Modulation of Gut Microbiota during Probiotics-Mediated Attenuation of Metabolic Syndrome in High Fat Diet-Fed Mice

1	
2	Jingjing Wang ^{1,2} , Huang Tang ² , Chenhong Zhang ² , Yufeng Zhao ¹ , Muriel Derrien ³ , Emilie Rocher ³ ,
3	Johan ET van-Hylckama Vlieg ³ , Katherine Strissel ⁴ , Liping Zhao ^{1,2} , Martin Obin ⁴ , Jian Shen ^{1*}
4	
5	Supplementary Information
6	
7	Summary
8	The supplementary information includes supplementary materials and methods,
9	eleven supplementary figures and four supplementary tables.

10

12 Supplementary Materials and Methods

13 Animal trial

14 **A. Mice**

15 Forty male SPF grade C57BL/6J mice at 10 weeks of age, with a weight between 22.5

to 26.5g, were purchased from National Rodent Laboratory Animal Resources. Mice

were kept under stable conditions with a 12-hour daylight cycle, a temperature of $22 \pm$

18 3 $^{\circ}$ C, and free access to water and food in accredited animal facilities of Shanghai

19 Laboratory Animal Center (SLAC).

20 All animal procedures and protocols were performed in accordance with

institutional guidelines of SLAC and with approval from the institutional animal care

and use committee of SLAC.

B. Bacteria suspension preparation

The three strains were cultured with MRS broth (OXOID, Basingstoke, UK) at 37 $^{\circ}$ C to reach early stationary phase. The cultures were centrifuged, and bacteria cells were resuspended with fresh MRS broth to 10⁸ colony-forming units (CFUs) / 200µl, stored at -80 $^{\circ}$ C and each aliquot was thawed 1 hour before it was administered to each mouse by gavage. The number of the bacterial cells was determined by plating the serial dilutions of the inoculum suspensions on MRS agar plates.

30 C. Sample collection

Animal treatments lasted for 12 weeks, during which the body weight of each mouse and food intake of every cage of mice (four mice per cage) were measured once a week. Stool samples were collected from each of the 40 mice (8 mice per group) at baseline and 12th week by keeping individual animals in a metabolic cage for 8 hours, and immediately stored at -80 °C for subsequent microbiota analysis. The feces at each time points was collected on two adjacent days, and stools of four mice from each group were collected on each day.

To monitor the fecal recovery of the strains, three mice were randomly selected in each group at 2nd, 6th and 11th week after the start of the probiotic administration, and fecal samples from these mice were collected, and stored at -80 °C for RNA extraction and subsequent quantification of the strain. 42 At the end of the 12th week, after 5 h of food deprivation, all blood was collected from the orbital plexus, and serum was isolated by centrifugation at 3000 rpm at $4 \, \text{C}$ 43 for 15 min and stored at -80 °C for subsequent biochemical testing. All animals were 44 sacrificed by cervical dislocation. eAT, liver and jejunum were excised. For liver, the 45 free end of the largest lobe was sampled in RNALater (Ambion, Austin, TX, USA), 46 and the fixed end in paraformaldehyde. The left depot of epididymal adipose tissue 47 was longitudinally cut into two halves, the middle part of the right half was sampled 48 49 in RNALater, and the left half in paraformaldehyde. For jejunum, 2 cm of intestine tissue 1.5 cm away from the stomach pylori was excised and kept in RNALater. These 50 samples were collected from each mouse. Cecal content was collected and snap 51 frozen in liquid nitrogen, and then stored at -80 % until analysis. 52

53 D. Quantification of the probiotic strains in feces

54 Total RNA was extracted from 20 mg fresh fecal sample by a modified acid

55 guanidinium thiocyanate-phenol-chloroform extraction method as described

previously (Matsuda et al., 2007) and submitted to reverse transcription (RT)-

57 quantitative (q) PCR.

58 RT-qPCR was performed using an OneStep RT-PCR kit (QIAGEN, Hilden,

59 Germany) according to manufacturer's instructions on a DNA Engine OPTICON2

60 continuous Fluorescence Detector (MJ research, Waltham, MA, USA). Primers are

61 listed in Supplementary Table S2. Data were collected and analyzed using MJ Opticon

62 Monitor Analysis Software accompanying the PCR machine.

63 E. Oral glucose tolerance test (OGTT)

After 5 h of food deprivation, glucose was administered orally to the mice at a dose of

65 2.0 g/kg body weight. Blood samples were taken from the tail before and 15, 30, 60,

and 120 min after glucose administration, and blood glucose levels were measured

67 with a blood glucose meter (Accu-Check; Roche Diagnostics, Mannheim, Germany).

68 The blood glucose level before glucose administration represented fasting glucose

69 level.

70

71 Histomorphology and immunohistochemistry

72 Digital images of hematoxylin and eosin-stained sections were acquired with an Olympus DX51 light microscope. Adipocyte size (cross-sectional area) was obtained 73 from perimeter tracings using Image J software (Sun Microsystems, Mountain View, 74 CA, USA). For each mouse, cell areas were determined in at least two histologic 75 sections cut 50 µm apart (>500 total adipocytes). Immunohistochemistry was 76 performed using VectaStain kits (Vector Labs, Burlingame, CA, USA). Primary 77 antibodies were rat anti-mouse Mac-2 (cat. # CL8942AP, Cedarlane Labs, Ontario, 78 79 Canada) and goat anti-mouse MMP-12 (Santa Cruz Labs, Santa Cruz, CA, USA). Isotype-matched nonimmune IgG or peptide-neutralized primary antibody served as 80 negative controls. All morphometric and immunohistochemistry studies were 81 performed by individuals who were 'blinded' to the sample treatments. 82

83

84 Quantification of host gene expression

Total RNA was extracted from about 100 mg eAT, 30 mg liver and 40 mg jejunum
using RNeasy[®] lipid tissue mini kit (QIAGEN, Hilden, Germany), according to the
manufacturer's instructions. RNA concentrations were measured using the NanoVue
spectrophotometer (GE Healthcare, Waukesha, WI, USA) and the integrity was
checked by denaturing agarose gel electrophoresis.

