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Supplemental Figure 1

A B
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Supplemental Figure 1. Exogenous BR inhibits cell elongation in the leaf sheath.
Longitudinally hand-cut slices of the second leaf sheath were used for microscopy obser-
vation. 
(A) Mesophyll cell. Five cells were bracketed for comparison. 
(B) Epidermal cell. One cell was bracketed for comparison.
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Supplemental Figure 2

A B

Supplemental Figure 2. GA affects wild-type plant growth.
(A) Coleoptile elongation in response to GA. 
(B) Root response to GA. 
Bars indicate SD (n=15). * and ** indicate P<0.05 and P<0.01, respectively in Student’s 
t-test analysis.
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Supplemental Figure 3

Supplemental Figure 3. Comparison of plant height of BR-related plants. The second 
leaf sheath length of enhanced BR-signaling plants (A), BR-accumulated plants (B), and 
short-term (two-day) BL-treated plants (C and D) at the seedling stage or plant height at 
the reproductive stage (E). P values were calculated using Student’s t-test compared to 
their respective wild types or control. Bars indicate SD. Sample size was indicated on 
each panel.
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Supplemental Figure 4
B

Supplemental Figure 4. Expression of D2 and D11 in response to various BR concentrations in 
shoot. *P<0.05 and **P<0.01 in t-test analysis. Bars indicate SD (n=3).
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Supplemental Figure 5. Root response to BR in GA related mutant plants.
Plants were grouped by different backgrounds or independent experiments. Bars indicate SD (n=8 for 
gid2, slr1, and gid1; n=15 for others).
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Supplemental Figure 6

Supplemental Figure 6. The effect of GA and PAC application on 
GSK2 and BZR1 protein level. One-week-old seedlings were 
treated with 10-5 M PAC or indicated concentrations of GA3 and 
grew for two days. A unspecific band blotting with BZR1 antibody 
was used as internal reference.
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Supplemental Figure 7

Supplemental Figure 7. Response of brd1 alleles to GA treatment.
(A) and (B) Response of the most severe alleles (A, brd1, identified by Mori et al., 2002; B, brd1-1, 
identified by Hong et al., 2002) to GA treatment. The enlarged images in the right panel show no 
visible leaf sheath was developed in either of the mutants. 
(C) and (D) Response of brd1-3, the relatively weak allele, to GA treatment. Both leaf sheath and 
leaf blade of brd1-3 have obviously elongated in response to GA (C). Statistical data for the third leaf 
sheath were shown in (D). Bars indicate SD (n=5). 
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Supplemental Figure 8

Supplemental Figure 8. SLR1 interacts with 
Os BZR1 in yeast.
Co-transformation of Os BZR1-BD and 
SLR1-AD can activate reporter gene 
expression in yeast two-hybrid analysis. 



	  

Supplemental Table 1. Information of the mutants and the transgenic plants used in this study. References 

were provided for the materials reported previously. Shi., Shiokari; Nip., Nipponbare; TC65, Taichang65; 

ZH11, Zhonghua11. 

!

Classification Name Wild type Information Reference 

BR-deficient d2-2 Shi. ebisu dwarf  Hong et al., 2003 

d11-2 Shi. dwarf11 Tanabe et al., 2005 

brd1 Nip. brassinosteroid-deficient dwarf1, strong allele  Mori et al., 2002 

brd1-1 Nip. brd1 strong allele Hong et al., 2002 

brd1-3 Nip. brd1 relatively slightly weaker allele Hong et al., 2002 

BR-accumulated m107 Nip. T-DNA insertion mutant with BR biosynthetic 

gene D11 activated 

Wan et al., 2009 

 d61-1 Taichang6

5 

dwarf61 with defective BRI1, weak allele Yamamuro et al., 2000 Decreased 

BR-signaling 

d61-1 TC65 dwarf61, bri1, weak allele Yamamuro et al., 2000 

d61-2 TC65 d61 relatively strong allele Yamamuro et al., 2000 

Go-2 ZH11 GSK2-overexpression plant Tong et al., 2012 

dlt ZH11 dwarf and low-tillering  Tong et al., 2009 

Enhanced 

BR-signaling�  

Gi-2 ZH11 GSK2-RNAi plant Tong et al., 2012 

Do-1 ZH11 DLT-overexpression plant, weak line Tong et al., 2012 

Do-2 

Do-3 

ZH11 

ZH11 

Do relatively strong line 

Do mild line 

Tong et al., 2012 

Tong et al., 2012 

GA-deficient d18-Id18h Shi. dwarf18 with defective GA3ox-2  Itoh et al., 2001 

d35 Shi. dwarf35 with defective KO2, ko2-2 Itoh et al., 2004 

sd1 ZH11 semi-dwarf1 with 7-bp deletion at 546-552 of 

GA20ox-2  

Newly identified 

GA2-1ox TC65 GA2ox-1-overexpression plant Newly developed 

GA-accumulated�  eui1-4 ZH11 elongated uppermost internode  Luo et al., 2006 

GA20-1ox Nip. GA20ox-1-overexpression plant Newly developed 

Decreased 

GA-signaling 

gid1 Nip. gibberellin insensitive dwarf1 with point 

mutation cDNA G(587) to T in GID1 

Newly identified 

gid2 TC65 gibberllin insensitive dwarf2  Sasaki et al., 2003 

Enhanced 

GA-signaling 

slr1 Nip. slender with cDNA T(1101) deletion in SLR1  Newly identified 



	  

 
Supplemental Table 2. Quantification of GA1 in wild type and Do plants. Means ± SD of three replicates 
are shown (ng/g F.W.). 

