15

20

Supplemental Material for Interactive Model Building for Q-Learning

BY ERIC B. LABER, KRISTIN A. LINN AND LEONARD A. STEFANSKI

Department of Statistics, North Carolina State University, 2311 Stinson Drive, 5216 SAS Hall, Raleigh, North Carolina, 27695-8203, USA 55 laber@stat.ncsu.edu kalinn@ncsu.edu stefansk@ncsu.edu

1. INCONSISTENCY OF Q-LEARNING

The closed-form expression in (10) of the main paper facilitates study of nonlinearity introduced by the nonsmooth maximization operator and resulting inconsistency of Q-learning. To this end, suppose $Q_2(h_2, a_2) = h_{2,0}^T \beta_{2,0}^* + a_2 h_{2,1}^T \beta_{2,1}^*$ so that the second-stage Q-function is α_2 correctly specified, and thus $\max_{a_2 \in \{-1,1\}} Q_2(H_2, a_2) = H_{2,0}^T \beta_{2,0}^* + |H_{2,1}^T \beta_{2,1}^*|$. Consider the coefficient indexing the best-fitting linear model to the first-stage Q-function,

$$
\beta_1^* = \arg\min_{\beta_{1,0},\beta_{1,1}} E\left\{\max_{a_2 \in \{-1,1\}} Q_2(H_2,a_2) - H_{1,0}^{\mathrm{T}}\beta_{1,0} - A_1H_{1,1}^{\mathrm{T}}\beta_{1,1}\right\}^2,
$$

so that $\beta_1^* = \sum_1^{-1} EB_1(H_{2,0}^T\beta_{2,0}^* + |H_{2,1}^T\beta_{2,1}^*|)$, where $B_1 = (H_{1,0}^T, A_1H_{1,1}^T)^T$ and $\Sigma_1 =$ $EB_1B_1^{\rm T}$. If $\mu(H_2) = B_1^{\rm T}\gamma + \rho$ where ρ is a mean zero random variable which is independent of patient histories and outcomes, then $\beta_1^* = \gamma + \Sigma_1^{-1}EB_1|H_{2,1}^{T}\beta_{2,1}^*|$, and for $b_1 = (h_{1,0}^T, a_1h_{1,1}^T)^T$ it follows that $b_1^{\text{T}} \beta_1^* = E \{ \mu(H_2) \mid h_1, a_1 \} + b_1^{\text{T}} \Sigma_1^{-1} E B_1 | H_{2,1}^{\text{T}} \beta_{2,1}^*|$. In addition, suppose that $H_{2,1}^{T}\beta_{2,1}^{*}=B_{1}^{T}\eta+\nu$, where ν is a mean zero normal random variable with variance σ^{2} that is independent of patient histories and outcomes. Then $b_1^{\text{T}} \beta_1^* - E \{ \mu(H_2) | \mid h_1, a_1 \}$ is equal to

$$
b_1^{\mathrm{T}}\Sigma^{-1}EB_1\left[B_1^{\mathrm{T}}\eta\left\{1-2\Phi\left(\frac{-B_1^{\mathrm{T}}\eta}{\sigma}\right)\right\}+\left(\frac{2\sigma^2}{\pi}\right)^{\frac{1}{2}}\exp\left\{\frac{-(B_1^{\mathrm{T}}\eta)^2}{2\sigma^2}\right\}\right],
$$

which can be reexpressed as $E\left(|H_{2,1}^{T} \beta_{2,1}^{*}| \mid H_1 = h_1, A_1 = a_1 \right) + r(h_1, a_1)$, where

$$
r(h_1, a_1) = 2b_1^{\mathrm{T}}\Sigma_1^{-1}EB_1B_1^{\mathrm{T}}\eta \left\{\Phi\left(\frac{-b_1^{\mathrm{T}}\eta}{\sigma}\right) - \Phi\left(\frac{-B_1^{\mathrm{T}}\eta}{\sigma}\right)\right\}
$$

$$
+ \left(\frac{2\sigma^2}{\pi}\right)^{\frac{1}{2}} \left[b_1^{\mathrm{T}}\Sigma^{-1}EB_1\exp\left\{\frac{-(B_1^{\mathrm{T}}\eta)^2}{2\sigma^2}\right\} - \exp\left\{\frac{-(b_1^{\mathrm{T}}\eta)^2}{2\sigma^2}\right\}\right]
$$

is a remainder term that shows how far the optimal linear approximation is from the truth, $E\left(|H_{2,1}^{\sf T}\beta_{2,1}^*|\mid H_1=h_1,A_1=a_1\right)=E\left\{|\Delta(H_2)|\mid H_1=h_1,A_1=a_1\right\}.$ The remainder is identically zero if $\eta = 0$ and $\sigma = 0$, the case of no second-stage treatment effect with probability one, i.e., $pr(H_{2,1}^{T}\beta_{2,1}^{*}=0)=1$. The remainder is close to zero when the distribution of $B_1^T \eta/\sigma$ is concentrated sufficiently far from zero and $b_1^T \eta/\sigma$ is also far from zero. The remainder term is largest for small to moderate values of $B_{1}^{T}\eta/\sigma$. This is relevant, as in many applications we do not expect large signal-to-noise ratios. Thus, even under simple generative models like the one described above, the Q-learning algorithm with its linear approximations need not be even ³⁰ approximately consistent.