90 Contaminating DNA was removed using the DNase I (Invitrogen Life Technologies,

91 Carlsbad, CA, USA) digestion according to the manufacturer's instructions, and

92 DNA contamination was tested by PCR with primer targeting housekeeping gene

93 GAPDH. RNA concentrations were measured again. Complementary DNA (cDNA)

94 was generated from 500 ng of high-quality total RNA with SuperScriptTM III

95 First-Strand synthesis system (Invitrogen Life Technologies, Carlsbad, CA, USA).

96 Real-time quantitative PCR was performed with the $iQ^{TM} SYBR^{\otimes}$ Green Surpermix

- 97 (BIO-RAD, Hercules, CA, USA) on a DNA Engine OPTICON2 continuous
- 98 Fluorescence Detector (MJ research, Waltham, MA, USA). Data were collected and
- analyzed using MJ Opticon Monitor Analysis Software accompanying the PCR
- 100 machine. All mRNA quantification data were normalized to GAPDH. Gene
- 101 expression levels were expressed as values relative to the mouse group fed on normal

102 chow.

103

104 Bioinformatics and statistical analysis of 454 pyrosequencing data

High-quality reads for bioinformatics analysis were selected by processing the raw 105 data as following: 1) search the primers by using blast-based matching (Word size=4, 106 107 E-value=0.1), the primer at least at the sequencing end should exist; 2) locate the barcodes according to the position of the primers; reads should have at least one 108 109 complete barcode; reads without entire barcodes at both ends, or with complete but poor-matched barcode pairs (more than one insertion / deletion / mismatch) were 110 discarded; 3) according to the complete barcode (if the barcodes were complete at 111 112 both ends and they were mismatched, take the barcode at the sequencing end), assign the read to the corresponding sample; 4) after trimming the primer and barcode bases, 113 114 those sequences with variable region more than 100 nt and less than 300 nt in length 115 and no more than two undetermined bases were preserved.

All high-quality sequences were aligned by Nearest Alignment Space Termination 116 117 (NAST) multi-aligner with template length \ge 90 bases and percent identity \ge 75% in Greengenes database, and then clustered using CD-HIT with 100% similarity. The 118 most abundant sequence of each cluster was selected as the representative of unique 119 120 sequence, and then searched against the RDP database (RDP Classifier) at 50% confidence level to determine the phylogeny. The representative sequences were also 121 imported into the ARB to construct a neighbor-joining tree. OTUs were classified 122 with DOTUR at 98% similarity level. Rarefaction analysis and Shannon diversity 123 index were calculated using QIIME (Caporaso et al., 2010). Principal component 124 125 analysis (PCA) was performed on relative abundances (normalized for each sample) of OTUs, and weighted Fast UniFrac principal coordinate analysis (PCoA) was done 126 with the phylogenetic tree constructed by inserting the representative of each OTU 127 into pre-established phylogenetic trees of full-length 16S rRNA gene sequences in 128 129 ARB. The statistical significance of the separation among animal groups in PCoA 130 scores plots was assessed by multivariate analysis of variance (MANOVA) test with MATLAB R2010a (The MathWorks, Inc., Natick, MA, USA). The relative 131

abundance of each OTU was log-transformed, and used to construct RDA models to

133 find the OTUs that were different between two animal groups with Canoco for

134 Windows 4.5 (Microcomputer Power, Ithaca, NY, USA) according to the

manufacturer's instructions. Statistical significance was assessed by Monte Carlo

136 Permutation Procedure (MCPP) with 499 random permutations under the full model.

137

138 Cecal fermentation end products measurement

139 Two milliliters supernatant was prepared by reconstituting all cecal content of each

animal in 0.01M phosphate buffer solution (PBS) followed by centrifugation at 9000g

for 5 min at 4 $\,^{\circ}$ C. The supernatant was acidified with a 1/10 volume of 50% H₂SO₄

and extracted with ethyl ether. The concentrations of SCFAs and BCFAs were

determined in the organic phase using an Agilent 6890N gas chromatograph (Agilent

144 Technologies, Wilmington, DE, USA) equipped with a polar HP-FFAP capillary

145 column (0.25 mm \times 0.25 mm \times 30 m) and flame ionization detector (Agilent

146 Technologies, Wilmington, DE, USA). Helium was used as the carrier gas. The initial

147 oven temperature was $120 \,^{\circ}$ C, which was maintained for 16 min and then raised to

148 122 °C at 5 °C / min, increased to 250 °C at 30 °C / min, and held at this temperature for

149 3 min. The detector temperature was 270 $^{\circ}$ C, and the injector temperature was 260 $^{\circ}$ C.

150 Data handling was performed with an Agilent ChemStation (version G2070AA,

151 Agilent Technologies, Wilmington, DE, USA).

152

154 Supplementary Tables

•		
Ingredients	Normal chow diet (Research Diets D12450B)	High fat diet (Research Diets D12492)
	g / 10	0 g diet
Casein, 80 Mesh	18.96	25.85
L-Cystine	0.28	0.39
Corn Starch	29.86	0.00
Maltodextrin 10	3.32	16.15
Sucrose	33.18	8.89
Cellulose, BW200	4.74	6.46
Soybean Oil	2.37	3.23
Lard	1.90	31.66
Mineral Mix, S10026	0.95	1.29
DiCalcium Phosphate	1.23	1.68
Calcium Carbonate	0.52	0.71
Potassium Citrate,1 H2O	1.56	2.13
Vitamin Mix, V10001	0.95	1.29
Choline Bitartrate	0.19	0.26

Table S1 Compositions of experimental diets

Target	Sequences (5'-3')*	Product size (bp)	Annealing temperature (°C)	References
Bacterial 16S rRNA gene			• · · · ·	
V3 region	F: <u>NNNNNNNNCCTACGGGAGGCAGCAG</u> R: <u>NNNNNNN</u> ATTACCGCGGCTGCT	About 200	65-55 (touch down)	(Zhang <i>et al.</i> , 2010)
Lactobacillus paracasei (LC) / Lactobacillus rhamnosus (LR)	F : ACCGCATGGTTCTTGGC R: CCGACAACAGTTACTCTGCC	296	60	(Matsuda <i>et al.</i> , 2009)
Bifidobacterium animalis subp. lactis (BA)	F: CCCTTTCCACGGGTCCC R: AAGGGAAACCGTGTCTCCAC	194	65	(Matsumoto <i>e</i> <i>al.</i> , 2009)
Mouse genes				
GAPDH	F: GTGTTCCTACCCCCAATGTGT R: ATTGTCATACCAGGAAATGAGCTT	248	55	(Masui <i>et al.</i> , 2007)
CD11c	F: CTGGATAGCCTTTCTTCTGCTG R: GCACACTGTGTCCGAACTC	113	55	(Lumeng <i>et al.</i> , 2007)
TNFα	F : ACGGCATGGATCTCAAAGAC R: AGATAGCAAATCGGCTGACG	138	55	(Chiang <i>et al.</i> 2009)
MCP-1	F: TTAAAAACCTGGATCGGAACCAA R: GCATTAGCTTCAGATTTACGGGT	121	55	(Chiang <i>et al.</i> 2009)
adiponectin	F: AGGTTGGATGGCAGGC R: GTCTCACCCTTAGGACCAAGAA	129	55	(Shibata <i>et al.</i> 2007)
leptin	F: CCTGTGGCTTTGGTCCTATCTG R: AGGCAAGCTGGTGAGGATCTG	244	55	(Klaus <i>et al.</i> , 2005)

156 Table S2 List of primers used in this study

157 *The <u>NNNNNNN</u> was the unique 8-base barcode which was used to sort PCR products into different samples.

