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1. INCONSISTENCY OF Q-LEARNING

The closed-form expression in (10) of the main paper facilitates study of nonlinearity in-
troduced by the nonsmooth maximization operator and resulting inconsistency of Q-learning.
To this end, suppose Q2(h2, a2) = hT

2,0β
∗
2,0 + a2h

T
2,1β

∗
2,1 so that the second-stage Q-function is 10

correctly specified, and thus maxa2∈{−1,1}Q2(H2, a2) = HT
2,0β

∗
2,0 + |HT

2,1β
∗
2,1|. Consider the

coefficient indexing the best-fitting linear model to the first-stage Q-function,
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1,0, A1H
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T and Σ1 =

EB1B
T
1. If µ(H2) = BT

1γ + ρ where ρ is a mean zero random variable which is independent of
patient histories and outcomes, then β∗1 = γ + Σ−11 EB1|HT
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it follows that bT
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which can be reexpressed as E
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is a remainder term that shows how far the optimal linear approximation is from the
truth,E

(
|HT

2,1β
∗
2,1| | H1 = h1, A1 = a1

)
= E {|∆(H2)| | H1 = h1, A1 = a1}. The remainder

is identically zero if η = 0 and σ = 0, the case of no second-stage treatment effect with prob- 25

ability one, i.e., pr(HT
2,1β

∗
2,1 = 0) = 1. The remainder is close to zero when the distribution of

BT
1η/σ is concentrated sufficiently far from zero and bT

1η/σ is also far from zero. The remainder
term is largest for small to moderate values of BT

1η/σ. This is relevant, as in many applications
we do not expect large signal-to-noise ratios. Thus, even under simple generative models like the
one described above, the Q-learning algorithm with its linear approximations need not be even 30

approximately consistent.
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2. PROOFS OF ASYMPTOTIC RESULTS

Let l∞(F) denote the space of uniformly bounded real-valued functions on F equipped
with the supremum norm. Write Zn = n1/2 (∆L, ∆m, ∆σ)T. Then by (A1N), Zn converges
in distribution to N {0, ΣN (h1, a1)}. Similarly, define Wn = n1/2

(
∆L, ∆θ, ∆γ, ∆β, ∆ξ

)
.35

Then by (A1E), Wn converges in distribution to N {0,ΣE(h1, a1)}. For convenience we ab-
breviate m(h1, a1; θ), σ(h1, a1; γ), L(h1, a1;α), and ξ(H2, H1, A1; θ, γ, β2) as m, σ, L, and
ξ, respectively. Similarly, we write m̂, σ̂, L̂, and ξ̂ as shorthand for m(h1, a1; θ̂), σ(h1, a1; γ̂),
L(h1, a1; α̂), and ξ(H2, H1, A1; θ̂, γ̂, β̂2), and we write m∗, σ∗, L∗, and ξ∗ as shorthand for
m(h1, a1; θ

∗), σ(h1, a1; γ
∗), L(h1, a1;α

∗), and ξ(H2, H1, A1; θ
∗, γ∗, β∗2).40

Proof of Theorem 1, Part 1. Notice that

n1/2
{
Q̂IQ,N

1 (h1, a1)− L(h1, a1;α
∗)− 1

σ∗

∫
|z|φ

(
z −m∗

σ∗

)
dz

}
= n1/2

{
I(L̂, m̂, σ̂)− I(L∗,m∗, σ∗)

}
,

where I(·) is as defined immediately preceding Theorem 1 in the main paper. Inspection reveals45

that ∇I(L,m, σ) exists and is continuous in a neighborhood of (L∗,m∗, σ∗). Hence, by a first-
order Taylor series approximation, the right hand side above is equal to

n1/2
{
I(L̂, m̂, σ̂)− I(L∗,m∗, σ∗)

}
= ∇I(L∗,m∗, σ∗)TZn + oP (1).

