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A Proof of Theorem

Theorem 1. Assume that there exists a A > 0 such that § = O(N _A), then under Assumptions A1-A8, we have
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Proof: Denote
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First, we claim that Fo[M (a)] reaches its unique maximum at & = . In fact, by the Jensen’s inequality and

the convexity of function — log &, we have
EO[M(a)] - EO[M(QO)] = EO[E(a) Y, x, Z) - E(a()? Y, x, Z)] < Oa

i.e., & = o is one maximum point of function Ey[M (ax)]. Moreover, from Assumption A6, it follows that it is
the unique maximum point. Thus the above claim holds.
Next, with the Taylor expansion, for any oy, as € © x B x ®, we can easily obtain

| M (1) — My(as)| < Cly, ®, 2)|la — o, (A.1)

where C'(y, x, z) is bounded. By the weak law of large numbers, it follows that for every fixed o, M, () —
Eyo[M(a)] & 0. Then under Assumption A1, by Corollary 2 in Andrews (1987), we have that sup,, | M, (c) —
Eo[M(ax)]| & 0. Thus it follows that M, (&) — Eo[M(&)] 2 0 and M, (c) — Eo[M ()] 2 0.



, %E(a; Yikss T, Zix) 18 continuous and bounded.

In addition, the function x; = x(t;, @) is continuous and bounded. Thus %é(a; Yikss T Zik) |w=a(t,,0) 15 Op(1). It

Based on the formulation of ¢ in Section 3.1, for a variate x

is similar for ;. Then by Lemma 1 in Xue et al. (2010) and the first-order Taylor expansion, it follows
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Then
M, (&) — Eo[M ()] < My(&) — Eg[M(&)] = My (&) + Op (N2 — Eo[M(&)].

and

M, (&) = Eo[M ()] > My () — Eo[M(ew)] = My(cxg) + Op(NP) — EM (ex).
Hence M, (&) — FEo[M ()] 2 0, when N — 0o and A > 0. Thus

| Eo[M(&)] — Eo[M(cw)]| < |My(&) — Eo[M(&)]| + | M, (&) — Eo[M(cw)]| 5 0. (A.2)

Now, we claim that & weakly converges to «y. Otherwise, for sequence {&} in the compact subset © x B x @,
there exists a convergent subsequence, {&,,, }, such that &, % o, and o, # ov. From the continuous mapping
theorem, it follows that Eo[M (&, )] = Eo[M(c.)]. From (A.2), we have Eo[M (&, )] = Eo[M(cy)]. Then
Eo[M(ew)] = Eo[M(ay)]. Since a is the unique maximum point of Fy[M (a)], we have ot = g, which is

contradictory to o, # a. Thus & 5 av. O



Theorem 2. (i) For 6 = O(N~*) with A\ > 1/(p A 4) where p is the order of the numerical method, under
Assumptions A1-A10, we have that VN (& — cy) - N(0,H™1);

(ii) For 6 = O(N~*) with 0 < A < 1/(p A 4), under Assumptions A1-A10, we have that N (& — &) N
N(O,I:I_l) with || & — a| = O,(6%"9/2) = O,(N~P"/2) and |[H — H|| = O, (§®"Y/2) = O,(N—AP"9/2),

Proof: For the proof of Part (i), it suffices to verify conditions of Theorem 3.1 in Newey and McFadden (1994)
on asymptotic normality for a M-estimator. Denote
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aa;* = 82*6(., 9%, ) g*=g* (22,8 With g*(z, x, B) defined in (2.5). Since & and o are maximum points of
M, () and Ey[M ()], respectively, G, (&) = 0 and G(ayp) = 0.

First, we verify the result that v N[G,, (o) — G(ax)] % N'(0, H) with H defined by (4.18). For fixed ¢, by
Ox(t 0) _ Ox(t,0)

the Landau- Kolmogorov inequality between different derivatives of a function, we have || 50 |loo <

Cl aea’;ﬁ — aeaeT M2z (t,0) — =(t,0)||X2 < C'||&(t,0) — z(t,0)||XL for two constants C and C', where

the second inequality holds because of the uniform boundedness of both %gg eT) nd 88;”522) under Assumptions

A7-A8, and || T(0)||c = supg |Y(0)| is the supremum norm of a function Y. Based on sup x(t,0) —
0 tefto,T]

z(t,0)] 0 = O(N~®Y) from Lemma 1 in Xue et al. (2010), it follows that || 22168 22(L0) )| — O N=A@AD/2),



Then we have
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When A > 1/(pA4), O, (N XPAD/2+1/2) — 4 (1), So for the above expression, we have v/ N[G,, (a) — G ()] =

VN[G,(g) — G(ex)] + 0,(1). Based on the special structure of & and ¢ in (2.4), it is easy to follow that
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the sense of Cox and Reid (1987). From the standard central limit theorem, we have v N[G,,(c) — G (ax)] <

N(0,]), where
My, x,z) 0l
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lla=ao = O, that is, the dispersion parameter ¢ is orthogonal to parameters € and 3 in

Thus it follows that vV N[Gy (c) — Glow)] -5 N(0, J).
Next, by similar arguments to those in the proof of Theorem 1, it follows that sup . || OMu(e) | H(a)|| 50

OadaTl
with a neighborhood A of ay. By Lemma 1 in Xue et al. (2010), it follows that sup,c || aai%a?) 880]\3& | 5 o0.