158 Table S3 The number of sequences lost during the bioinformatics analysis of the

159 **454** pyrosequencing run containing the 80 fecal samples of the present study^a

Sequencing defects	Number of sequences lost (percentage accounting to the total sequences of the run)
Sequences with unqualified primers ^b	3606 (0.57%)
Sequences with unqualified barcode ^c	127154 (20.26%)
Sequences with too short variable region (<90bp)	526 (0.08%)
Sequences with undetermined bases in variable	4 (0.0006%)
region (>2 bases)	
Total	131290 (20.93%)

160 ^a, Totally 148 samples were sequenced in this 454 run, and 627349 reads were obtained.

161 ^b, The primer for the 16S rRNA gene V3 region at the sequencing end could not be found in the sequences.

^c, In these sequences, complete barcode could not be found at neither ends, or barcodes at both ends was

163 poor-matched with more than one insertion / deletion / mismatch, or barcodes that did not exist in the barcode table

were found.

165Table S4 The phylogeny and relative abundance of the 83 OTUs altered by probiotics, and the p value of Mann-Whitney test evaluating

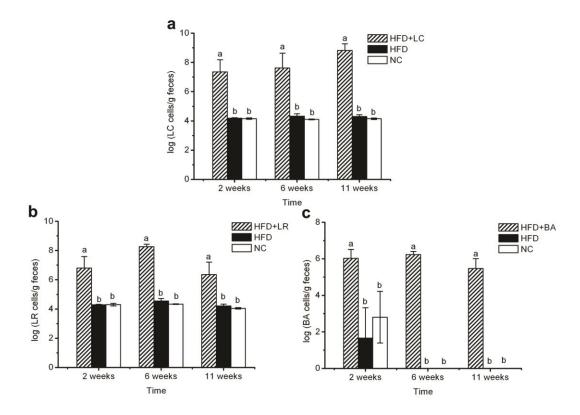
- 166 the abundance difference of these OTUs between each probiotic group and HFD group. In grey are underlined the significant p values
- 167 (**P** < **0.05**)

OTU ID		Taxonomical assignme		Relative abundance (%)					P values calculated by Mann-Whitney test				
		(RDP Classifier)		Media	n (minimum, maxir	num)							
	Phylum	Family	Genus	HFD+LC	HFD+LR	HFD+BA	HFD	NC	HFD+LC vs. HFD	HFD+LR vs. HFD	HFD+BA vs. HFD	NC vs. HFD	
OTU0379	Actinobacteria	Bifidobacteriaceae	Bifidobacterium	0.00 (0.00, 0.11)	0.00 (0.00, 0.00)	0.01 (0.00, 0.23)	0.00 (0.00, 0.00)	0.47 (0.00, 3.21)	1.0000	1.0000	0.0769	0.0014	
OTU0173	Actinobacteria	Coriobacteriaceae	Olsenella	0.01 (0.00, 0.51)	0.60 (0.41, 1.58)	0.26 (0.00, 0.50)	0.01 (0.00, 0.22)	0.47 (0.03, 1.86)	0.8629	0.0003	0.0258	0.0042	
OTU0109	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.74 (0.00, 1.33)	0.21 (0.03, 1.80)	0.41 (0.00, 1.75)	0.00 (0.00, 0.00)	1.04 (0.10, 2.78)	0.0014	0.0003	0.0014	0.0002	
OTU0002	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.05 (0.00, 0.18)	0.03 (0.00, 0.08)	0.01 (0.00, 0.11)	0.00 (0.00, 0.07)	0.11 (0.00, 0.93)	0.0373	0.4615	0.5301	0.0068	
OTU0054	Firmicutes	Erysipelotrichaceae	Allobaculum	1.23 (0.00, 3.76)	2.41 (1.36, 4.95)	1.30 (0.05, 2.47)	0.58 (0.00, 2.25)	6.96 (3.34, 19.13)	0.3807	0.0022	0.1304	0.0002	
OTU0073	Firmicutes	Erysipelotrichaceae	Allobaculum	0.19 (0.00, 0.45)	3.42 (1.00, 8.64)	0.71 (0.00, 4.01)	0.00 (0.00, 0.61)	2.72 (0.17, 6.78)	0.2668	0.0003	0.0200	0.0003	
OTU0059	Firmicutes	Erysipelotrichaceae	Allobaculum	0.00 (0.00, 0.37)	0.00 (0.00, 0.16)	0.00 (0.00, 0.05)	0.00 (0.00, 0.00)	1.43 (0.18, 4.89)	0.4667	0.1538	1.0000	0.0002	
OTU0455	Firmicutes	Ruminococcaceae		0.00 (0.00, 0.09)	0.00 (0.00, 0.15)	0.06 (0.00, 0.20)	0.00 (0.00, 0.09)	0.06 (0.00, 0.13)	0.8564	0.4615	0.0623	0.0145	
OTU0043	Firmicutes	Lachnospiraceae		0.35 (0.00, 0.58)	0.00 (0.00, 0.00)	0.00 (0.00, 0.10)	0.00 (0.00, 0.00)	0.05 (0.00, 0.37)	0.0014	1.0000	1.0000	0.0070	
OTU0306	Firmicutes	Lachnospiraceae		0.17 (0.00, 0.72)	0.21 (0.00, 0.84)	0.51 (0.00, 0.71)	0.00 (0.00, 0.03)	0.55 (0.05, 1.83)	0.0126	0.0028	0.0256	0.0002	
OTU0025	Bacteroidetes	Porphyromonadaceae	Barnesiella	2.63 (1.96, 3.70)	3.65 (1.01, 6.11)	1.71 (0.61, 3.20)	2.03 (0.96, 3.03)	0.63 (0.03, 1.17)	0.0499	0.0205	1.0000	0.0070	
OTU0190	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.02 (0.00, 0.14)	0.21 (0.03, 0.57)	0.04 (0.00, 0.27)	0.01 (0.00, 0.29)	0.00 (0.00, 0.00)	1.0000	0.0482	0.6291	0.0769	
OTU0132	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.29 (0.14, 1.79)	0.66 (0.11, 2.19)	0.63 (0.07, 1.35)	0.23 (0.11, 0.43)	0.00 (0.00, 0.02)	0.2345	0.0401	0.0281	0.0002	
OTU0536	Firmicutes	Erysipelotrichaceae	Erysipelotrichaceae_incertae_sedis	0.32 (0.03, 0.61)	0.00 (0.00, 0.18)	0.11 (0.00, 0.45)	0.09 (0.00, 0.20)	0.00 (0.00, 0.03)	0.0274	0.4289	0.6402	0.0126	
OTU0011	TM7	TM7_genera_incertae_sedis	TM7_genera_incertae_sedis	0.36 (0.28, 0.88)	0.13 (0.00, 0.76)	0.27 (0.00, 0.78)	0.21 (0.07, 0.52)	0.15 (0.05, 0.62)	0.1304	0.8665	0.8785	0.5737	
OTU0605	Actinobacteria	Coriobacteriaceae	Enterorhabdus	0.00 (0.00, 0.06)	0.03 (0.00, 0.08)	0.00 (0.00, 0.03)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.4667	0.0513	0.4667	1.0000	
OTU0055	Bacteroidetes	Bacteroidaceae	Bacteroides	2.73 (0.68, 4.54)	1.03 (0.44, 1.46)	1.61 (0.68, 5.98)	1.03 (0.25, 2.29)	1.72 (0.35, 3.06)	0.0650	0.7789	0.1949	0.2345	
OTU0556	Bacteroidetes	Prevotellaceae	Paraprevotella	0.15 (0.05, 0.23)	0.06 (0.03, 0.28)	0.05 (0.02, 0.22)	0.04 (0.00, 0.49)	0.00 (0.00, 0.39)	0.0145	0.2222	0.2670	0.3049	
OTU0399	Bacteroidetes	Prevotellaceae	Paraprevotella	0.06 (0.05, 0.15)	0.00 (0.00, 0.10)	0.02 (0.00, 0.16)	0.04 (0.00, 0.16)	0.00 (0.00, 0.12)	0.1588	0.2723	0.8757	0.1002	
OTU1290	Bacteroidetes	Porphyromonadaceae	Parabacteroides	0.01 (0.00, 0.29)	0.00 (0.00, 0.00)	0.00 (0.00, 1.00)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.0769	1.0000	0.2000	1.0000	
OTU0007	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.85 (0.23, 2.45)	0.26 (0.00, 1.80)	0.11 (0.00, 1.47)	0.00 (0.00, 0.49)	0.03 (0.00, 0.73)	0.0011	0.0528	0.2668	0.5301	
OTU0037	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.00 (0.00, 0.03)	0.03 (0.03, 0.15)	0.00 (0.00, 0.11)	0.00 (0.00, 0.07)	0.00 (0.00, 0.07)	0.7333	0.0099	0.8564	1.0000	