The result follows from Slutsky’s lemma. �

Remark 1. It is possible to extend the above proof to obtain bootstrap consistency. Let E(b)

denote the bootstrap empirical distribution. We use u(b) to denote the bootstrap analog of func-50

tional u, e.g., u = u(En, E) then u(b) = u(E
(b)
n , En). If, in addition to the conditions for The-

orem 1, Z(b)
n converges weakly in probability to N {0,ΣN (h1, a1)}, then the above proof goes

through using exactly the same arguments after changing I(L̂, m̂, σ̂) to I(L̂(b), m̂(b), σ̂(b)) and
I(L∗,m∗, σ∗) to I(L̂, m̂, σ̂) (see Kosorok, 2008 for bootstrap continuous mapping theorems and
bootstrap central limit theorems).55

Proof of Theorem 1, Part 2. The proof proceeds by showing that

n1/2
{
Q̂IQ,E

1 (h1, a1)− L(h1, a1;α
∗)− 1

σ∗

∫
|z|κ

(
z −m∗

σ∗

)
dz

}
= {1,∇J(θ∗, γ∗, β∗2)

T, 1}Wn + oP (1). (1)

The term on the left hand side of the above display equals60

n1/2En|m̂+ σ̂ξ̂| − n1/2E|m∗ + σ∗ξ∗|+Wn,1.

The first two terms in the above display are equal to

n1/2(En − E)|m̂+ σ̂ξ̂|+ n1/2E
(
|m̂+ σ̂ξ̂| − |m∗ + σ∗ξ∗|

)
.

From (A2), it follows that n1/2(En − E) converges weakly to G∞ in l∞(F), where G∞
is a mean zero Gaussian process with covariance function Cov{G∞(f), G∞(g)} = E(f −
Ef)(g − Eg) (see, for example, Kosorok, 2008). Note that by the second part of (A2), the
foregoing covariance function is continuous in a neighborhood of (θ∗, γ∗, β∗2). Thus, using65
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the equicontinuity of n1/2(En − E), it follows that n1/2(En − E)|m̂+ σ̂ξ̂| = Wn,5 + oP ∗(1),
where P ∗ denotes outer probability. So far, we have shown that the right hand side of (1) is
equal to n1/2

{
E(|m̂+ σ̂ξ̂| − |m∗ + σ∗ξ∗|)

}
+Wn,1 +Wn,5 + oP ∗(1). From (A2), J is con-

tinuously differentiable in a neighborhood of (θ∗, γ∗, β∗2). Using a first-order Taylor series ap-
proximation, we have 70

n1/2E(|m̂+ σ̂ξ̂| − |m∗ + σ∗ξ∗|) = ∇J(θ∗, γ∗, β∗2)
T(Wn,2,Wn,3,Wn,4) + oP (1).

Thus, we have shown that the right hand side of (1) equals {1,∇J(θ∗, γ∗, β∗2)
T, 1}Wn + oP ∗(1).

The result follows from Slutsky’s Lemma (Kosorok, 2008). �

Remark 2. It is possible under mild conditions to extend the above proof to obtain bootstrap
consistency, e.g., that W (b) converges weakly in probability to N {0,ΣE(h1, a1)}. Note, for
example, that the bootstrap empirical process n1/2(E(b)

n − En) converges weakly in probability 75

to G∞ in l∞(F) by (A2) and Theorem 2.6 in Kosorok (2008).

3. OBTAINING ASYMPTOTIC NORMALITY OF IQ-LEARNING PARAMETERS

Here we provide a sketch of how one obtains asymptotic normality of the parameters
used in IQ-learning. For a more complete discussion of conditional variance estimators
and proofs of asymptotic normality under more general conditions see Carroll and Rup- 80

pert (1988). For illustration we use the working models from the simulated experiments
in the main body. We demonstrate using γ̂ as this is the most involved; other estima-
tors would be handled similarly. We assume linear models for ∆(H2) and m(H1, A1) so
that ∆(H2;β2) = HT

2,1β2,1 and m(H1, A1; θ) = HT
1,0θ1,0 +A1H

T
1,1θ1,1. We assume a log-

linear model for σ(H1, A1) so that log σ(H1, A1; γ) = HT
1,0γ1,0 +A1H

T
1,1γ1,1. Define G = 85

(HT
2,1,−H1,0,−A1H

T
1,1)

T, Γ̂ = (β̂T
2,1, θ̂

T)T, and Γ∗ = (β∗T2,1, θ
∗T)T. We assume that n1/2(Γ̂−

Γ∗) = n1/2(En − E)s(H2, H1, A1; Γ∗) + oP (1) for square integrable score function s. Define
B1 = (HT

1,0, A1H
T
1,1)

T. We also assume that E||B1|| ||G|| |GTΓ|−1 <∞ for all Γ in a neighbor-
hood of Γ∗. Then,

γ̂ = arg min
γ
En

(
log |GTΓ̂| −BT

1γ
)2
.