2 E. B. LABER, K. A. LINN AND L. A. STEFANSKI

2. PROOFS OF ASYMPTOTIC RESULTS

Let $l^{\infty}(\mathcal{F})$ denote the space of uniformly bounded real-valued functions on $\mathcal F$ equipped with the supremum norm. Write $Z_n = n^{1/2} (\Delta_L, \Delta_m, \Delta_\sigma)^T$. Then by (A1N), Z_n converges ³⁵ in distribution to N {0, $\Sigma_N(h_1, a_1)$ }. Similarly, define $W_n = n^{1/2} (\Delta_L, \Delta_\theta, \Delta_\gamma, \Delta_\beta, \Delta_\zeta)$. Then by (A1E), W_n converges in distribution to $N\{0, \Sigma_E(h_1, a_1)\}\)$. For convenience we abbreviate $m(h_1, a_1; \theta)$, $\sigma(h_1, a_1; \gamma)$, $L(h_1, a_1; \alpha)$, and $\xi(H_2, H_1, A_1; \theta, \gamma, \beta_2)$ as m , σ , L , and ξ , respectively. Similarly, we write \hat{m} , $\hat{\sigma}$, \hat{L} , and $\hat{\xi}$ as shorthand for $m(h_1, a_1; \hat{\theta})$, $\sigma(h_1, a_1; \hat{\gamma})$, $L(h_1, a_1; \hat{\alpha})$, and $\xi(H_2, H_1, A_1; \hat{\theta}, \hat{\gamma}, \hat{\beta}_2)$, and we write m^*, σ^*, L^* , and ξ^* as shorthand for $m(h_1, a_1; \theta^*)$, $\sigma(h_2, a_2; \hat{\alpha}^*)$, $L(h_3, a_3; \hat{\alpha}^*)$, and $\xi(H_2, H_4, A_2; \theta^*, \hat{\alpha}^*)$ 40 $m(h_1, a_1; \theta^*), \sigma(h_1, a_1; \gamma^*), L(h_1, a_1; \alpha^*), \text{and } \xi(H_2, H_1, A_1; \theta^*, \gamma^*, \beta_2^*).$

Proof of Theorem 1, Part 1. Notice that

$$
n^{1/2} \left\{ \widehat{Q}_1^{\text{IQ},N}(h_1, a_1) - L(h_1, a_1; \alpha^*) - \frac{1}{\sigma^*} \int |z| \phi \left(\frac{z - m^*}{\sigma^*} \right) dz \right\}
$$

= $n^{1/2} \left\{ I(\widehat{L}, \widehat{m}, \widehat{\sigma}) - I(L^*, m^*, \sigma^*) \right\},$

45 where $I(\cdot)$ is as defined immediately preceding Theorem 1 in the main paper. Inspection reveals that $\nabla I(L, m, \sigma)$ exists and is continuous in a neighborhood of (L^*, m^*, σ^*) . Hence, by a firstorder Taylor series approximation, the right hand side above is equal to

$$
n^{1/2}\left\{I(\widehat{L},\widehat{m},\widehat{\sigma})-I(L^*,m^*,\sigma^*)\right\}=\nabla I(L^*,m^*,\sigma^*)^{\mathrm{T}}Z_n+o_P(1).
$$

The result follows from Slutsky's lemma.

Remark 1. It is possible to extend the above proof to obtain bootstrap consistency. Let $E^{(b)}$ ⁵⁰ denote the bootstrap empirical distribution. We use $u^{(b)}$ to denote the bootstrap analog of functional u, e.g., $u = u(E_n, E)$ then $u^{(b)} = u(E_n^{(b)}, E_n)$. If, in addition to the conditions for Theorem 1, $Z_n^{(b)}$ converges weakly in probability to $N\left\{0, \Sigma_N(h_1, a_1)\right\}$, then the above proof goes through using exactly the same arguments after changing $I(\widehat{L}, \widehat{m}, \widehat{\sigma})$ to $I(\widehat{L}^{(b)}, \widehat{m}^{(b)}, \widehat{\sigma}^{(b)})$ and $I(L^*, m^*, \widehat{\sigma}^{(b)}, t)$ and $I(L^*, m^*, \widehat{\sigma}^{(b)}, t)$ $I(L^*, m^*, \sigma^*)$ to $I(\widehat{L}, \widehat{m}, \widehat{\sigma})$ (see Kosorok, 2008 for bootstrap continuous mapping theorems and bootstrap control limit theorems) ⁵⁵ bootstrap central limit theorems).