OTU1132	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.00 (0.00, 0.00)	0.00 (0.00, 0.13)	0.00 (0.00, 0.02)	0.00 (0.00, 0.00)	0.00 (0.00, 0.03)	1.0000	0.1538	1.0000	1.0000
OTU0071	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.00 (0.00, 0.13)	0.09 (0.00, 0.32)	0.00 (0.00, 0.08)	0.00 (0.00, 0.13)	0.00 (0.00, 0.06)	1.0000	0.0155	0.7333	0.7333
OTU1472	Bacteroidetes	Porphyromonadaceae	Barnesiella	0.00 (0.00, 0.00)	0.00 (0.00, 1.79)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	1.0000	0.1538	1.0000	1.0000
OTU2173	Proteobacteria	Desulfovibrionaceae		0.00 (0.00, 0.14)	0.00 (0.00, 0.16)	0.03 (0.00, 0.09)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	1.0000	0.1538	0.0256	1.0000
OTU0938	Proteobacteria			0.00 (0.00, 0.10)	0.03 (0.00, 0.13)	0.09 (0.02, 0.26)	0.00 (0.00, 0.11)	0.05 (0.00, 0.12)	0.8825	0.1308	0.0044	0.2190
OTU0105	Proteobacteria	Helicobacteraceae	Helicobacter	2.12 (0.98, 4.74)	0.87 (0.39, 2.27)	0.84 (0.22, 2.82)	1.17 (0.35, 2.29)	0.92 (0.24, 2.28)	0.0148	0.9551	0.5054	0.5054
OTU0579	Firmicutes	Erysipelotrichaceae	Allobaculum	0.00 (0.00, 0.16)	0.03 (0.00, 0.39)	0.01 (0.00, 0.61)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	1.0000	0.0513	0.0769	1.0000
OTU0958	Firmicutes	Streptococcaceae	Streptococcus	0.00 (0.00, 0.06)	0.00 (0.00, 0.04)	0.01 (0.00, 0.06)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.2000	0.4000	0.0769	1.0000
OTU0647	Firmicutes	Lactobacillaceae	Lactobacillus	0.00 (0.00, 0.08)	0.09 (0.00, 0.32)	0.00 (0.00, 0.44)	0.00 (0.00, 0.05)	0.00 (0.00, 0.10)	1.0000	0.0087	1.0000	0.9282
OTU0195	Firmicutes	Lactobacillaceae	Lactobacillus	2.95 (0.60, 7.46)	0.53 (0.15, 1.51)	3.31 (1.37, 4.82)	0.00 (0.00, 0.00)	0.00 (0.00, 0.03)	0.0002	0.0003	0.0002	0.4667
OTU1276	Firmicutes	Unclassified_Clostridiales		0.00 (0.00, 0.06)	0.00 (0.00, 0.00)	0.03 (0.00, 0.07)	0.00 (0.00, 0.04)	0.00 (0.00, 0.00)	1.0000	1.0000	0.0629	1.0000
OTU1852	Firmicutes	Unclassified_Clostridiales		0.00 (0.00, 0.00)	0.00 (0.00, 0.03)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	1.0000	0.1538	1.0000	1.0000
OTU0277	Bacteroidetes	Ruminococcaceae	Acetivibrio	0.01 (0.00, 0.07)	0.00 (0.00, 0.03)	0.04 (0.00, 0.15)	0.00 (0.00, 0.08)	0.00 (0.00, 0.03)	0.4126	0.8205	0.0623	1.0000
OTU0274	Firmicutes	Ruminococcaceae	Acetivibrio	0.01 (0.00, 0.23)	0.00 (0.00, 0.00)	0.00 (0.00, 0.08)	0.00 (0.00, 0.00)	0.00 (0.00, 0.02)	0.0769	1.0000	0.2000	1.0000
OTU0275	Firmicutes	Ruminococcaceae		0.12 (0.05, 0.60)	0.10 (0.00, 0.26)	0.05 (0.00, 0.33)	0.01 (0.00, 0.11)	0.05 (0.00, 0.10)	0.0042	0.1141	0.2258	0.7085
OTU2404	Firmicutes	Ruminococcaceae	Oscillibacter	0.00 (0.00, 0.00)	0.00 (0.00, 0.08)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.00 (0.00, 0.03)	1.0000	0.1538	1.0000	1.0000
OTU0178	Firmicutes	Lachnospiraceae	Clostridium XIVa	0.03 (0.00, 0.09)	0.00 (0.00, 0.12)	0.04 (0.00, 0.17)	0.00 (0.00, 0.00)	0.00 (0.00, 0.03)	0.0070	0.4000	0.0256	0.4667
OTU0580	Firmicutes	Lachnospiraceae		0.02 (0.00, 0.22)	0.10 (0.00, 0.42)	0.08 (0.00, 0.33)	0.00 (0.00, 0.03)	0.00 (0.00, 0.08)	0.2821	0.0056	0.0884	0.5692
OTU0374	Firmicutes	Lachnospiraceae		0.31 (0.03, 0.81)	0.09 (0.00, 0.49)	0.00 (0.00, 1.03)	0.00 (0.00, 0.35)	0.04 (0.00, 0.62)	0.0019	0.3571	0.4256	0.4779
OTU1643	Firmicutes	Lachnospiraceae		0.00 (0.00, 0.00)	0.03 (0.00, 0.64)	0.03 (0.00, 0.10)	0.00 (0.00, 0.05)	0.00 (0.00, 0.03)	1.0000	0.1259	0.0064	1.0000
OTU0215	Firmicutes	Lachnospiraceae		2.66 (0.54, 4.35)	1.01 (0.06, 2.78)	0.15 (0.00, 2.05)	0.41 (0.07, 1.07)	0.71 (0.00, 5.50)	0.0047	0.0939	0.2786	0.6454
OTU0328	Firmicutes	Lachnospiraceae		0.05 (0.00, 0.23)	0.00 (0.00, 0.08)	0.06 (0.00, 0.10)	0.00 (0.00, 0.13)	0.02 (0.00, 0.06)	0.0200	0.9902	0.1134	0.5301
OTU0419	Firmicutes	Lachnospiraceae	Butyrivibrio	0.00 (0.00, 0.00)	0.00 (0.00, 0.13)	0.00 (0.00, 0.05)	0.00 (0.00, 0.00)	0.00 (0.00, 0.17)	1.0000	0.1538	0.4667	0.4667
OTU0489	Firmicutes	Lachnospiraceae		0.15 (0.08, 0.32)	0.09 (0.00, 0.36)	0.10 (0.03, 0.47)	0.00 (0.00, 0.10)	0.00 (0.00, 0.12)	0.0006	0.0911	0.0135	0.9282
OTU1468	Firmicutes	Lachnospiraceae		0.00 (0.00, 0.03)	0.00 (0.00, 0.11)	0.02 (0.00, 0.26)	0.00 (0.00, 0.03)	0.00 (0.00, 0.00)	0.4667	0.9333	0.0816	1.0000
OTU0192	Firmicutes	Lachnospiraceae		0.00 (0.00, 0.14)	0.00 (0.00, 0.19)	0.01 (0.00, 0.14)	0.00 (0.00, 0.00)	0.00 (0.00, 0.23)	0.2000	0.1538	0.0769	0.2000
OTU0106	Bacteroidetes	Rikenellaceae	Alistipes	0.00 (0.00, 0.10)	0.00 (0.00, 0.13)	0.00 (0.00, 0.00)	0.01 (0.00, 0.11)	0.00 (0.00, 0.00)	0.6084	0.7552	0.0769	0.0769
OTU0069	Proteobacteria	Desulfovibrionaceae		5.95 (2.90, 15.18)	4.18 (2.05, 5.67)	5.18 (3.66, 8.15)	6.30 (2.71, 10.79)	3.49 (2.13, 7.26)	0.7984	0.0721	0.2345	0.0499
OTU0996	Firmicutes	Clostridiales_Incertae Sedis XIII	Anaerovorax	0.04 (0.00, 0.14)	0.00 (0.00, 0.03)	0.00 (0.00, 0.03)	0.03 (0.00, 0.13)	0.00 (0.00, 0.05)	0.7030	0.0765	0.0493	0.0797
OTU0947	Firmicutes	Ruminococcaceae	Anaerotruncus	0.00 (0.00, 0.06)	0.09 (0.00, 0.49)	0.03 (0.00, 0.60)	0.11 (0.02, 0.16)	0.00 (0.00, 0.27)	0.0135	0.9259	0.4859	0.0154

