Supplemental Data. Tong et al. (2014). Plant Cell 10.1105/tpc.114.132092

Supplemental Figure 1. Exogenous BR inhibits cell elongation in the leaf sheath.

Longitudinally hand-cut slices of the second leaf sheath were used for microscopy observation.

(A) Mesophyll cell. Five cells were bracketed for comparison.

(B) Epidermal cell. One cell was bracketed for comparison.

Supplemental Figure 2

Supplemental Figure 2. GA affects wild-type plant growth.

(A) Coleoptile elongation in response to GA.

(B) Root response to GA.

Bars indicate SD (n=15). * and ** indicate P<0.05 and P<0.01, respectively in Student's *t*-test analysis.

Supplemental Figure 3

Supplemental Figure 3. Comparison of plant height of BR-related plants. The second leaf sheath length of enhanced BR-signaling plants (A), BR-accumulated plants (B), and short-term (two-day) BL-treated plants (C and D) at the seedling stage or plant height at the reproductive stage (E). P values were calculated using Student's *t*-test compared to their respective wild types or control. Bars indicate SD. Sample size was indicated on each panel.

Supplemental Figure 4

Supplemental Figure 4. Expression of *D2* and *D11* in response to various BR concentrations in shoot. *P<0.05 and **P<0.01 in *t*-test analysis. Bars indicate SD (n=3).

Supplemental Figure 5

Supplemental Figure 5. Root response to BR in GA related mutant plants.

Plants were grouped by different backgrounds or independent experiments. Bars indicate SD (n=8 for *gid2*, *slr1*, and *gid1*; n=15 for others).

Supplemental Figure 6. The effect of GA and PAC application on GSK2 and BZR1 protein level. One-week-old seedlings were treated with 10^{-5} M PAC or indicated concentrations of GA₃ and grew for two days. A unspecific band blotting with BZR1 antibody was used as internal reference.

Supplemental Figure 7. Response of brd1 alleles to GA treatment.

(A) and (B) Response of the most severe alleles (A, *brd1*, identified by Mori et al., 2002; B, *brd1-1*, identified by Hong et al., 2002) to GA treatment. The enlarged images in the right panel show no visible leaf sheath was developed in either of the mutants.

(C) and (D) Response of *brd1-3*, the relatively weak allele, to GA treatment. Both leaf sheath and leaf blade of *brd1-3* have obviously elongated in response to GA (C). Statistical data for the third leaf sheath were shown in (D). Bars indicate SD (n=5).

Os BZR1-BD Leu-Trp- Leu-Trp-His-Ade-

Supplemental Figure 8. SLR1 interacts with Os BZR1 in yeast.

Co-transformation of Os *BZR1-BD* and *SLR1-AD* can activate reporter gene expression in yeast two-hybrid analysis.

Supplemental Table 1. Information of the mutants and the transgenic plants used in this study. References were provided for the materials reported previously. Shi., Shiokari; Nip., Nipponbare; TC65, Taichang65; ZH11, Zhonghua11.

Classification	Name	Wild type	Information	Reference
BR-deficient	d2-2	Shi.	ebisu dwarf	Hong et al., 2003
	d11-2	Shi.	dwarf11	Tanabe et al., 2005
	brd1	Nip.	brassinosteroid-deficient dwarf1, strong allele	Mori et al., 2002
	brd1-1	Nip.	<i>brd1</i> strong allele	Hong et al., 2002
	brd1-3	Nip.	brd1 relatively slightly weaker allele	Hong et al., 2002
BR-accumulated	m107	Nip.	T-DNA insertion mutant with BR biosynthetic	Wan et al., 2009
			gene D11 activated	
Decreased	d61-1	TC65	dwarf61, bri1, weak allele	Yamamuro et al., 2000
BR-signaling	d61-2	TC65	d61 relatively strong allele	Yamamuro et al., 2000
	Go-2	ZH11	GSK2-overexpression plant	Tong et al., 2012
	dlt	ZH11	dwarf and low-tillering	Tong et al., 2009
Enhanced	Gi-2	ZH11	<i>GSK2-RNAi</i> plant	Tong et al., 2012
BR-signaling	Do-1	ZH11	DLT-overexpression plant, weak line	Tong et al., 2012
	Do-2	ZH11	Do relatively strong line	Tong et al., 2012
	Do-3	ZH11	Do mild line	Tong et al., 2012
GA-deficient	d18-Id18 ^h	Shi.	dwarf18 with defective GA3ox-2	Itoh et al., 2001
	d35	Shi.	dwarf35 with defective KO2, ko2-2	Itoh et al., 2004
	sd1	ZH11	semi-dwarf1 with 7-bp deletion at 546-552 of	Newly identified
			GA200x-2	
	GA2-lox	TC65	GA2ox-1-overexpression plant	Newly developed
GA-accumulated	eui1-4	ZH11	elongated uppermost internode	Luo et al., 2006
	GA20-lox	Nip.	GA20ox-1-overexpression plant	Newly developed
Decreased	gidl	Nip.	gibberellin insensitive dwarf1 with point	Newly identified
GA-signaling			mutation cDNA G(587) to T in GID1	
	gid2	TC65	gibberllin insensitive dwarf2	Sasaki et al., 2003
Enhanced	slr1	Nip.	slender with cDNA T(1101) deletion in SLR1	Newly identified
GA-signaling				