Proof of Theorem 1, Part 2. The proof proceeds by showing that

$$
n^{1/2} \left\{ \widehat{Q}_1^{\text{IQ},E}(h_1, a_1) - L(h_1, a_1; \alpha^*) - \frac{1}{\sigma^*} \int |z| \kappa \left(\frac{z - m^*}{\sigma^*} \right) dz \right\}
$$

= {1, $\nabla J(\theta^*, \gamma^*, \beta_2^*)^{\text{T}}, 1$ } $W_n + o_P(1)$. (1)

⁶⁰ The term on the left hand side of the above display equals

 $n^{1/2}E_n|\hat{m} + \hat{\sigma}\hat{\xi}| - n^{1/2}E|m^* + \sigma^*\xi^*| + W_{n,1}.$

The first two terms in the above display are equal to

$$
n^{1/2}(E_n - E)|\widehat{m} + \widehat{\sigma}\widehat{\xi}| + n^{1/2}E\left(|\widehat{m} + \widehat{\sigma}\widehat{\xi}| - |m^* + \sigma^*\xi^*|\right).
$$

From (A2), it follows that $n^{1/2}(E_n - E)$ converges weakly to G_∞ in $l^\infty(\mathcal{F})$, where G_∞ is a mean zero Gaussian process with covariance function $Cov{G_∞(f), G_∞(g)} = E(f –$ Ef)($g - Eg$) (see, for example, Kosorok, 2008). Note that by the second part of (A2), the ⁶⁵ foregoing covariance function is continuous in a neighborhood of $(\theta^*, \gamma^*, \beta_2^*)$. Thus, using

IQ-Learning 3

the equicontinuity of $n^{1/2}(E_n - E)$, it follows that $n^{1/2}(E_n - E)|\hat{m} + \hat{\sigma}\hat{\xi}| = W_{n,5} + op*(1)$, where P^* denotes outer probability. So far, we have shown that the right hand side of (1) is equal to $n^{1/2} \left\{ E(|\hat{m} + \hat{\sigma}\hat{\xi}| - |m^* + \sigma^*\xi^*|) \right\} + W_{n,1} + W_{n,5} + o_{P^*}(1)$. From (A2), *J* is continuously differentiable in a neighborhood of $(\theta^*, \gamma^*, \beta_2^*)$. Using a first-order Taylor series approximation, we have

$$
n^{1/2}E(|\widehat{m}+\widehat{\sigma}\widehat{\xi}|-|m^*+\sigma^*\xi^*|)=\nabla J(\theta^*,\gamma^*,\beta_2^*)^{\mathrm{T}}(W_{n,2},W_{n,3},W_{n,4})+o_P(1).
$$

Thus, we have shown that the right hand side of (1) equals $\{1, \nabla J(\theta^*, \gamma^*, \beta_2^*)^T, 1\}W_n + op*(1)$. The result follows from Slutsky's Lemma (Kosorok, 2008).

Remark 2*.* It is possible under mild conditions to extend the above proof to obtain bootstrap consistency, e.g., that $W^{(b)}$ converges weakly in probability to $N\{0, \Sigma_E(h_1, a_1)\}\.$ Note, for example, that the bootstrap empirical process $n^{1/2}(E_n^{(b)} - E_n)$ converges weakly in probability τ_5 to G_{∞} in $l^{\infty}(\mathcal{F})$ by (A2) and Theorem 2.6 in Kosorok (2008).