OTU0051	Firmicutes	Ruminococcaceae	Oscillibacter	0.91 (0.42, 1.99)	1.27 (0.95, 5.49)	2.15 (1.37, 4.33)	3.55 (1.58, 4.13)	0.84 (0.35, 2.40)	0.0003	0.1520	0.2345	0.0006
OTU0092	Firmicutes	Ruminococcaceae	Oscillibacter	0.10 (0.00, 0.32)	0.25 (0.03, 0.53)	0.07 (0.00, 0.28)	0.25 (0.09, 0.84)	0.05 (0.00, 0.10)	0.0640	0.6943	0.0070	0.0003
OTU0482	Firmicutes	Ruminococcaceae	Flavonifractor	0.09 (0.00, 0.23)	0.08 (0.00, 0.45)	0.20 (0.00, 0.63)	0.22 (0.07, 0.41)	0.02 (0.00, 0.31)	0.0373	0.2204	0.5737	0.0185
OTU0206	Firmicutes	Lachnospiraceae	Roseburia	0.14 (0.00, 0.80)	0.19 (0.16, 1.30)	0.03 (0.00, 1.07)	0.51 (0.14, 1.06)	0.14 (0.00, 0.28)	0.2325	0.5358	0.0103	0.0103
OTU0095	Firmicutes	Lachnospiraceae	Lachnospiracea_incertae_sedis	1.20 (0.00, 5.04)	2.51 (0.62, 4.81)	4.12 (0.26, 11.19)	6.10 (4.20, 13.17)	0.05 (0.00, 3.71)	0.0070	0.0012	0.2786	0.0002
OTU0107	Firmicutes	Lachnospiraceae	Lachnospiracea_incertae_sedis	0.00 (0.00, 0.24)	0.03 (0.00, 0.19)	0.24 (0.00, 0.37)	0.18 (0.00, 1.21)	0.01 (0.00, 0.57)	0.0483	0.0768	0.6681	0.0348
OTU0018	Firmicutes	Lachnospiraceae	Lachnospiracea_incertae_sedis	0.09 (0.00, 0.51)	0.05 (0.00, 0.42)	0.04 (0.00, 0.32)	0.14 (0.02, 0.45)	0.02 (0.00, 0.13)	0.3667	0.1501	0.0822	0.0146
OTU0149	Firmicutes	Lachnospiraceae	Marvinbryantia	0.09 (0.00, 0.69)	0.10 (0.00, 0.26)	0.08 (0.00, 1.34)	0.30 (0.16, 0.98)	0.11 (0.00, 0.65)	0.0278	0.0059	0.1009	0.0494
OTU0193	Firmicutes	Lachnospiraceae		0.00 (0.00, 0.03)	0.41 (0.03, 1.01)	0.19 (0.00, 2.97)	0.33 (0.12, 1.28)	0.00 (0.00, 0.02)	0.0002	1.0000	0.1540	0.0002
OTU0284	Firmicutes	Lachnospiraceae	Clostridium XIVb	0.43 (0.23, 0.88)	0.25 (0.09, 0.83)	0.62 (0.37, 1.22)	0.77 (0.49, 1.20)	0.19 (0.06, 0.73)	0.0148	0.0289	0.1949	0.0011
OTU0604	Firmicutes	Lachnospiraceae		0.03 (0.00, 0.11)	0.03 (0.00, 0.05)	0.04 (0.00, 0.17)	0.13 (0.07, 0.41)	0.05 (0.00, 0.10)	0.0011	0.0003	0.0068	0.0019
OTU0075	Firmicutes	Lachnospiraceae	Dorea	0.91 (0.46, 1.85)	0.50 (0.24, 1.93)	1.34 (1.07, 2.14)	1.49 (0.53, 2.47)	0.65 (0.38, 1.11)	0.1605	0.0289	0.9591	0.0379
OTU0241	Firmicutes	Lachnospiraceae	Dorea	0.30 (0.00, 1.65)	0.42 (0.00, 0.97)	0.00 (0.00, 1.11)	0.54 (0.06, 1.79)	0.10 (0.00, 1.10)	0.2786	0.4634	0.0193	0.0482
OTU0146	Firmicutes	Lachnospiraceae		0.04 (0.00, 0.83)	0.03 (0.00, 0.47)	0.18 (0.00, 0.42)	0.19 (0.08, 0.45)	0.10 (0.00, 0.27)	0.2325	0.0202	0.4396	0.1293
OTU0042	Firmicutes	Lachnospiraceae		0.00 (0.00, 0.03)	0.00 (0.00, 0.04)	0.00 (0.00, 0.08)	0.06 (0.00, 0.13)	0.00 (0.00, 0.00)	0.0256	0.0721	0.0928	0.0256