Analyte	GA ₁
Wild type	0.30±0.02
Do-1	0.33±0.02
Do-3	0.32±0.02
Do-2	0.31±0.01

Supplemental Table 2. Quantification of GA_1 in wild type and *Do* plants. Means \pm SD of three replicates are shown (ng/g F.W.).

Supplemental Table 3. Quantification of GAs in wild type, *m107*, and short-term BL-treated plants. Wild-type plants were treated with 10^{-6} M BL for two days. Means \pm SD of three replicates are shown (ng/g F.W.).

Analyte	GA1	GA8	GA19	GA20	GA29	GA44	GA53
Wild type	1.26±0.06	0.44±0.03	11.65±0.18	0.83±0.06	0.16±0.03	0.60±0.17	0.74±0.01
m107	7.20±0.18	3.14±0.19	5.97±0.19	0.19±0.03	0.07±0.01	0.58±0.19	0.75±0.01
BL	2.88±0.13	1.39±0.13	4.93±0.25	0.17±0.03	0.09±0.01	0.27±0.05	0.53±0.02

Supplemental Table 4. Quantification of CS in wild type and *m107*. Means \pm SD of three replicates are shown (ng/g F.W.).

Analyte	CS
Wild type	0.34±0.01
<i>m107</i>	$0.94{\pm}0.04$

Supplemental Table 5. Quantification of GAs in wild type and long-term BL-treated plants. Means \pm SD of three replicates are shown (ng/g F.W.).

-							
Analyte	GA1	GA8	GA19	GA20	GA29	GA44	GA53
Mock	0.30±0.02	0.47±0.02	15.41±1.80	1.06±0.06	0.24±0.03	5.43±0.21	2.34±0.17
10 ⁻⁶ M BL	0.14±0.01	0.16±0.00	8.62±0.75	0.47 ± 0.05	0.14±0.04	3.29±0.27	1.34±0.05
10 ⁻⁵ M BL	0.12±0.01	0.20±0.02	8.51±0.67	0.57±0.03	0.17±0.01	2.04±0.19	1.39±0.03