3. OBTAINING ASYMPTOTIC NORMALITY OF IQ-LEARNING PARAMETERS

Here we provide a sketch of how one obtains asymptotic normality of the parameters used in IQ-learning. For a more complete discussion of conditional variance estimators and proofs of asymptotic normality under more general conditions see Carroll and Rup- $\frac{80}{10}$ pert (1988). For illustration we use the working models from the simulated experiments in the main body. We demonstrate using $\hat{\gamma}$ as this is the most involved; other estimators would be handled similarly. We assume linear models for $\Delta(H_2)$ and $m(H_1, A_1)$ so that $\Delta(H_2; \beta_2) = H_{2,1}^T \beta_{2,1}$ and $m(H_1, A_1; \theta) = H_{1,0}^T \theta_{1,0} + A_1 H_{1,1}^T \theta_{1,1}$. We assume a loglinear model for $\sigma(H_1, A_1)$ so that $\log \sigma(H_1, A_1; \gamma) = H_{1,0}^T \gamma_{1,0} + A_1 H_{1,1}^T \gamma_{1,1}$. Define $G = \infty$ $(H_{2,1}^T, -H_{1,0}, -A_1H_{1,1}^T)^T$, $\hat{\Gamma} = (\hat{\beta}_{2,1}^T, \hat{\theta}^T)^T$, and $\Gamma^* = (\beta_{2,1}^{*T}, \theta^{*T})^T$. We assume that $n^{1/2}(\hat{\Gamma} \Gamma^* = n^{1/2}(E_n - E)s(H_2, H_1, A_1; \Gamma^*) + op(1)$ for square integrable score function s. Define $B_1 = (H_{1,0}^T, A_1 H_{1,1}^T)^T$. We also assume that $E||B_1|| ||G|| ||G^T \Gamma|^{-1} < \infty$ for all Γ in a neighborhood of Γ^* . Then,

$$
\widehat{\gamma} = \arg\min_{\gamma} E_n \left(\log |G^{\mathrm{T}}\widehat{\Gamma}| - B_{1}^{\mathrm{T}}\gamma \right)^2.
$$

Differentiating and setting to zero yields $\frac{90}{90}$

$$
\widehat{\gamma} = \left(E_n B_1 B_1^{\mathrm{T}} \right)^{-1} E_n B_1 \log |G^{\mathrm{T}} \widehat{\Gamma}|.
$$

Add and subtract γ^* to the above equality and scale by $n^{1/2}$ to obtain

$$
n^{1/2}(\hat{\gamma} - \gamma^*) = (E_n B_1 B_1^{\mathrm{T}})^{-1} n^{1/2} E_n B_1 (\log |G^{\mathrm{T}}\hat{\gamma}| - B_1^{\mathrm{T}}\gamma^*) .
$$

After some algebra, it can seen that $n^{1/2}(\hat{\gamma} - \gamma^*)$ is equal to

$$
(E_n B_1 B_1^{\mathrm{T}})^{-1} n^{1/2} (E_n - E) B_1 (\log |G^{\mathrm{T}} \Gamma^*| - B_1^{\mathrm{T}} \gamma^*)
$$

+ $(E_n B_1 B_1^{\mathrm{T}})^{-1} n^{1/2} E_n B_1 (\log |G^{\mathrm{T}} \widehat{\Gamma}| - \log |G^{\mathrm{T}} \Gamma^*|).$ (2)

Fig. 1: Detecting quadratic relationships at stage one. From the left, the first two panels are scatterplots of Y against X_1 for $A_1 = 1$ and $A_1 = -1$, respectively; the true quadratic relationship is masked by the nonsmooth transformation of data. The third and forth panels contain scatterplots of the contrast $\Delta(H_2; \beta_2)$ against X_1 by treatment $A_1 = 1$ and $A_1 = -1$, respectively; the true quadratic relationship is clearly distinguishable. Red lines are cubic smoothing spline fits to the data.

Let $\tilde{\Gamma}$ be intermediate to Γ^* and $\tilde{\Gamma}$. Then, a Taylor series expansion applied to the second term of (2) shows $n^{1/2}(\hat{\gamma} - \gamma)$ is equal to

$$
100\\
$$

$$
(E_n B_1 B_1^{\mathrm{T}})^{-1} n^{1/2} (E_n - E) \left(\log |G^{\mathrm{T}} \Gamma^*| - B_1^{\mathrm{T}} \gamma^* \right) + \left(E_n B_1 B_1^{\mathrm{T}} \right)^{-1} E_n B_1 (G^{\mathrm{T}} \tilde{\Gamma})^{-1} G^{\mathrm{T}} n^{1/2} (\tilde{\Gamma} - \Gamma^*) = (E B_1 B_1^{\mathrm{T}})^{-1} n^{1/2} (E_n - E) \left[\log |G^{\mathrm{T}} \Gamma^*| - B_1^{\mathrm{T}} \gamma^* + E \left\{ B_1 (G^{\mathrm{T}} \Gamma^*)^{-1} G^{\mathrm{T}} \right\} s (H_1, A_1, H_2; \Gamma^*) \right] + op(1),
$$

which is asymptotically normal by the central limit theorem and Slutsky's theorem.