OTU0177	Firmicutes	Lachnospiraceae		0.07 (0.00, 0.63)	1.39 (0.98, 2.29)	1.27 (0.05, 3.10)	1.91 (0.66, 3.01)	0.02 (0.00, 1.56)	0.0002	0.3969	0.5054	0.0011
OTU0365	Firmicutes	Lachnospiraceae	Lachnospiracea_incertae_sedis	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.01 (0.00, 0.03)	0.00 (0.00, 0.00)	0.0769	0.1026	0.0769	0.0769
OTU0026	Verrucomicrobia	Verrucomicrobiaceae	Akkermansia	0.52 (0.02, 2.96)	0.00 (0.00, 1.38)	0.56 (0.00, 4.07)	0.72 (0.00, 12.89)	1.43 (0.56, 8.79)	0.5737	0.0662	0.5949	0.1049
OTU0108	Bacteroidetes	Porphyromonadaceae		0.06 (0.00, 0.66)	0.00 (0.00, 0.00)	0.20 (0.00, 0.87)	0.48 (0.23, 3.12)	0.15 (0.00, 4.75)	0.0070	0.0003	0.0368	0.2771
OTU0441	Firmicutes	Erysipelotrichaceae	Allobaculum	0.00 (0.00, 0.00)	0.13 (0.00, 0.61)	0.00 (0.00, 1.16)	0.01 (0.00, 0.31)	0.00 (0.00, 0.04)	0.0769	0.0497	0.9608	0.1282
OTU0721	Firmicutes	Erysipelotrichaceae	Erysipelotrichaceae_incertae_sedis	0.01 (0.00, 0.12)	0.00 (0.00, 0.03)	0.00 (0.00, 0.07)	0.02 (0.00, 0.09)	0.01 (0.00, 0.05)	0.8749	0.0895	0.0816	0.4822
OTU0296	Firmicutes	Unclassified_Clostridiales		0.49 (0.13, 1.72)	0.12 (0.00, 2.33)	0.44 (0.05, 1.97)	0.44 (0.26, 1.65)	0.53 (0.08, 0.90)	1.0000	0.0199	0.6454	0.7984
OTU0942	Firmicutes	Unclassified_Clostridiales		0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.01 (0.00, 0.25)	0.00 (0.00, 0.03)	0.0769	0.1026	0.0769	0.1282
OTU1264	Firmicutes	Ruminococcaceae		0.00 (0.00, 0.00)	0.00 (0.00, 0.03)	0.00 (0.00, 0.02)	0.04 (0.00, 0.38)	0.00 (0.00, 0.17)	0.0256	0.0373	0.0256	0.2821
OTU0531	Firmicutes	Ruminococcaceae	Clostridium IV	0.01 (0.00, 0.16)	0.00 (0.00, 0.15)	0.19 (0.09, 0.33)	0.20 (0.00, 0.33)	0.07 (0.02, 0.20)	0.0135	0.0186	0.8785	0.1304
OTU0581	Firmicutes	Ruminococcaceae	Pseudoflavonifractor	0.02 (0.00, 0.18)	0.13 (0.00, 0.50)	0.12 (0.02, 0.63)	0.26 (0.00, 0.53)	0.21 (0.00, 0.79)	0.0295	0.2785	0.7984	0.6681
OTU0062	Firmicutes	Ruminococcaceae	Pseudoflavonifractor	0.47 (0.20, 0.85)	0.88 (0.41, 2.06)	0.69 (0.45, 2.48)	0.75 (0.43, 1.06)	0.65 (0.23, 1.40)	0.0650	0.5358	0.9591	0.8785
OTU0029	Firmicutes	Lachnospiraceae		0.06 (0.00, 0.46)	0.00 (0.00, 0.00)	0.00 (0.00, 0.00)	0.02 (0.00, 0.12)	0.15 (0.00, 0.39)	0.2706	0.0373	0.0256	0.0611
OTU0191	Firmicutes	Lachnospiraceae		0.09 (0.00, 0.63)	0.13 (0.00, 0.24)	0.00 (0.00, 0.42)	0.07 (0.00, 0.48)	0.05 (0.00, 0.44)	0.8922	0.2925	0.0884	0.9854
OTU0628	Firmicutes	Lachnospiraceae	Clostridium XIVa	0.00 (0.00, 0.23)	0.00 (0.00, 0.04)	0.00 (0.00, 0.00)	0.03 (0.00, 0.24)	0.00 (0.00, 0.05)	0.5671	0.2200	0.0256	0.3756

