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Supplementary Methods

Comparing Possible Transformed Pearson Correlations in Step 1 of InSpiRe

The choice of the transformation of the Pearson correlations to construct the stochastic matrix described
in the Materials and Methods must ensure non-negativity, and that interpretation of a high edge weight
indicative of an increased likelihood of interaction between connected proteins is valid. We considered two
possible transformations:

wij =
1

2
(1 + Cij) (1)

and
wij = |Cij | (2)

where Cij denotes Pearson correlation in the gene expression pro�les of protein i and protein j across samples
corresponding to the phenotype considered. Equation (1) assumes that signal transduction �ows preferably
along paths of proteins with positively correlated gene expression pro�les and has been employed previously
[1, 2]. It was noted, however, that this was only an approximation [1], and there is mounting evidence that
negative correlations play an important role in signal transduction [3], consequentially the transformation
described by equation (2), which assigns both strong positive and strong negative correlations a high weight
may be considered more realistic for this interpretation.
We utilised both transformations independently and upon performing analysis described in the methods to
identify proteins signi�cantly rewiring between FSHD and control skeletal muscle, we found that the trans-
formation (2) provided a substantially better discriminator than (1) as judged by p-value histograms [4]. In
fact, all p-value histograms utilising the transformation described in (1) were �at, implying that in utilising
this transformation one is unable to reliably determine di�erences between the phenotypes. Consequentially
all results described in this work were obtained utilising the more realistic transformation (2).
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Statistical Analysis via the Jackknife

The jackknife procedure was employed previously to analyse di�erential local �ux entropies [1], the method-
ology is considered superior to the bootstrap estimation (for our purposes) which is known to arti�cially
in�ate correlations [1, 5].
Jackknife estimation is performed as follows: given a quantity X (e.g. a di�erential local �ux entropy), we
�rst estimate X from our entire data set, consisting of n samples, denoting this estimate by X̂. We next
compute n subsequent estimators (Xi)

n
i=1, from the data set, by removing each sample, one at a time, and

re-estimating X. We then compute an estimate for the mean Xµ and the variance Xσ of X via:

Xµ := nX̂ − (n− 1)

n

n∑
i=1

Xi (3)

Xσ =
V ar[nX̂ − (n− 1)Xi]

n− 1
. (4)

We then compute a Z statistic

Z =
Xµ√
Xσ

∼ N (µ, 1). (5)

which can be used to test the hypotheses on the mean of the quantity X. In our analyses the X will either
be a di�erential local �ux entropy a di�erential correlation or a Kullback-Leibler divergence, hence the null
hypothesis will be that the mean of the quantity if 0. Statistical signi�cance is assessed at the 5% level.

Comparing methodologies

To evaluate the performance of InSpiRe relative to other methodologies, we applied InSpiRe, NetWalk [6]
and GSEA [7] on di�erentially expressed genes to each FSHD data set independently, and evaluated the
enrichments of identi�ed genes.

Di�erential expression analysis

Di�erential expression analysis was performed on normalised data sets matched to the protein interaction
network using the limma package in R [8]. Gene set enrichment analysis (GSEA) [7] was then performed
against the gene sets of the Molecular Signatures Database [9], using the t-scores output by the limma
analysis to rank the genes. Gene sets identi�ed by GSEA as displaying p < 0.05 and FDR < 0.25 were
considered signi�cantly enriched.

NetWalk analysis

NetWalk is a network based algorithm which considers the stationary distribution of a weighted random
walk on a network of compiled interactions. Weights on network nodes are data derived and bias walker
visitation in a biologically relevant manner. We implemented NetWalk on normalised data sets using the
NetWalker software [10], and employing the compiled Knowledgebase provided as the underlying network
for implementation; functional annotation of identi�ed edges was performed using the FunWalk option. The
ith element of the weight �ux vector, (w)Ni=1, where N is the number of genes in the microarray, for a given
data set, was de�ned as the ratio of the mean expression the ith probe across samples corresponding to the
phenotype examined (disease, aged, atrophic) to the mean expression across control samples. This selection
is a recommended option [10]. In order to ensure the �ndings of NetWalk were statistically robust, we utilised
the jackknife re-sampling procedure (see above) to assess signi�cance of edge visitation ratios, and functional
annotation ratios.
As with the methodology developed in this paper, NetWalk was run independently on each data set to produce
a list of signi�cant functional terms, and each FSHD data set identi�ed around 3000 signi�cant functional
terms. The intersection of the signi�cant functional terms in the FSHD data set consisted of 266 terms,
and contained several terms associated to oxidative stress, apoptosis and mitochondrial dysfunction. When
terms also associated with age, atrophy and other diseases were removed from this intersection however, only
19 terms remained, none of which had a strong justi�cation to association with FSHD in the literature.
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Functional annotation for InSpiRe implicated genes

