Supplementary Materials and Methods

Recombineering of *FLG***-10k human filaggrin promoter fragment**

The *FLG*-10k human filaggrin promoter fragment was assembled from bacterial artificial chromosome (BAC) clone RP1-14N1 via a two-step recombineering process. A 10.1 kb fragment containing a 5' *Xho*I restriction site, ~10 kb upstream of the transcription *FLG* start site, exon 1 (partial 5'UTR), the first 18-bp of intron 1, and a 3' *Mlu*I restriction site was amplified from the BAC clone using primers mentioned in Supplementary Table 1. A second, 483-bp fragment containing a 5' *Mlu*I restriction site, the last 459-bp of intron 1, the start of exon 2 encompassing the remainder of the 5'UTR and a 3' *HinD*III restriction site was amplified from the same BAC clone. Fragments were sequence-verified and ligated via their *Mlu*I sites, generating the 10.6 kb hFLG-10k human filaggrin promoter fragment.

Supplementary Table 1: *Cloning primers*

Supplementary Figure 1: Further characterization of the FLG-luc2p^{+/-} mouse model. (a-b) Luciferin was administered to FLG-luc2p^{+/-} mice via intraperitoneal injection and imaged for 1 min, 10 min post-injection using the IVIS Lumina. Moderate luciferase bioluminescence activity was detected in the tail, shaved back and stomach, ears, perioral and perianal regions under these conditions. (c) Tagman-based qRT-PCR analysis demonstrated that luc2p mRNA was more abundant in FLG-luc2p^{+/-} paw tissues relative to back, stomach, ear and tail epidermal tissues. (d) Firefly luciferase protein was only detectable by western blotting in FLG-luc2p^{+/-} paw tissues. Membranes were simultaneously probed with anti-β-actin antibodies as a loading control. (e) H&E-stained cross-sections of wild-type mouse back skin (left panel), human skin (middle panel) and wild-type mouse paw skin (right panel). Mouse back skin generally comprises only three cell layers and has a very thin stratum corneum layer, in contrast both human epidermis and mouse paw epidermis are made up of 6-10 keratinocyte cell layers and a well-defined stratum corneum barrier. Scale Bar = 100 μ m. (f) Graph depicts the average %L/R ratio (n=12) at each timepoint over a 5-day baseline in vivo imaging time-course and the error bars represent standard deviation of the mean.

Supplementary Figure 2: Full experimental dataset for PBS control treatments from native- and Accell-siRNA in vivo study presented in Fig. 2. In vivo images depicting the LLEs of all PBS control group animals from the intradermal injection native- and Accell-siRNA study. Images denoted by * represent the subject presented in Fig. 2a.

Supplementary Figure 3: Full experimental dataset for native-siRNA treatments from native- and Accell-siRNA in vivo study presented in Fig. 2. In vivo images depicting the LLEs of all native-siRNA treated animals from the intradermal injection native- and Accell-siRNA study. Images denoted by * represent the subject presented in Fig. 2a.

Supplementary Figure 4: In vitro validation of self-delivery siRNA. pK6a-Luc2p-HACAT cells were treated with increasing concentrations of native or self-delivery modified siLUC2P-2 or NSC4 siRNAs. Cell viability assays (resazurin metabolism) and firefly luciferase activities were measured 48 hours after treatment. Resazurin normalized firefly luciferase activities are expressed as percentages of activity at 0μ M. Error bars indicate standard deviations of the mean for biological replicate experiments (n = 3). Native-siRNAs had no knockdown effect on Luc2p activities in vitro. In contrast, Accell-siLUC2P-2 siRNAs specifically inhibited Luc2p activity at concentrations >2 μ M.

Supplementary Figure 5: Full experimental dataset for Accell-siRNA treatments from native- and Accell-siRNA in vivo study presented in Fig. 2. In vivo images depicting the LLEs of all Accell-siRNA treated animals from the intradermal injection native- and Accell-siRNA study. Images denoted by * represent the subject presented in Fig. 2a.

Supplementary Figure 6: Full experimental dataset for native-siRNA, Invivofectamine 2.0 and Injectin intradermal injection in vivo study presented in Fig. 3. In vivo images depicting the LLEs of all animals intradermally injected with PBS, native-siRNA, Invivofectamine 2.0-complexed native-siRNA or Injectin-complexed native-siRNA. Images denoted by * represent the subject presented in Fig. 3a.

Supplementary Figure 7: Full experimental dataset for native and self-delivery modified MO in vivo study presented in
Fig. 4. In vivo images depicting the LLEs of all animals intradermally injected with PBS, native-MOs, or Images denoted by * represent the subject presented in Fig. 4a.

Supplementary Figure 8: Inhibition of luciferase activity achieved via topical delivery of siRNAs using Aquaphor® Healing Ointment. (a) Aquaphor® Healing Ointment containing native- or Accell-siRNAs was topically applied to the footpads of anesthetized FLG-luc2p^{+/-} mice (3/group) for 50 min; treatments were repeated every 24 h for 5 days (Days 0-4). Left paws were treated with siLUC2P-2 (300 pmol) and right paws with NSC4 (300 pmol). Control group received Aquaphor® ointment on the left paw and no treatment on the right paw. Luciferase activity was monitored at 24 h intervals until signals returned to baseline (%L/R ratio \approx 100; Day 6). (b) Graph depicts the average %L/R ratio for each treatment group over the 7-day time-course and the error bars represent standard deviation of the mean.

Hegde et. al., In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation.

Supplementary Figure 9: Full experimental dataset for the siRNA-ointment formulation in vivo study presented in Fig. 5. In vivo images depicting the LLEs of all animals treated with the Aquaphor®-PG alone or with 300 pmol native- or Accell-modified siRNAs. Images denoted by * represent the subject presented in Fig. 5a.