0.23) 0.05) 0.19) 0.08) 0.23) 0.05/	OTU0342	Firmicutes	Lachnospiraceae	Moryella	0.04 (0.00, 0.23)	0.00 (0.00, 0.05)	0.01 (0.00, 0.19)	0.03 (0.00, 0.08)	0.01 (0.00, 0.23)	0.8757	0.0373	0.4182	0.6892
---	---------	------------	-----------------	----------	----------------------	----------------------	----------------------	----------------------	----------------------	--------	--------	--------	--------

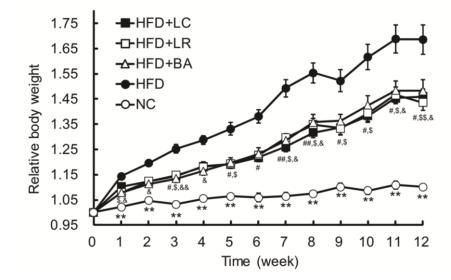

References of supplementary materials 168 169 170 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010). QIIME allows 171 analysis of high-throughput community sequencing data. Nat Methods 7: 335-336. 172 Chiang SH, Bazuine M, Lumeng CN, Geletka LM, Mowers J, White NM et al (2009). The protein kinase 173 IKKepsilon regulates energy balance in obese mice. Cell 138: 961-975. 174 Klaus S, Pultz S, Thone-Reineke C, Wolfram S (2005). Epigallocatechin gallate attenuates diet-induced 175 obesity in mice by decreasing energy absorption and increasing fat oxidation. Int J Obes (Lond) 29: 176 615-623. 177 Lumeng CN, Bodzin JL, Saltiel AR (2007). Obesity induces a phenotypic switch in adipose tissue 178 macrophage polarization. J Clin Invest 117: 175-184. 179 Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K et al (2007). Pluripotency governed 180 by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9: 181 625-635. 182 Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K (2007). Sensitive quantitative detection of 183 commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol 73: 184 32-39. 185 Matsuda K, Tsuji H, Asahara T, Matsumoto K, Takada T, Nomoto K (2009). Establishment of an 186 analytical system for the human fecal microbiota, based on reverse transcription-quantitative PCR 187 targeting of multicopy rRNA molecules. Appl Environ Microbiol 75: 1961-1969. 188 Matsumoto M, Sakamoto M, Benno Y (2009). Dynamics of fecal microbiota in hospitalized elderly fed 189 probiotic LKM512 yogurt. Microbiol Immunol 53: 421-432. 190 Shibata R, Sato K, Kumada M, Izumiya Y, Sonoda M, Kihara S et al (2007). Adiponectin accumulates in 191 myocardial tissue that has been damaged by ischemia-reperfusion injury via leakage from the 192 vascular compartment. Cardiovasc Res 74: 471-479. 193 Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W et al (2010). Interactions between gut microbiota, 194 host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 4: 195 232-241. 196

- 1.5
- 197

198 Supplementary Figures

199 Figure S1

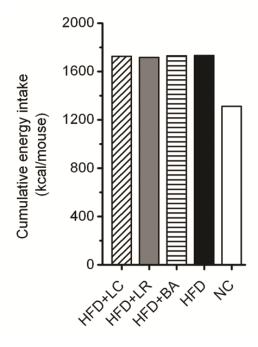
200



201 202

Figure S1 The three candidate probiotics survived in the gut. (a-c) The amount of
LC, LR and BA in the feces of mice at 2nd, 6th and 11th week during the probiotic
administration quantified by RT-qPCR. Data are shown as means ± SEM. Values of
each animal group with same letters are not significantly different by ANOVA

followed by Tukey post hoc test. n = 3 mice per group.


- 208
- 209

212 213

Figure S2 The relative body weight curve of five groups of mice during the 12-week-intervention. Relative body weight was calculated as body weight as percentage of baseline weight for each mouse. Data are shown as means \pm SEM. *P < 0.05, **P < 0.01: NC group vs. HFD group; [#]P < 0.05, ^{##}P < 0.01: HFD+LC group vs. HFD group; ^{\$}P < 0.05, ^{\$\$}P < 0.01: HFD+LR group vs. HFD group; [&]P < 0.05, ^{&&}P < 0.01: HFD+BA group vs. HFD group by ANOVA followed by Tukey post hoc test. n = 8 mice per group.

Figure S3

- 227 Figure S3 Probiotics did not reduce energy intake. Data are shown as means of
- food intake of two cages of 8 animals of each animal group.
- 229
- 230

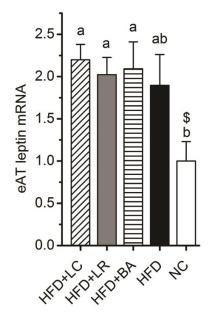


Figure S4 Probiotics did not reduce the expression of leptin gene in eAT. Data are

- shown as means \pm SEM. Values of each animal group with same letters are not
- significantly different by ANOVA followed by Tukey post hoc test. P = 0.057 vs.
- HFD group. n = 8 mice per group.
- 239
- 240

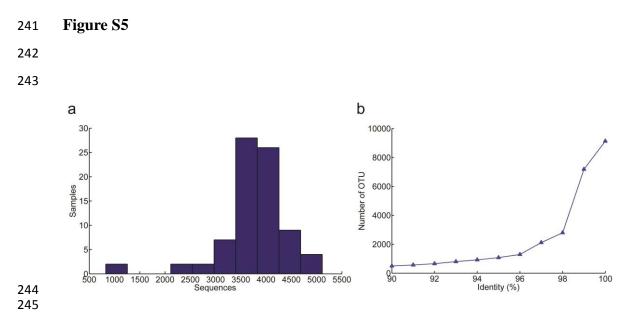


Figure S5 454 pyrosequencing data of 80 fecal samples of five animal groups (8

animals/group) at baseline and 12th week. a: Sample distribution of 301, 568

usable reads, b: The numbers of OTUs identified at several different similarity levels.