4. POWER TO DETECT A QUADRATIC EFFECT

¹⁰⁵ One strength of IQ-learning is that it enables practitioners to apply standard interactive model building techniques. We now consider a generative model with a univariate predictor X_1 and nonlinear relationship between X_1 and X_2 . The new generative model is

$$
X_1 \sim \text{Normal}(0, 1), \ A_t \sim \text{Uniform}\{-1, 1\}, \ t = 1, 2,
$$

$$
X_2 = X_1^2 + (1.5 - 0.5A_1)X_1 + \zeta_{A_1}\xi, \ \xi \sim \text{Normal}(0, 1),
$$

$$
\phi \sim \text{Normal}(0, 4), \ Y = H_{2,0}^T \beta_{2,0} + A_2 H_{2,1}^T \beta_{2,1} + \phi,
$$

where $H_{2,0} = H_{2,1} = (1, X_2, A_1, A_1X_2)^T$ and $\zeta_{A_1} = (1.5 + 0.5A_1)^{1/2}$. Thus, the true firststage Q-function depends on both X_1^2 and $A_1X_1^2$. As in the main paper, we fix $\beta_{2,0}$ and scale ¹¹⁰ $\beta_{2,1}$. We specify the second-stage as

$$
\beta_{2,0} = \frac{(3,-1.5,.4,-1)^{\mathrm{T}}}{|| (3,-1.5,.4,-1)^{\mathrm{T}} ||}, \ \beta_{2,1} = C \frac{(2,-1,.2,-.5)^{\mathrm{T}}}{|| (2,-1,.2,-.5)^{\mathrm{T}} ||},
$$

for $C \in (0, 2)$. Figure 1 illustrates how the quadratic effect of X_1 is masked by the absolute value operator in Q-learning. Alternatively, the quadratic relationship is clearly visible in the scatter plots of the contrast function $\Delta(H_2;\beta_2)$ against X_1 . The solid lines in Figure 1 are cubic smoothing splines fitted to the data using ordinary cross validation.

Fig. 2: Power to detect X_1^2 (left) and $A_1X_1^2$ (right). Blue lines with circles, orange dashed lines with squares, and black solid lines represent the normal IQ-learning estimator, nonparametric IQ-learning estimator, and Q-learning, respectively.

Figure 2 displays plots of the power to detect the quadratic effects X_1^2 and $A_1X_1^2$ as a function 115 of the second-stage effect size scaling constant C . The Q-learning curve represents the power to detect the quadratic terms in the regression of the pseudo outcome Y on the first-stage history and treatment. The two identical IQ-learning curves represent the power to detect the quadratic effects in the regression of the contrast function on the first-stage information, that is, the fit of the contrast function mean. Results are based on $n = 250$ training samples, and the power was 120 calculated by averaging over indicators from $M =1,000$ Monte Carlo data sets of whether the estimated coefficients of X_1^2 and $A_1 X_1^2$ were found to be significant by a t-test. When the treatment interaction effects are near zero, i.e., $C \approx 0$, Q-learning detects the nonlinear relationships because the pseudo outcome \tilde{Y} is dominated by the linear main-effect term $H_{2,0}^{T}\beta_{2,0}$, which is a function of both X_1^2 and $A_1X_1^2$. At first glance, IQ-learning appears to perform worse than Qlearning when the effect size is small. However, this is due to the fact that Figure 2 only displays results from the regression of the contrast function on first-stage information, and $C \approx 0$ implies $\Delta(H_2;\beta_2)\approx 0$. Results from the regression of the main-effect term $H_{2,0}^{T}\beta_{2,0}$ on first-stage information are not included in Figure 2.

The power of Q-learning to detect the quadratic terms decreases drastically as the second-stage 130 treatment effects increase because the absolute value from the maximization operator masks the true underlying structure. We note that the parameters that index the first-stage Q-function are nonregular, so the t-tests for significance are invalid. In comparison, the first-stage IQ-learning coefficients are asymptotically normal. Thus t-tests are approximately valid and they detect the quadratic relationships in the mean of the contrast function with increasing accuracy as the treat- ¹³⁵ ment effects grows larger.

In Figures 3 and 4, we provide results from the same model when all first-stage IQ- and Qlearning models include linear terms only and all first-stage IQ- and Q-learning models include a quadratic term, respectively. Although linear Q-learning outperforms both misspecified linear IQ-learning estimators in terms of integrated mean squared error, the average value of the non- ¹⁴⁰ parametric IQ-learning estimator is comparable with Q-learning. In addition, the correctly specified quadratic version of the nonparametric IQ-learning outperforms Q-learning with quadratic terms with respect to all four displayed measures of performance.

Fig. 3: Results for IQ-learning and Q-learning with linear first-stage model terms only. Blue lines with circles, orange dashed lines with squares, and black solid lines represent the normal IQ-learning estimator, nonparametric IQ-learning estimator, and Q-learning, respectively.

Fig. 4: Results for IQ-learning and Q-learning with quadratic terms included in all first-stage models. Blue lines with circles, orange dashed lines with squares, and black solid lines represent the normal IQ-learning estimator, nonparametric IQ-learning estimator, and Q-learning, respectively.