Functional annotation of InSpiRe implicated genes was performed on the signi�cant genes (p < 0.05) impli-
cated by local �ux entropy or local symmetrised KL divergence, using the DAVID Bioinformatics Resources
6.7 [11]. The p-value cut o� for the Fisher's exact test (EASE score) employed by the DAVID software for
implicating enriched pathways was 0.05. The background gene set utilised consisted of all the genes in the
protein interaction network.

Comparison

To compare the relevance of the results output by the various methodologies, we considered 14 FSHD as-
sociated pathways: Wnt signalling, TNF or MAPK related signalling, vasculature development, calcium
signalling, oxidative stress response, cell cycle, apoptosis, mitochondrial dysfunction, asymmetrical develop-
ment, muscle structure, nuclear envelope, muscle di�erentiation, histone modi�cation and actin cytoskeletal
signalling. For each pathway we gave each method a score from 0 to 4 corresponding to the number of FSHD
data sets it was capable of detecting the pathway in. Of the three methodologies considered InSpiRe was
the most successful, achieving an average score of 3.5, NetWalk achieved 3.29 and GSEA on di�erentially
expressed genes achieved 1.86. A summary of the results is provided in Figure S5.

The FSHD Network

The FSHD network is provided as a Supplementary �le: FSHDNetwork.cys, this �le can be opened and the
network examined using the freely available software Cytoscape [12], available to download from
http://www.cytoscape.org/.

Supplementary Table Captions

Table S1 A full summary of local �ux entropy and Kullback-Leibler divergence statistics for each FSHD
dataset considered for the core 164 genes signi�cantly rewiring speci�cally in FSHD muscle and not at-
tributable to atrophy, ageing or other muscle diseases.

Supplementary Figures
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A) HIF1A in Control Muscle

B) HIF1A in FSHD Muscle

Figure 1: The neighbourhood of HIF1A in the FSHD network. Interactions are coloured proportional
to the Pearson correlation in gene expression between connected genes across control samples (A) and
FSHD samples (B). Red edges are negatively correlated, grey edges uncorrelated and green edges positively
correlated. The thickness of edges is proportional to 1− p where p ∈ (0, 0.05] is the p-value of the statistical
analysis performed to determine whether the correlation in gene expression between connected edges is
di�erent between FSHD and controls. Large nodes belong to the core set of 164 high con�dence FSHD
speci�c rewiring genes. Note the strong increase in correlation between HIF1A and CTNNB1.
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Figure 2: The neighbourhood of MAP4K5 in the FSHD network. Interactions are coloured proportional to
the Pearson correlation in gene expression between connected genes across control samples (A) and FSHD
samples (B). Note the strong increase in correlation between MAP4K5 and TRAF2.
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Figure 3: The neighbourhood of PARP2 in the FSHD network. Interactions are coloured proportional to
the Pearson correlation in gene expression between connected genes across control samples (A) and FSHD
samples (B). Note the altered interaction between PARP2 and BRCA1 in FSHD.
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Figure 4: The neighbourhood of JUNB in the FSHD network. Interactions are coloured proportional to
the Pearson correlation in gene expression between connected genes across control samples (A) and FSHD
samples (B). The interaction between JUNB and FOS is signi�cantly altered in FSHD muscle.
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Figure 5: Comparing InSpiRe to NetWalk and GSEA on di�erentially expressed genes. Each method is
scored with the number of data sets considered in which it identi�es a given pathway. The average score
across all pathways is highest for InSpiRe.
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