249

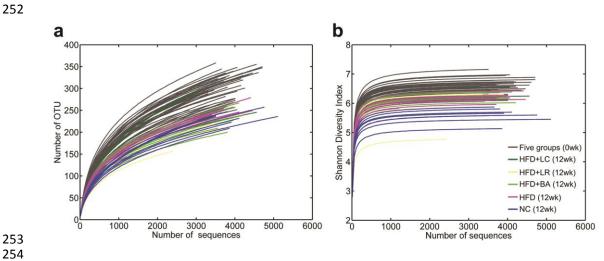


Figure S6 Alpha-diversity analysis of 454 pyrosequencing of 80 fecal samples. (a)
Rarefaction analysis. (b) Shannon Diversity Index curves. 0wk: before probiotics

257 intervention, 12wk: after 12 weeks of probiotics intervention.

- 258
- 259

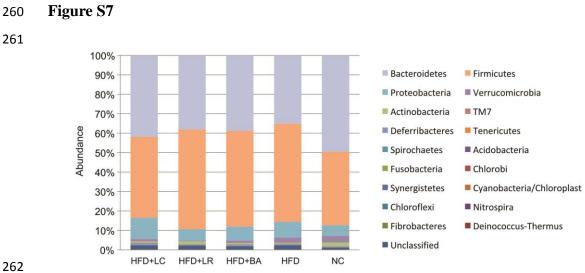
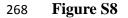



Figure S7 Relative abundance of different phyla in the gut microbiota of five

265 animal groups at 12th week of the trial.

266

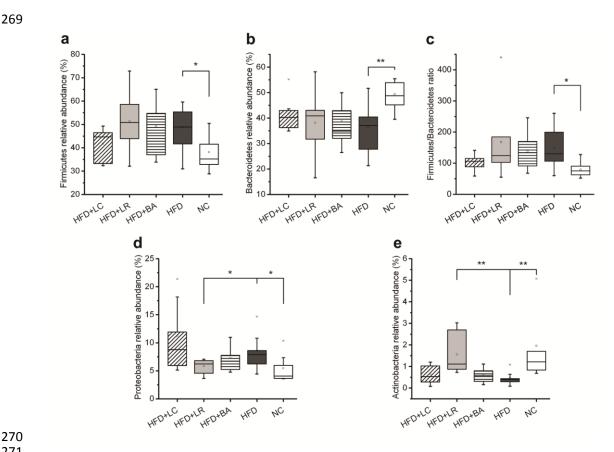


Figure S8 Relative abundance of four predominant phyla which was different between HFD group and the other four groups at 12th week of the trial. (a) Firmicutes, (b) Bacteroidetes, (c) Firmicutes / Bacteroidetes ratio, (d) Proteobacteria, (e) Actinobacteria. In the box plot, the bottom and top are respectively the 25th and 75th percentile, a line within the box marks the median, and a circle in the box shows the mean. Whiskers above and below the box indicate 1.5 interquartile range of the lower and upper quartile, and samples beyond are regarded as outliers. *P < 0.05, **P < 0.01 by Mann-Whitney test.

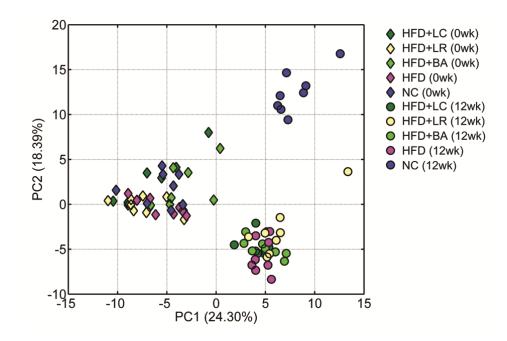


Figure S9 PCA scores plot calculated with the OTU abundance matrix of all

animals at baseline and 12th week. Each point represents the microbiota of a mouse.

- 288 0wk: before probiotic intervention, 12wk: after 12 weeks of probiotics intervention.
- 289

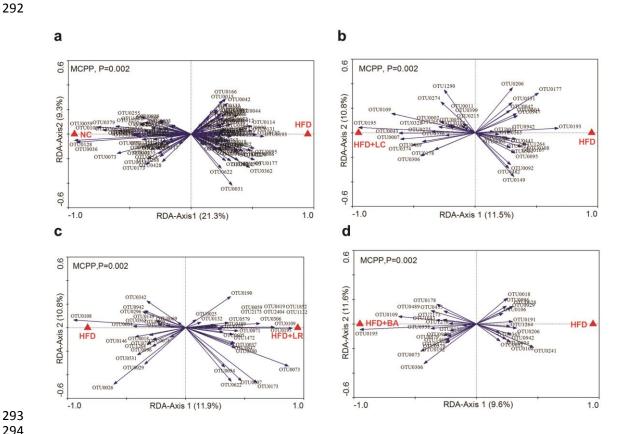
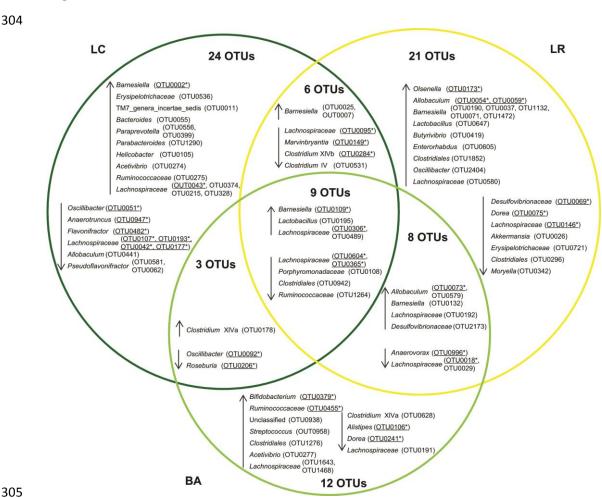


Figure S10 Biplot of the RDA between HFD and NC (a), HFD+LC (b), HFD+LR


(c), and HFD+BA (d), respectively on relative abundance of OTUs (Log 10

transformed). Constrained explanatory variables are indicated by red triangles. OTUs

that have more than 24% of the variability in their values explained by the canonical

axis are indicated by blue arrows. Upper left shows P-value of Monte Carlo

Permutation Test.

Figure S11

303

307 Figure S11 Venn diagrams of 83 OTUs modulated by the three probiotics LC, LR

and BA. The OTUs' phylogeny are listed. \uparrow means increased by probiotics, and \downarrow

309 represents decreased by probotics. * represents the OTU whose abundance was

- changed by HFD and then the change was reversed by probiotics.
- 311
- 312