Then we have supgea ||88$*;?) + H(a)|| & 0. By Theorem 1, Assumptions A9 and A10, and H = J, all
conditions of Theorem 3.1 in Newey and McFadden (1994) are satisfied, thus Theorem 2(i) holds with a variance-
covariance matrix (—H)"'J(-H)"' =J ' =H .

Now, we consider the proof of Theorem 2(ii). Define
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Since Ey[M (cx)] reaches its maximum at o = &, then the first-order derivative of Eo[M ()] at & equals to 0,

1.e., G (&) = 0. Then similar to the proof of Case (i) above, we have
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It follows that G(&) = G(&) + O, (NAP"D/2) then G(&) = O, (N *#"9/2) from G(&) = 0. The Taylor series

expansion yields that there exist constants 0 < ¢1, co < oo such that
clla —ao| <|G(&) — Glay)| < eaf @ — |-

Thus ||& — ap|| = O (N"2®/2) from G(cy) = 0. It follows that & > . By Assumption A9, we
have that & is also an interior point of © x B x & for sufficiently large N. Similarly we can show that
IH — H|| = O,(N—*®"/2) By Assumption A10, we have that H is also nonsingular for sufficiently large
N. Then it is straightforward to derive the asymptotic normality of Theorem 2(ii) by verifying the conditions of
Theorem 3.3 in Newey and McFadden (1994) on asymptotic normality for MLE. ]



Theorem 3. For the weighted MLE &™ in (3.14), under the same assumptions as those in Theorem 2 as well as

Assumption Al1, we have that,

() for A > 1/(p A 4), \/N/vo(&* — &) has the same conditional limiting distribution as v/ N(& — ay) has

unconditionally, i.e., (N/N/vo( * ‘{t,,zzk,yzk5}> i \/N(fx — a). Thus \/N(d* — ap) A N(0, (1 +

Uo)Hil).

(i) for 0 < A < 1/(pA4), <\/N/U0(OA¢* — a)|{t,, zik,yiks}> % VN(&— &). Thus VN(&" — &) 2 N(0, (1+
~ 1
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Proof: Replace all likelihood functions /(.) in the proofs of Theorems 1-2 with the weight likelihood functions

wf(.) and denote
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First, we clalm that under Assumptlons A1-A9 and Al1, we have &* — ayp — 0, almost surely under P,,,
i.e., Theorem 1 still holds for the weighted MLE &*. In fact, by the Jensen’s inequality, the convexity of function

—log z, F(w) = 1 and the independence between w and (¢, y, z), we have

Eo[M*(a)] — Eo[M"(ax)]
= Efwl(a;y, z,z) — wl(ag; y, x, z)]
= EBw)El(oy,x, z) — ey, T, 2)]
< 0,

i.e., & = a is still the maximum point of function Ey[M*(x)|. In addition, from Assumption A6, it follows that
it is the unique maximum point. Under Assumption A11, similar to (A.1), for any o, as € O x B x &, we have

| My (1) — My (ew)| < QM () — My(az)| < Cly, @, 2)Q|ar — .

The remaining steps to prove this claim are similar to those in the proof of Theorem 1.

Next, we claim that VN (&" — a) 5 N(0, (1 + vo)H™) or VN(&" — &) 5 N(0, (1 + vo)ﬁfl) for
A>1/(pA4)and 0 < A < 1/(p A4), respectively. We verify it as follows.

Since &* and a are the maximum points of M*(c) and Eo[M*(ax)], respectively, G (&*) = 0 and G* () =
0. By similar arguments to those in the proof of Theorem 2, we have v/ N[G* (cg) — G*(av)] = VN[G* () —
G*(cy)]+0,(1). From the standard central limit theorem and E(w?) = 14-v, we have v/ N[G: (cg) — G* ()] <
N(0, (1 + v0)J). Thus it follows that v/ N[G* (ag) — G* ()] A N(0, (1 + vp)J). In addition, by the weak law
of large number and F(w) = 1, it follows that

O M; (o) 5 E {M} = E(w)E, {%} = —H.
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The remaining steps to prove this claim are similar to those in the proof of Theorem 2. Combining the second
claim and Theorem 2, we have that

(\/N/vo(d* —&)|{t:, za, yk}> A N (& — a)
for A > 1/(pA4)and
(x/N/vo(d* —&)|{ti, zur, yk}> 4 VNG — &)

for 0 < A < 1/(p A 4), respectively. O
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B Additional Simulation Result
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