ ⎤⎦
f αa

*( ) + µαa
*

αa
* = ε m + γ a( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

where f αa
*( ) = αa

* + ε( ) αa
* + m + γ a( )

There remains to calculate the Hessian matrix of R0 α i ,αa( ) : 

H α i
*,αa

*( ) =
∂2R0
∂α i

2 α i
*,αa

*( ) ∂2R0
∂α i∂αa

α i
*,αa

*( )
∂2R0

∂αa∂α i

α i
*,αa

*( ) ∂2R0
∂αa

2 α i
*,αa

*( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

βKδ′′ α i
*( )

m +α i
* + γ i + µ( ) 0

0
βKµδ′′ αa

*( )
m +α i

* + γ i + µ( ) m +αa
* + γ a( )

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Since δ is a concave function, the two terms on the diagonal are negative, hence α i
*,αa

*( ) is a 

maximum of R0, so it is an ESS.
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c. Numerical results

Pathogen's ES levels of virulence plotted against the host's activation rate (µ), host mortality  (m), 
and recovery rate before (γi) or after immune activation (γa). The dashed black line shows the ES 
virulence α* of non-plastic pathogens, whereas the amber and red lines show the respective ES 
levels αi* and αa* for plastic pathogens. Same numerical values as on Fig. 2.
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4. Host evolution
a. SIAS model
In this section I consider two competing host genotypes (labelled with subscripts 1 and 2) that can 
differ in three traits: immune activation rate µ, fecundity b and mortality m. There is a single strain 
of pathogen which does not evolve. The SIAS model can be written as:
dS1
dt

= b1 S1 + I1 + A1( ) 1− qN( ) − β S1 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m1 S1 + γ i I1 + γ a A1

dI1
dt

= β S1 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m1 +α i + γ i + µ1( ) I1
dA1
dt

= µ1 I1 − m1 +αa + γ a( )A1
dS2
dt

= b2 S2 + I2 + A2( ) 1− qN( ) − β S2 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m2 S2 + γ i I2 + γ a A2

dI2
dt

= β S2 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m2 +α i + γ i + µ2( ) I2
dA2
dt

= µ2 I2 − m2 +αa + γ a( )A2

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

 (S6)

As with the pathogen, I follow Hurford et  al.'s [1] next-generation matrix method to determine the 
conditions under which the mutant genotype 2 can invade the resident genotype 1. I assume that the 
system has reached its stable equilibrium S1

*, I1
*,A1

*( )  in the absence of genotype 2 and that genotype 

1 is such that the pathogen's basic reproductive ratio is greater than unity. From system (S6), I 
define the hosts' reproduction matrix F as:

F = 1− qN *
1( )

b1 b1 b1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 b2 b2 b2
0 0 0 0 0 0
0 0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

and the transition matrix V as:

V =

m1 + Λ1
* −γ i −γ a 0 0 0

−Λ1
* m1 +α i + γ i + µ1 0 0 0 0

0 −µ1 m1 +αa + γ a 0 0 0
0 0 0 m2 + Λ1

* −γ i −γ a

0 0 0 −Λ1
* m2 +α i + γ i + µ2 0

0 0 0 0 −µ2 m2 +αa + γ a

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

.

where Λ1
* = β δ i I1

* + δaA1
*⎡⎣ ⎤⎦ is the force of infection at equilibrium. It follows that the next-

generation matrix FV-1 has the same zero elements as F, and therefore has two non-zero 
eigenvalues ω1 and ω2 which represent the respective relative fitnesses of genotypes 1 and 2:
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ω1 = 1

ω2 =
b2 1− qN1

*( ) m2 +αa + γ a( ) m2 +α i + γ i + Λ1
*( ) + µ2 m2 +αa + γ a + Λ1

*( )⎡⎣ ⎤⎦
m2 +αa + γ a( ) α i Λ1

* + m2 m2 +α i + γ i + Λ1
*( )⎡⎣ ⎤⎦ + µ2 αaΛ1

* + m2 m2 +αa + γ a + Λ1
*( )⎡⎣ ⎤⎦

(S7).

Strain 2 can invade if and only if ω2 > 1. Since the expressions for the equilibrium S1
*, I1

*,A1
*( )  

cannot be obtained analytically, invasion analyses have to be performed numerically. 

In the absence of any constraints, natural selection would favour maximum values of µ and b and 
minimum values of m. In the following I assume that any increase in activation rate µ comes at a 
cost on either survival (increase in m) or fecundity  (lower b). The following figures are Pairwise 
Invasibility  Plots (PIP) where the value of the mutant's fitness ω2 is colour-coded as a function of 
the resident's activation rate µ1 on the horizontal axis and mutant's activation rate µ2 on the vertical 
axis: black areas show combinations of genotypes that allow the mutant to invade (ω2>1). This 
technique enables the visualisation of evolutionary singularities as points where the boundary  of a 
black area crosses the diagonal [4].