Differentiating and setting to zero yields 90

γ̂ =
(
EnB1B

T
1

)−1
EnB1 log |GTΓ̂|.

Add and subtract γ∗ to the above equality and scale by n1/2 to obtain

n1/2(γ̂ − γ∗) =
(
EnB1B

T
1

)−1
n1/2EnB1

(
log |GTγ̂| −BT

1γ
∗) .

After some algebra, it can seen that n1/2(γ̂ − γ∗) is equal to(
EnB1B

T
1

)−1
n1/2(En − E)B1

(
log |GTΓ∗| −BT

1γ
∗)

+
(
EnB1B

T
1

)−1
n1/2EnB1

(
log |GTΓ̂| − log |GTΓ∗|

)
. (2) 95
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Fig. 1: Detecting quadratic relationships at stage one. From the left, the first two panels are
scatterplots of Ỹ against X1 for A1 = 1 and A1 = −1, respectively; the true quadratic

relationship is masked by the nonsmooth transformation of data. The third and forth panels
contain scatterplots of the contrast ∆(H2;β2) against X1 by treatment A1 = 1 and A1 = −1,

respectively; the true quadratic relationship is clearly distinguishable. Red lines are cubic
smoothing spline fits to the data.

Let Γ̃ be intermediate to Γ∗ and Γ̂. Then, a Taylor series expansion applied to the second term of
(2) shows n1/2(γ̂ − γ) is equal to(

EnB1B
T
1

)−1
n1/2(En − E)

(
log |GTΓ∗| −BT

1γ
∗)

+
(
EnB1B

T
1

)−1
EnB1(G

TΓ̃)−1GTn1/2(Γ̂− Γ∗)100

=
(
EB1B

T
1

)−1
n1/2(En − E)

[
log |GTΓ∗| −BT

1γ
∗ + E

{
B1(G

TΓ∗)−1GT
}
s(H1, A1, H2; Γ∗)

]
+ oP (1),

which is asymptotically normal by the central limit theorem and Slutsky’s theorem.

4. POWER TO DETECT A QUADRATIC EFFECT

One strength of IQ-learning is that it enables practitioners to apply standard interactive model105

building techniques. We now consider a generative model with a univariate predictor X1 and
nonlinear relationship between X1 and X2. The new generative model is

X1 ∼ Normal(.1, 1), At ∼ Uniform{−1, 1}, t = 1, 2,

X2 = X2
1 + (1.5− 0.5A1)X1 + ζA1ξ, ξ ∼ Normal(0, 1),

φ ∼ Normal(0, 4), Y = HT
2,0β2,0 +A2H

T
2,1β2,1 + φ,

where H2,0 = H2,1 = (1, X2, A1, A1X2)
T and ζA1 = (1.5 + 0.5A1)

1/2. Thus, the true first-
stage Q-function depends on both X2

1 and A1X
2
1 . As in the main paper, we fix β2,0 and scale

β2,1. We specify the second-stage as110

β2,0 =
(3,−1.5, .4,−1)T

||(3,−1.5, .4,−1)T||
, β2,1 = C

(2,−1, .2,−.5)T

||(2,−1, .2,−.5)T||
,

for C ∈ (0, 2). Figure 1 illustrates how the quadratic effect of X1 is masked by the absolute
value operator in Q-learning. Alternatively, the quadratic relationship is clearly visible in the
scatter plots of the contrast function ∆(H2;β2) against X1. The solid lines in Figure 1 are cubic
smoothing splines fitted to the data using ordinary cross validation.
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Fig. 2: Power to detect X2
1 (left) and A1X

2
1 (right). Blue lines with circles, orange dashed lines

with squares, and black solid lines represent the normal IQ-learning estimator, nonparametric
IQ-learning estimator, and Q-learning, respectively.