5. ADDITIONAL SIMULATION RESULTS

¹⁴⁵ Here we provide additional simulation results to demonstrate the robust performance of IQlearning across a broad range of model settings. As in the main portion of the paper, the generative model is

$$
X_1 \sim \text{Normal}_p\{0.1, \Omega_{AR_1}(0.5)\}, A_t \sim \text{Uniform}\{-1, 1\}, t = 1, 2,
$$

\n $X_2 = (1.5 - 0.5A_1)X_1 + \zeta_{A_1}\xi, Y = H_2^T\beta_{2,0} + A_2H_2^T\beta_{2,1} + \phi,$

where $\{\Omega_{AR_1}(0.5)\}_{i,j} = (0.5)^{|i-j|}$, $H_2 = (1, X_2^T, A_1, A_1 X_2^T)^T$, and $\zeta_{A_1} = (1.5 + 0.5A_1)^{1/2}$. Thus, the class is indexed by the dimension p, the distributions of ξ and ϕ , and the coefficient 150 vectors $\beta_{2,0}$ and $\beta_{2,1}$. We fix the main effect parameter $\beta_{2,0}$ and vary the second-stage treatment effect size by scaling $\beta_{2,1}$ as follows:

$$
\beta_{2,0} = \frac{1_{2p+2}}{||1_{2p+2}||}, \qquad \beta_{2,1} = C \frac{(-0.25 \cdot 1_{p+1}^T, 1_{p+1}^T)^T}{||(-0.25 \cdot 1_{p+1}^T, 1_{p+1}^T)||},
$$

where C ranges over a grid from 0 to 2, and 1_d denotes a d-dimensional vector of 1s. In addition, we fix the theoretical R^2 of the second-stage regression model by generating $\phi \sim$ Normal $\{0, \sigma^2_{\phi}(C)\}\$, where the variance $\sigma^2_{\phi}(C)$ depends on the scaling constant C. We consider training sets of size $n = 250$ and $n = 500$ and vary the second-stage $R^2 \in \{0.4, 0.6, 0.8\}$. Re-

Fig. 5: Histograms of the value estimates from each Monte Carlo iteration for, left to right, $C=0.05$, 1.0, 2.0. Results from Q-learning with linear models, Q-learning with Support Vector Regression, and NormHomo IQ-learning are shown in red, blue, and yellow, respectively.

Fig. 6: Measures of performance of the normal IQ-learning estimator, nonparametric IQ-learning estimator, Q-learning with linear models, and support vector regression Q-learning represented by blue lines with circles, orange dashed lines with squares, black solid lines, and maroon solid lines with triangles, respectively; elements of ξ generated independently from t_5 ; $R^2 = 0.6$; $p = 4$; $n = 250$. From left to right: average proportion of optimal value obtained; integrated mean squared error of Q_1 estimates; coverage of 95% confidence intervals for Q_1 ; width of 95% confidence intervals for Q_1 .

sults for $n = 250$ with $R^2 = 0.6$ are included in Section 3 of the paper. In this section, we provide results for the remaining combinations of n and R^2 . We include simulations with ξ generated from a Normal_p $(0, I_p)$ as well as where elements of ξ generated independently from a t-distribution with five degrees of freedom. We include results for dimension $p = 4$, followed by results for $p = 8$ when $R^2 = 0.6$. In each simulation, results are based on $M = 2,000$ Monte 160 Carlo data sets.

Figure 5 displays additional results regarding the value, $V^{\pi} = E^{\pi}Y$, of the estimated regimes from Section 3 of the main paper. Histograms of the value estimates from each Monte Carlo iteration from the normal IQ-learning estimator, Q-learning with linear models, and support vector regression Q-learning are displayed in Figure 5 for three values of the scaling constant, ¹⁶⁵ C. In general, the estimated value distribution of the IQ-learning estimated regime is shifted slightly higher than both of the Q-learning estimated value distributions. Results shown are for $C = 0.05, 1.0, 2.0$; results were similar across other values of C.

Figure 6 presents results when $R^2 = 0.6$, $p = 4$, $n = 250$, and elements of ξ generated independently from a *t*-distribution with five degrees of freedom.

Fig. 7: Measures of performance of the normal IQ-learning estimator, nonparametric IQ-learning estimator and Q-learning represented by blue lines with circles, orange dashed lines with squares, and black solid lines, respectively; $\xi \sim \text{Normal}_p(0, I_p)$; $R^2 = 0.4$; $p = 4$; $n = 250$. From left to right: ratio of average value, coded so values greater than one are favorable to IQ-learning; integrated mean squared error ratio of Q_1 estimates, coded so values greater than one are favorable to IQ-learning; coverage of 95% confidence intervals for Q_1 ; width of 95% confidence intervals for Q_1 .