(i) Linear cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in Table S1 and m0=0.1, ν=10.

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

These graphs show a single ESS which is both evolutionarily  stable (it cannot be invaded by any 
mutant) and convergent-stable (it can evolve through a series of small mutations from any other 
genotype). The ESS drops to zero when the effective benefit of mounting an immune defence is too 
low, for example if virulence is too high during the second phase of infection:

 αa = 0.57 αa = 0.58 αa = 0.59
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(ii) Quadratic cost on mortality: m = m0 1+ µ /ν( )2⎡⎣ ⎤⎦ . Numerical values as in (i).

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

An accelerating cost also leads to an ESS with finite activation rates.

(iii) Square root cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in (i).

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

Here only a strong benefit  of mounting an immune response (middle frame) gives rise to a non-zero 
ES activation rate. Even then, a closer look reveals that µ = 0 is also an ESS (the two ESS are 
separated by an evolutionary repeller):
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(iv) Linear cost on fecundity: b = b0 1− µ /ν( ) . Numerical values as in Table S1 and b0=1, ν=20.

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

(v) Quadratic cost on fecundity: m = b0 1− µ /ν( )2⎡⎣ ⎤⎦ . Numerical values as in (iv).

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

(vi) Square root cost on fecundity: m = b0 1− µ /ν⎡⎣ ⎤⎦ . Numerical values as in (iv) except ν = 50.

 γi = 0, γa = 1 γi = 0, γa = 1.5 γi = 0.5, γa = 2

Here a non-zero ESS exists only  if the cost on fecundity is very low (with a large value of ν) and the 
benefit of the immune response very high.
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b. Supplementary result

ES activation rate (µ) plotted against the two levels of pathogen virulence. Same as figure 4, except 
that infectivity parameters are kept constant: δ i = δa = 1 .

c. SIARA model
The same analyses as above can be done for the SIARA model, which is just slightly more 
complicated because of the extra variable. With two host genotypes we have 8 equations:

dS1
dt

= b1 S1 + I1 + A1 + R1( ) 1− qN( ) − β S1 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m1 S1 + γ i I1

dI1
dt

= β S1 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m1 +α i + γ i + µ1( ) I1
dA1
dt

= µ1 I1 + β R1 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m1 +αa + γ a( )A1
dR1
dt

= γ a A1 − β R1 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m1R1

dS2
dt

= b2 S2 + I2 + A2 + R2( ) 1− qN( ) − β S2 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m2 S2 + γ i I2

dI2
dt

= β S2 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m2 +α i + γ i + µ2( ) I2
dA2
dt

= µ2 I2 + β R2 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m2 +αa + γ a( )A2
dR2
dt

= γ a A2 − β R2 δ i I1 + δa A1 + δ i I2 + δa A2( ) − m2R2

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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As before, I assume that genotype 1 is initially  on its own in the population with the pathogen and 
reaches its stable equilibrium S1

*, I1
*,A1

*,R1
*( ) before genotype 2 appears by mutation. This leads to 

define the hosts' reproduction matrix F as:

F = 1− qN *
1( )

b1 b1 b1 b1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 b2 b2 b2 b2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

and the transition matrix V as:

V =

m1 +Λ1
* −γ i 0 0 0 0 0 0

−Λ1
* m1 +α i + γ i + µ1 0 0 0 0 0 0

0 −µ1 m1 +αa + γ a −Λ1
* 0 0 0 0

0 0 −γ a m1 +Λ1
* 0 0 0 0

0 0 0 0 m2 +Λ1
* −γ i 0 0

0 0 0 0 −Λ1
* m2 +α i + γ i + µ2 0 0

0 0 0 0 0 −µ2 m2 +αa + γ a −Λ1
*

0 0 0 0 0 0 −γ a m2 +Λ1
*

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

where Λ1
* = β δ i I1

* + δaA1
*⎡⎣ ⎤⎦ is the force of infection at equilibrium.

The eigenvalues of the next-generation matrix FV-1 are:
ω1 = 1

ω2 =
b2 1− qN1

*( ) m2 +α i + γ i + Λ1
*( ) αaΛ1

* + m2 m2 +αa + γ a + Λ1
*( )⎡⎣ ⎤⎦ + µ2 m2 + Λ1

*( ) m2 +αa + γ a + Λ1
*( )⎡

⎣
⎤
⎦

αaΛ1
* + m2 m2 +αa + γ a + Λ1

*( )⎡⎣ ⎤⎦ m2 m2 +α i + γ i + Λ1
*( ) + Λ1

* α i + µ2( )⎡⎣ ⎤⎦
(S8)

As with the SIAS model, I use ω2 as a measure of the mutant's fitness in order to produce Pairwise 
Invasibility Plots and calculate ESS, with a set of alternative cost functions (see next page).
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(i) Linear cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in Table S1 and m0=0.1, ν=10.