Figure 2 displays plots of the power to detect the quadratic effectsX2
1 andA1X

2
1 as a function 115

of the second-stage effect size scaling constant C. The Q-learning curve represents the power to
detect the quadratic terms in the regression of the pseudo outcome Ỹ on the first-stage history
and treatment. The two identical IQ-learning curves represent the power to detect the quadratic
effects in the regression of the contrast function on the first-stage information, that is, the fit of
the contrast function mean. Results are based on n = 250 training samples, and the power was 120

calculated by averaging over indicators from M =1,000 Monte Carlo data sets of whether the
estimated coefficients of X2

1 and A1X
2
1 were found to be significant by a t-test. When the treat-

ment interaction effects are near zero, i.e., C ≈ 0, Q-learning detects the nonlinear relationships
because the pseudo outcome Ỹ is dominated by the linear main-effect term HT

2,0β2,0, which is
a function of both X2

1 and A1X
2
1 . At first glance, IQ-learning appears to perform worse than Q- 125

learning when the effect size is small. However, this is due to the fact that Figure 2 only displays
results from the regression of the contrast function on first-stage information, and C ≈ 0 im-
plies ∆(H2;β2) ≈ 0. Results from the regression of the main-effect term HT

2,0β2,0 on first-stage
information are not included in Figure 2.

The power of Q-learning to detect the quadratic terms decreases drastically as the second-stage 130

treatment effects increase because the absolute value from the maximization operator masks the
true underlying structure. We note that the parameters that index the first-stage Q-function are
nonregular, so the t-tests for significance are invalid. In comparison, the first-stage IQ-learning
coefficients are asymptotically normal. Thus t-tests are approximately valid and they detect the
quadratic relationships in the mean of the contrast function with increasing accuracy as the treat- 135

ment effects grows larger.
In Figures 3 and 4, we provide results from the same model when all first-stage IQ- and Q-

learning models include linear terms only and all first-stage IQ- and Q-learning models include
a quadratic term, respectively. Although linear Q-learning outperforms both misspecified linear
IQ-learning estimators in terms of integrated mean squared error, the average value of the non- 140

parametric IQ-learning estimator is comparable with Q-learning. In addition, the correctly spec-
ified quadratic version of the nonparametric IQ-learning outperforms Q-learning with quadratic
terms with respect to all four displayed measures of performance.
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Fig. 3: Results for IQ-learning and Q-learning with linear first-stage model terms only. Blue
lines with circles, orange dashed lines with squares, and black solid lines represent the normal

IQ-learning estimator, nonparametric IQ-learning estimator, and Q-learning, respectively.
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Fig. 4: Results for IQ-learning and Q-learning with quadratic terms included in all first-stage

models. Blue lines with circles, orange dashed lines with squares, and black solid lines
represent the normal IQ-learning estimator, nonparametric IQ-learning estimator, and

Q-learning, respectively.

5. ADDITIONAL SIMULATION RESULTS

Here we provide additional simulation results to demonstrate the robust performance of IQ-145

learning across a broad range of model settings. As in the main portion of the paper, the genera-
tive model is

X1 ∼ Normalp{0.1,ΩAR1(0.5)}, At ∼ Uniform{−1, 1}, t = 1, 2,

X2 = (1.5− 0.5A1)X1 + ζA1ξ, Y = HT
2β2,0 +A2H

T
2β2,1 + φ,

where {ΩAR1(0.5)}i,j = (0.5)|i−j|, H2 = (1, XT
2, A1, A1X

T
2)

T, and ζA1 = (1.5 + 0.5A1)
1/2.

Thus, the class is indexed by the dimension p, the distributions of ξ and φ, and the coefficient
vectors β2,0 and β2,1. We fix the main effect parameter β2,0 and vary the second-stage treatment150

effect size by scaling β2,1 as follows:

β2,0 =
12p+2

||12p+2||
, β2,1 = C

(−0.25 · 1T
p+1, 1

T
p+1)

T

||(−0.25 · 1T
p+1, 1

T
p+1)||

,

where C ranges over a grid from 0 to 2, and 1d denotes a d-dimensional vector of 1s. In
addition, we fix the theoretical R2 of the second-stage regression model by generating φ ∼
Normal{0, σ2φ(C)}, where the variance σ2φ(C) depends on the scaling constant C. We consider
training sets of size n = 250 and n = 500 and vary the second-stage R2 ∈ {0.4, 0.6, 0.8}. Re-155
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Fig. 5: Histograms of the value estimates from each Monte Carlo iteration for, left to right,
C=0.05, 1.0, 2.0. Results from Q-learning with linear models, Q-learning with Support Vector