Fig. 8: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from t_5 ; $R^2 = 0.4$; $p = 4$; $n = 250$.

Define $H_1 = (1, X_1^T)^T$. As in Section 3, we consider linear working models for the mean and variance functions of the form

$$
Q_2(h_2, a_2; \beta_2) = h_2^{\mathsf{T}} \beta_{2,0} + a_2 h_2^{\mathsf{T}} \beta_{2,1}, \ Q_1(h_1, a_1; \beta_1) = h_1^{\mathsf{T}} \beta_{1,0} + a_1 h_1^{\mathsf{T}} \beta_{1,1},
$$

\n
$$
L(h_1, a_1; \alpha) = h_1^{\mathsf{T}} \alpha_0 + a_1 h_1^{\mathsf{T}} \alpha_1, \ m(h_1, a_1; \theta) = h_1^{\mathsf{T}} \theta_0 + a_1 h_1^{\mathsf{T}} \theta_1,
$$

\n
$$
\log{\{\sigma(h_1, a_1; \gamma)\}} = h_1^{\mathsf{T}} \gamma_0 + a_1 h_1^{\mathsf{T}} \gamma_1.
$$

In Section 3, we considered two IQ-learning estimators: the normal estimator $\hat{g}_{h_1, a_1}^N(\cdot)$ of the residual distribution and a restricted variance model, $\log \{ \sigma(h_1, a_1; \alpha)\} = \alpha_0 + a_1 \alpha_1$ that de residual distribution and a restricted variance model, $\log{\{\sigma(h_1, a_1; \gamma)\}} = \gamma_0 + a_1\gamma_1$, that depends only on treatment; and the nonparametric estimator $\hat{g}_{h_1, a_1}^E(\cdot)$ of the residual distribution
with a log linear variance model that depends on by and g_k . When ξ as Normal $(0, I)$ both with a log-linear variance model that depends on h_1 and a_1 . When $\xi \sim \text{Normal}_p(0, I_p)$, both these estimators are correctly specified. When the elements of ξ are generated independently from t_5 , only the nonparametric estimator is correctly specified.

Figures 7 - 20 display the results. For all settings, the integrated mean squared error ratio of ¹⁸⁰ Q-learning to IQ-learning is greater than one, indicating that the IQ-learning estimators more accurately estimate the first-stage Q-funciton. Increasing the sample size to $n = 500$ and specifying higher $R²$ values leads to the greatest gains in integrated mean squared error of IQ-learning compared to Q-learning. In general, coverage of 95% confidence intervals for Q_1 and average value ratios seem consistent across all settings of the parameters. In particular, the IQ-learning

Fig. 9: Measures of performance of Q-learning vs. IQ-learning; $\xi \sim \text{Normal}_p(0, I_p)$; $R^2 = 0.8$; $p = 4; n = 250.$

Fig. 10: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from t_5 ; $R^2 = 0.8$; $p = 4$; $n = 250$.

Fig. 11: Measures of performance of Q-learning vs. IQ-learning; $\xi \sim \text{Normal}_p(0, I_p)$; $R^2 = 0.4$; $p = 4$; $n = 500$.

Fig. 12: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from t_5 ; $R^2 = 0.4$; $p = 4$; $n = 500$.

Fig. 13: Measures of performance of Q-learning vs. IQ-learning; $\xi \sim \text{Normal}_p(0, I_p)$; $R^2 = 0.6; p = 4; n = 500.$

Fig. 14: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from t_5 ; $R^2 = 0.6$; $p = 4$; $n = 500$.

Fig. 15: Measures of performance of Q-learning vs. IQ-learning; $\xi \sim \text{Normal}_p(0, I_p)$; $R^2 = 0.8; p = 4; n = 500.$

Fig. 16: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from t_5 ; $R^2 = 0.8$; $p = 4$; $n = 500$.

Fig. 17: Measures of performance of Q-learning vs. IQ-learning; $\xi \sim \text{Normal}_p(0, I_p)$; $R^2 = 0.6; p = 8; n = 250.$

Fig. 18: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from t_5 ; $R^2 = 0.6$; $p = 8$; $n = 250$.

Fig. 19: Measures of performance of Q-learning vs. IQ-learning; $\xi \sim \text{Normal}_p(0, I_p)$; $R^2 = 0.6$; $p = 8$; $n = 500$.

Fig. 20: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from t_5 ; $R^2 = 0.6$; $p = 8$; $n = 500$.

Fig. 21: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated independently from Lognormal(0, 1);

Fig. 22: Measures of performance of Q-learning vs. IQ-learning; components of ξ are independent draws from a mixture of Normal $(4, 1)$ and Normal $(0, 1)$, each with probability 0.5.