Name	Forward (5'-3')	Reverse (5'-3')				
For qRT-PCR:						
GA20ox-1	GCCACTACAGGGCCGACAT	TGGTTGCAGGTGACGATGAT				
GA20ox-2	CCAATTTTGGACCCTACCGC	GAGAGAAGCCCAACCCAACC				
GA3ox-2	TCCTCCTTCTTCTCCAAGCTCAT	GAAACTCCTCCATCACGTCACA				
GA2ox-1	TGACGATGATGACAGCGACAA	CCATAGGCATCGTCTGCAATT				
GA2ox-3	TGGTGGCCAACAGCCTAAAG	TGGTGCAATCCTCTGTGCTAAC				
D2	AGCTGCCTGGCACTAGGCTCTACAGATCA	ATGTTGTCGGAGATGAGCTCGTCGGTGAG				
D2	C	С				
D11	TTGGGTCATGGCATGGCAAGAGCAAGGA	TTGTTGCTGGAGCCAGCATTCCTCCTCT				
ACTINI	TGCTATGTACGTCGCCATCCAG	AATGAGTAACCACGCTCCGTCA				
For ChIP-qPCR:	For ChIP-qPCR:					
D2 P1	TCTCCTCAATCTCCCCTCTTT	CGAGTTCTAACCCACTTCGTG				
D2 P2	TAGGGACGAGTATGCGAACG	ACCGGTCACCACCACCATAC				
D2 P3	CGTCTCTACTCCCCCACTTG	GAGGAGAGCAGAGCAGAGGA				
<i>GA200x-2</i> P1	CGTATACCATGCGGTTATCG	CGTTTTAGGTGGGGTTACCA				
<i>GA200x-2</i> P2	CATGTGCCTGTATGGTGCAT	TGACAGGGAAATGGTTCCTC				
<i>GA200x-2</i> P3	AAAAGGAAGAGCTCGCTGTG	CGTGGAAAACTAAACCTCTGG				
<i>GA200x-2</i> P4	CAAGAAAGCCCGAGTCAATC	GTGCATTTCTTCCGGTGAAT				
GA3ox-2 P1	CCCAATGCATCCTCTCTCTC	CATCATCATCCATCCATCCA				
GA3ox-2 P2	CGAATGAAATTCGACGTGTATG	AACAGTAGCGTCCTCCGTTG				
GA3ox-2 P3	CCTCTCCCTTGTACTTGTCCAG	TGGCAGAAAGCCAGTAACAA				
GA2ox-3 P1	ATACGTTCGCCGATCTCATC	CAGTAGCTCACACGCACGAT				
GA2ox-3 P2	CTTGATTACTATTTTCTCCATCGAA	GCATGAGTAATTAGCAATAGAATGGA				
GA2ox-3 P3	CCCGTACCATACTCGACCAA	CATGGCTGCATAGGTGCATA				
GA2ox-3	TOCTOCOCA ACACCOTA A AC	TGGTGCAATCCTCTGTGCTAAC				
(3'-UTR)	IGGIGGUCAACAGUCIAAAG					
DLT	CCTGGCGTTCGAGTTCCA	TGGCGAGGACGCAGTTCA				
(codon region)						
ACTINI	TGGCATCTCTCAGCACATTC	GGCAAGCAACATTGTAAGCA				
(intron)						

Supplemental References

Hong, Z., Ueguchi-Tanaka, M., Shimizu-Sato, S., Inukai, Y., Fujioka, S., Shimada, Y., Takatsuto, S., Agetsuma, M., Yoshida, S., Watanabe, Y., Uozu, S., Kitano, H., Ashikari, M., and Matsuoka, M. (2002). Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J **32**, 495-508.

Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., Kitano, H., Matsuoka, M., and Kobayashi, M. (2001). Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA **98**, 8909-8914.

Itoh, H., Tatsumi, T., Sakamoto, T., Otomo, K., Toyomasu, T., Kitano, H., Ashikari, M., Ichihara, S., and Matsuoka, M. (2004). A rice semi-dwarf gene, *Tan-Ginbozu* (*D35*), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol. Biol. **54**, 533-547.

Luo, A., Qian, Q., Yin, H., Liu, X., Yin, C., Lan, Y., Tang, J., Tang, Z., Cao, S., Wang, X., Xia, K., Fu, X., Luo, D., and Chu, C. (2006). *EUI1*, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol **47**, 181-191.

Mori, M., Nomura, T., Ooka, H., Ishizaka, M., Yokota, T., Sugimoto, K., Okabe, K., Kajiwara, H., Satoh, K., Yamamoto, K., Hirochika, H., and Kikuchi, S. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol **130**, 1152-1161.

Sasaki, A., Itoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.H., An, G., Kitano, H., Ashikari, M., and Matsuoka, M. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science **299**, 1896-1898.

Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y., Kato, H., and Iwasaki, Y. (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, *dwarf11*, with reduced seed length. Plant Cell **17**, 776-790.

Tong, H., Liu, L., Jin, Y., Du, L., Yin, Y., Qian, Q., Zhu, L., and Chu, C. (2012). DWARF AND

LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell **24**, 2562-2577.

Tong, H., Jin, Y., Liu, W., Li, F., Fang, J., Yin, Y., Qian, Q., Zhu, L., and Chu, C. (2009). DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58, 803-816.

Wan, S., Wu, J., Zhang, Z., Sun, X., Lv, Y., Gao, C., Ning, Y., Ma, J., Guo, Y., Zhang, Q., Zheng, X., Zhang, C., Ma, Z., and Lu, T. (2009). Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Mol Biol **69**, 69-80.

Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M. (2000). Loss of function of a rice *brassinosteroid insensitive1* homolog prevents internode elongation and bending of the lamina joint. Plant Cell **12**, 1591-1606.