Regression, and NormHomo IQ-learning are shown in red, blue, and yellow, respectively.
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Fig. 6: Measures of performance of the normal IQ-learning estimator, nonparametric

IQ-learning estimator, Q-learning with linear models, and support vector regression Q-learning
represented by blue lines with circles, orange dashed lines with squares, black solid lines, and
maroon solid lines with triangles, respectively; elements of ξ generated independently from t5;
R2 = 0.6; p = 4; n = 250. From left to right: average proportion of optimal value obtained;

integrated mean squared error of Q1 estimates; coverage of 95% confidence intervals for Q1;
width of 95% confidence intervals for Q1.

sults for n = 250 with R2 = 0.6 are included in Section 3 of the paper. In this section, we
provide results for the remaining combinations of n and R2. We include simulations with ξ gen-
erated from a Normalp(0, Ip) as well as where elements of ξ generated independently from a
t-distribution with five degrees of freedom. We include results for dimension p = 4, followed by
results for p = 8 when R2 = 0.6. In each simulation, results are based on M = 2, 000 Monte 160

Carlo data sets.
Figure 5 displays additional results regarding the value, V π = EπY , of the estimated regimes

from Section 3 of the main paper. Histograms of the value estimates from each Monte Carlo
iteration from the normal IQ-learning estimator, Q-learning with linear models, and support
vector regression Q-learning are displayed in Figure 5 for three values of the scaling constant, 165

C. In general, the estimated value distribution of the IQ-learning estimated regime is shifted
slightly higher than both of the Q-learning estimated value distributions. Results shown are for
C = 0.05, 1.0, 2.0; results were similar across other values of C.

Figure 6 presents results when R2 = 0.6, p = 4, n = 250, and elements of ξ generated inde-
pendently from a t-distribution with five degrees of freedom. 170
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Fig. 7: Measures of performance of the normal IQ-learning estimator, nonparametric
IQ-learning estimator and Q-learning represented by blue lines with circles, orange dashed lines

with squares, and black solid lines, respectively; ξ ∼ Normalp(0, Ip); R2 = 0.4; p = 4;
n = 250. From left to right: ratio of average value, coded so values greater than one are

favorable to IQ-learning; integrated mean squared error ratio of Q1 estimates, coded so values
greater than one are favorable to IQ-learning; coverage of 95% confidence intervals for Q1;

width of 95% confidence intervals for Q1.
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Fig. 8: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from t5; R2 = 0.4; p = 4; n = 250.

Define H1 = (1, XT
1)

T. As in Section 3, we consider linear working models for the mean and
variance functions of the form

Q2(h2, a2;β2) = hT
2β2,0 + a2h

T
2β2,1, Q1(h1, a1;β1) = hT

1β1,0 + a1h
T
1β1,1,

L(h1, a1;α) = hT
1α0 + a1h

T
1α1, m(h1, a1; θ) = hT

1θ0 + a1h
T
1θ1,

log{σ(h1, a1; γ)} = hT
1γ0 + a1h

T
1γ1.

In Section 3, we considered two IQ-learning estimators: the normal estimator ĝNh1,a1(·) of the
residual distribution and a restricted variance model, log{σ(h1, a1; γ)} = γ0 + a1γ1, that de-
pends only on treatment; and the nonparametric estimator ĝEh1,a1(·) of the residual distribution175

with a log-linear variance model that depends on h1 and a1. When ξ ∼ Normalp(0, Ip), both
these estimators are correctly specified. When the elements of ξ are generated independently
from t5, only the nonparametric estimator is correctly specified.

Figures 7 - 20 display the results. For all settings, the integrated mean squared error ratio of
Q-learning to IQ-learning is greater than one, indicating that the IQ-learning estimators more180

accurately estimate the first-stage Q-funciton. Increasing the sample size to n = 500 and speci-
fying higherR2 values leads to the greatest gains in integrated mean squared error of IQ-learning
compared to Q-learning. In general, coverage of 95% confidence intervals for Q1 and average
value ratios seem consistent across all settings of the parameters. In particular, the IQ-learning
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Fig. 9: Measures of performance of Q-learning vs. IQ-learning; ξ ∼ Normalp(0, Ip); R2 = 0.8;
p = 4; n = 250.
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Fig. 10: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from t5; R2 = 0.8; p = 4; n = 250.