185 estimators obtain close to the 95% nominal coverage level in all settings across values of C , while Q-learning suffers from poor coverage, especially for high R^2 values and large effect sizes.

Results in Figures 21 and 22 arise from generative models where only the nonparametric IQ-learning estimator is correctly specified. In these settings, we vary the distribution ξ and substitute ζ_{X_1,A_1} for ζ_{A_1} . That is, we specify a variance model that depends on both the first-190 stage treatment and first-stage covariates according to the relationship $\zeta_{X_1,A_1} = \exp[\log(2)/4 + \frac{1}{2}$ $.25_{p-1}^{T}X_1 + A_1\{\log(2)/4 + .1_{p-1}^{T}X_1\}$. Results are based on $n = 250$ training samples, $M =$ 1,000 Monte Carlo data sets, and dimension $p = 4$. The second-stage R^2 is not fixed. Figure 21 presents results from the case where the components of ξ are generated independently from a Lognormal(0,1) distribution. Figure 22 results arise when elements of ξ are drawn independently 195 from a mixture of the Normal $(4,1)$ and Normal $(0,1)$ distributions. The nonparametric IQ-learning estimator clearly outperforms the normal estimator in Figures 21 and 22, whereas their perfor-

mance is nearly indistinguishable when both are correctly specified.

In Figure 21, we see that both IQ-learning estimators improve integrated mean squared error over Q-learning, with the nonparametric IQ-learning estimator achieving greater gains in perfor-²⁰⁰ mance. In addition, the coverage plot in Figure 21 shows that the IQ-learning estimators fall short of the nominal 95% level, even though the widths of these confidence intervals are much larger than those observed in the correctly specified simulations. Coverage is still improved when compared to Q-learning. The nonparametric IQ-learning estimator achieves the highest coverage at nearly 90% for most values of C . The ratio of average value is near one for both IQ-learning es-²⁰⁵ timators, indicating little difference in the mean of the final response when treating according to

IQ-learning or Q-learning estimated regimes. The results in Figure 22 are similar to those in Fig-

Fig. 23: Blue dashed and solid lines represent the true first-stage Q-function evaluated at $A_1 = 1$ and $A_1 = -1$, respectively, i.e., $\tilde{Q}_1(X_1, a_1) = Q_1(X_1, a_1)$. Orange dashed and solid lines represent estimated first-stage Q-function, i.e., $\tilde{Q}_1(X_1, a_1) = \hat{Q}_1(X_1, a_1)$, evaluated at $A_1 = 1$ and $A_1 = -1$, respectively, using Q-learning with linear models.

ure 21. The nonparametric IQ-learning estimator produced the lowest integrated mean squared error, however, this did not translate into any improvement in average value over the average value of Q-learning. The normal IQ-learning estimator displayed the poorest coverage in this case, but the nonparametric IQ-learning estimator came close to achieving the nominal level for ²¹⁰ all values of C.

6. REMARK ON FIGURE 3

The plot in the left frame of Figure 3 in Section 3 of the main paper gives a range of X_1 values and second-stage treatment effect sizes for which Q-learning with linear models does and does not agree with the true first-stage Q-function. Figure 23 is a plot of the true and Q- 215 learning estimated first-stage Q-functions for the same range of X_1 values and for a single effect size, $C = 1$, where C is a constant that determines the effect size, defined in Section 3 of the main paper. The example in Figure 23 illustrates why the pattern of Figure 3 in the main paper is strange. Because higher values of the first-stage Q-function are desired, the true Q-function indicates patients presenting with X_1 below -3 and above -1.5 should be treated with $A_1 = -1$ 220 and otherwise given $A_1 = 1$. However, the estimated first-stage Q-function using linear models cannot capture the non-linearity in $Q_1(X_1, a_1)$ and thus treats all patients presenting with X_1

below -3 with $A_1 = 1$, contrary to the true optimal treatment. In addition, the estimated Qfunction treats patients presenting with X_1 between approximately -3 and -1.5 with $A_1 =$

225 1, contrary to the true optimal rule that treats these patients with $A_1 = -1$. Varying C results in different degrees of non-linearity in the true first-stage Q-function, resulting in the pattern observed in Figure 3 of Section 3 in the main paper.

7. WEB SUPPLEMENT F: APPLICATION TO STAR*D

Table 1: *Variables comprising patient trajectories in the STAR*D data analysis.*

IQ-Learning 15

Table 2: *Number of patients per treatment strategy by responder status.*

REFERENCES

Carroll, R. J. and Ruppert, D. (1988). *Transformation and Weighting in Regression*. New York: Chapman and Hall. ²³⁰ Kosorok, M. R. (2008). *Introduction to Empirical Processes and Semiparametric Inference*. New York: Springer.

[*Received April* 2012. *Revised September* 2012]