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

(ii) Quadratic cost on mortality: m = m0 1+ µ /ν( )2⎡⎣ ⎤⎦ . Numerical values as in (i).

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

(iii) Square root cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in (i).

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1
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(iv) Linear cost on fecundity: b = b0 1− µ /ν( ) . Numerical values as in Table S1 and b0=1, ν=20.

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

(v) Quadratic cost on fecundity: b = b0 1− µ /ν( )2⎡⎣ ⎤⎦ . Numerical values as in (iv).

 γi = 0, γa = 0.2 γi = 0, γa = 1 γi = 0.5, γa = 1

(vi) Square root cost on fecundity: b = b0 1− µ /ν⎡⎣ ⎤⎦ . Numerical values as in (iv) except ν = 50.

 γi = 0, γa = 1 γi = 0, γa = 1.5 γi = 0.5, γa = 2
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5. Coevolution
As explained in the main text, I have chosen to model coevolution by modifying the host 
evolutionary  algorithm under the assumption that the pathogen's phenotype is at the ESS with 
respect to the resident host's phenotype. The fitness of a mutant host genotype is still given by 
expression (S7) or (S8) above (respectively for the SIAS and SIARA models), but parameters δi, δa, 
αi and αa are now functions of the resident host's genotype and other parameters as determined in 
Section 3. Under this scenario, any ESS for the host will automatically  be associated with a 
corresponding ESS for the pathogen, resulting in a Co-Evolutionary Stable Strategy (CoESS).

Here I will give a few examples of PIPs for the host, as I did in section 4, but also considering the 
two models of pathogen evolution: plastic virulence or fixed virulence.

a. SIAS model, plastic virulence

(i) Linear cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in Table S1 and m0=0.1, ν=10, 

δ0=1, ε=1.
 γi = 0, γa = 0.5 γi = 0, γa = 2 γi = 0.5, γa = 2

The central panel clearly  shows the two ESS (µ ≈ 3 and µ = 0) separated by a repeller (µ ≈ 0.3), as 
explained in the main text (section 3c) and illustrated in a different way on Fig. 4A. As we increase 
the value of γi the repeller drops to 0 (right-hand side panel) so the lower ESS, while it still exists, is 
no longer stable by convergence (a so-called 'Garden of Eden' singularity [5]).

(ii) Linear cost on fecundity: b = b0 1− µ /ν( ) . Numerical values as in Table S1 and b0=1, ν=20.

 γi = 0, γa = 1 γi = 0, γa = 4 γi = 0.5, γa = 4
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b. SIAS model, fixed virulence

(i) Linear cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in Table S1 and m0=0.1, ν=10, 

δ0=1, ε=1.
 γi = 0, γa = 0.5 γi = 0, γa = 2 γi = 0.5, γa = 2

(ii) Linear cost on fecundity: b = b0 1− µ /ν( ) . Numerical values as in Table S1 and b0=1, ν=20.

 γi = 0, γa = 0.5 γi = 0, γa = 2 γi = 0.5, γa = 2

c. SIARA model, plastic virulence
(i) Linear cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in Table S1 and m0=0.1, ν=10, 

δ0=1, ε=1.
 γi = 0, γa = 0.5 γi = 0, γa = 2 γi = 0.5, γa = 2
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(ii) Linear cost on fecundity: b = b0 1− µ /ν( ) . Numerical values as in Table S1 and b0=1, ν=20.

 γi = 0, γa = 1 γi = 0, γa = 4 γi = 0.5, γa = 4

d. SIARA model, fixed virulence

(i) Linear cost on mortality: m = m0 1+ µ /ν( ) . Numerical values as in Table S1 and m0=0.1, ν=10, 

δ0=1, ε=1.
 γi = 0, γa = 0.5 γi = 0, γa = 2 γi = 0.5, γa = 2

(ii) Linear cost on fecundity: b = b0 1− µ /ν( ) . Numerical values as in Table S1 and b0=1, ν=20.

 γi = 0, γa = 0.5 γi = 0, γa = 2 γi = 0.5, γa = 2

18



Bibliography
1 Hurford, A., Cowden, D. & Day, T. 2010 Next-generation tools for evolutionary invasion 

analyses. J. R. Soc. Interface 7, 561-571.
2 Bremermann, H. J. & Pickering, J. 1983 A game-theoretical model of parasite virulence. J. 

Theor. Biol. 100, 411-426.
3 van Baalen, M. & Sabelis, M. W. 1995 The scope for virulence management: a comment on 

Ewald's view on the evolution of virulence. Trends Microbiol. 3, 414-416.
4 Geritz, S. A. H., Kisdi, E., Mesze, G. & Metz, J. A. J. 1997 Evolutionarily singular strategies 

and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35-57.
5 de Mazancourt, C. & Dieckmann, U. 2004 Trade-Off Geometries and Frequency-Dependent 

Selection. Am. Nat. 164, 765-778.

19