0.0 0.5 1.0 1.5 2.00.
95

1.
05

1.
15

C

IQ
 A

vg
 V

al
ue

 / 
Q

 A
vg

 V
al

ue

0.0 0.5 1.0 1.5 2.0

1
2

3
4

5
6

C

Q
 IM

S
E

 / 
IQ

 IM
S

E

0.0 0.5 1.0 1.5 2.0

0.
6

0.
7

0.
8

0.
9

1.
0

C

C
ov
er
ag
e

0.0 0.5 1.0 1.5 2.0

1.
0

2.
0

3.
0

4.
0

C

W
id
th

Fig. 11: Measures of performance of Q-learning vs. IQ-learning; ξ ∼ Normalp(0, Ip);
R2 = 0.4; p = 4; n = 500.
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Fig. 12: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from t5; R2 = 0.4; p = 4; n = 500.
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Fig. 13: Measures of performance of Q-learning vs. IQ-learning; ξ ∼ Normalp(0, Ip);
R2 = 0.6; p = 4; n = 500.
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Fig. 14: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from t5; R2 = 0.6; p = 4; n = 500.
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Fig. 15: Measures of performance of Q-learning vs. IQ-learning; ξ ∼ Normalp(0, Ip);
R2 = 0.8; p = 4; n = 500.
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Fig. 16: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from t5; R2 = 0.8; p = 4; n = 500.
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Fig. 17: Measures of performance of Q-learning vs. IQ-learning; ξ ∼ Normalp(0, Ip);
R2 = 0.6; p = 8; n = 250.
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Fig. 18: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from t5; R2 = 0.6; p = 8; n = 250.
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Fig. 19: Measures of performance of Q-learning vs. IQ-learning; ξ ∼ Normalp(0, Ip);
R2 = 0.6; p = 8; n = 500.
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Fig. 20: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from t5; R2 = 0.6; p = 8; n = 500.
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Fig. 21: Measures of performance of Q-learning vs. IQ-learning; components of ξ generated
independently from Lognormal(0, 1);
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Fig. 22: Measures of performance of Q-learning vs. IQ-learning; components of ξ are
independent draws from a mixture of Normal(4, 1) and Normal(0, 1), each with probability

0.5.

estimators obtain close to the 95% nominal coverage level in all settings across values ofC, while185

Q-learning suffers from poor coverage, especially for high R2 values and large effect sizes.
Results in Figures 21 and 22 arise from generative models where only the nonparametric

IQ-learning estimator is correctly specified. In these settings, we vary the distribution ξ and
substitute ζX1,A1 for ζA1 . That is, we specify a variance model that depends on both the first-
stage treatment and first-stage covariates according to the relationship ζX1,A1 = exp[log(2)/4 +190

.25T
p−1X1 +A1{log(2)/4 + .1T

p−1X1}]. Results are based on n = 250 training samples, M =

1, 000 Monte Carlo data sets, and dimension p = 4. The second-stage R2 is not fixed. Figure
21 presents results from the case where the components of ξ are generated independently from a
Lognormal(0,1) distribution. Figure 22 results arise when elements of ξ are drawn independently
from a mixture of the Normal(4,1) and Normal(0,1) distributions. The nonparametric IQ-learning195

estimator clearly outperforms the normal estimator in Figures 21 and 22, whereas their perfor-
mance is nearly indistinguishable when both are correctly specified.

In Figure 21, we see that both IQ-learning estimators improve integrated mean squared error
over Q-learning, with the nonparametric IQ-learning estimator achieving greater gains in perfor-
mance. In addition, the coverage plot in Figure 21 shows that the IQ-learning estimators fall short200

of the nominal 95% level, even though the widths of these confidence intervals are much larger
than those observed in the correctly specified simulations. Coverage is still improved when com-
pared to Q-learning. The nonparametric IQ-learning estimator achieves the highest coverage at
nearly 90% for most values of C. The ratio of average value is near one for both IQ-learning es-
timators, indicating little difference in the mean of the final response when treating according to205

IQ-learning or Q-learning estimated regimes. The results in Figure 22 are similar to those in Fig-
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Fig. 23: Blue dashed and solid lines represent the true first-stage Q-function evaluated at
A1 = 1 and A1 = −1, respectively, i.e., Q̃1(X1, a1) = Q1(X1, a1). Orange dashed and solid
lines represent estimated first-stage Q-function, i.e., Q̃1(X1, a1) = Q̂1(X1, a1), evaluated at

A1 = 1 and A1 = −1, respectively, using Q-learning with linear models.

ure 21. The nonparametric IQ-learning estimator produced the lowest integrated mean squared
error, however, this did not translate into any improvement in average value over the average
value of Q-learning. The normal IQ-learning estimator displayed the poorest coverage in this
case, but the nonparametric IQ-learning estimator came close to achieving the nominal level for 210

all values of C.

6. REMARK ON FIGURE 3
The plot in the left frame of Figure 3 in Section 3 of the main paper gives a range of X1

values and second-stage treatment effect sizes for which Q-learning with linear models does
and does not agree with the true first-stage Q-function. Figure 23 is a plot of the true and Q- 215

learning estimated first-stage Q-functions for the same range of X1 values and for a single effect
size, C = 1, where C is a constant that determines the effect size, defined in Section 3 of the
main paper. The example in Figure 23 illustrates why the pattern of Figure 3 in the main paper
is strange. Because higher values of the first-stage Q-function are desired, the true Q-function
indicates patients presenting withX1 below−3 and above−1.5 should be treated withA1 = −1 220

and otherwise given A1 = 1. However, the estimated first-stage Q-function using linear models
cannot capture the non-linearity in Q1(X1, a1) and thus treats all patients presenting with X1
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below −3 with A1 = 1, contrary to the true optimal treatment. In addition, the estimated Q-
function treats patients presenting with X1 between approximately −3 and −1.5 with A1 =
1, contrary to the true optimal rule that treats these patients with A1 = −1. Varying C results225

in different degrees of non-linearity in the true first-stage Q-function, resulting in the pattern
observed in Figure 3 of Section 3 in the main paper.

7. WEB SUPPLEMENT F: APPLICATION TO STAR*D

Table 1: Variables comprising patient trajectories in the STAR*D data analysis.

Variable Description

X1,1 ∈ [0, 27] 27 minus the baseline patient depression score.
X1,2 ∈ R Pre-randomization slope of patient depression score, computed by taking the

difference between the measured depression score at study entry and the begin-
ning of the first randomized stage. This difference is then divided by the time
between study entry and first randomization. Negative values are associated
with symptom improvement.

A1 ∈ {−1, 1} Initial treatment, coded so that A1 = 1 corresponds to Selective Serotonin Re-
uptake Inhibitor and A1 = −1 otherwise.

Y1 ∈ [0, 27] 27 minus the patient depression score measured at the end of the first stage.
R ∈ {0, 1} First-stage responder indicator.R = 1 indicates remission in stage one and exit

from the study.
X2,1 ∈ [0, 27] 27 minus the patient depression score measured just prior to the second ran-

domization.
X2,2 ∈ R First-stage slope of patient depression score, computed as the difference be-

tween the patient depression scores measured at the beginning and end of the
first randomized stage. This difference is then divided by the time spent in the
first randomized stage. Negative values are associated with symptom improve-
ment.

A2 ∈ {−1, 1} Second stage treatment, coded so that A2 = 1 corresponds to Selective Sero-
tonin Reuptake Inhibitor and A2 = −1 otherwise.

Y2 ∈ [0, 27] Second-stage outcome, defined as 27 minus the end of second-stage patient
depression score.
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Table 2: Number of patients per treatment strategy by responder status.

Treatment Sequence Responders Non-responders

(SSRI, NA) 319 NA
(non-SSRI, NA) 147 NA

(SSRI, SSRI) NA 70
(SSRI, non-SSRI) NA 120
(non-SSRI, SSRI) NA 0

(non-SSRI, non-SSRI) NA 139

REFERENCES

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression. New York: Chapman and Hall. 230

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. New York: Springer.

[Received April 2012. Revised September 2012]