Analyte GA1 

Wild type 0.30±0.02 

Do-1 0.33±0.02 

Do-3 0.32±0.02 

Do-2 0.31±0.01 

 
 
Supplemental Table 3. Quantification of GAs in wild type, m107, and short-term BL-treated plants. 
Wild-type plants were treated with10-6 M BL for two days. Means ± SD of three replicates are shown (ng/g 
F.W.).  
 

Analyte GA1 GA8 GA19 GA20 GA29 GA44 GA53 

Wild type 1.26±0.06 0.44±0.03 11.65±0.18 0.83±0.06 0.16±0.03 0.60±0.17 0.74±0.01 

m107 7.20±0.18 3.14±0.19 5.97±0.19 0.19±0.03 0.07±0.01 0.58±0.19 0.75±0.01 

BL 2.88±0.13 1.39±0.13 4.93±0.25 0.17±0.03 0.09±0.01 0.27±0.05 0.53±0.02 

 
 
Supplemental Table 4. Quantification of CS in wild type and m107. Means ± SD of three replicates are 
shown (ng/g F.W.). 

Analyte CS 

Wild type 0.34±0.01 

m107 0.94±0.04 

 
 
Supplemental Table 5. Quantification of GAs in wild type and long-term BL-treated plants. Means ± SD of 
three replicates are shown (ng/g F.W.). 

Analyte GA1 GA8 GA19 GA20 GA29 GA44 GA53 

Mock 0.30±0.02 0.47±0.02 15.41±1.80 1.06±0.06 0.24±0.03 5.43±0.21 2.34±0.17 

10-6 M BL 0.14±0.01 0.16±0.00 8.62±0.75 0.47±0.05 0.14±0.04 3.29±0.27 1.34±0.05 

10-5 M BL 0.12±0.01 0.20±0.02 8.51±0.67 0.57±0.03 0.17±0.01 2.04±0.19 1.39±0.03 

 



	  

Supplemental Table 6. Primers used for qRT-PCR and ChIP-qPCR analysis.  
 
 Name Forward (5’-3’) Reverse (5’-3’) 
For qRT-PCR: 
GA20ox-1 GCCACTACAGGGCCGACAT TGGTTGCAGGTGACGATGAT 
GA20ox-2 CCAATTTTGGACCCTACCGC GAGAGAAGCCCAACCCAACC 
GA3ox-2 TCCTCCTTCTTCTCCAAGCTCAT GAAACTCCTCCATCACGTCACA 
GA2ox-1 TGACGATGATGACAGCGACAA CCATAGGCATCGTCTGCAATT 
GA2ox-3 TGGTGGCCAACAGCCTAAAG TGGTGCAATCCTCTGTGCTAAC 

D2 
AGCTGCCTGGCACTAGGCTCTACAGATCA
C 

ATGTTGTCGGAGATGAGCTCGTCGGTGAG
C 

D11 TTGGGTCATGGCATGGCAAGAGCAAGGA TTGTTGCTGGAGCCAGCATTCCTCCTCT 
ACTIN1 TGCTATGTACGTCGCCATCCAG AATGAGTAACCACGCTCCGTCA 

For ChIP-qPCR: 

D2 P1 TCTCCTCAATCTCCCCTCTTT CGAGTTCTAACCCACTTCGTG 
D2 P2 TAGGGACGAGTATGCGAACG ACCGGTCACCACCACCATAC 
D2 P3 CGTCTCTACTCCCCCACTTG GAGGAGAGCAGAGCAGAGGA 
GA20ox-2 P1 CGTATACCATGCGGTTATCG CGTTTTAGGTGGGGTTACCA 
GA20ox-2 P2 CATGTGCCTGTATGGTGCAT TGACAGGGAAATGGTTCCTC 
GA20ox-2 P3 AAAAGGAAGAGCTCGCTGTG CGTGGAAAACTAAACCTCTGG 
GA20ox-2 P4 CAAGAAAGCCCGAGTCAATC GTGCATTTCTTCCGGTGAAT 
GA3ox-2 P1 CCCAATGCATCCTCTCTCTC CATCATCATCCATCCATCCA 
GA3ox-2 P2 CGAATGAAATTCGACGTGTATG AACAGTAGCGTCCTCCGTTG 
GA3ox-2 P3 CCTCTCCCTTGTACTTGTCCAG TGGCAGAAAGCCAGTAACAA 
GA2ox-3 P1 ATACGTTCGCCGATCTCATC CAGTAGCTCACACGCACGAT 
GA2ox-3 P2 CTTGATTACTATTTTCTCCATCGAA GCATGAGTAATTAGCAATAGAATGGA 
GA2ox-3 P3 CCCGTACCATACTCGACCAA CATGGCTGCATAGGTGCATA 
GA2ox-3 
(3’-UTR)  

TGGTGGCCAACAGCCTAAAG TGGTGCAATCCTCTGTGCTAAC 

DLT  
(codon region) 

CCTGGCGTTCGAGTTCCA TGGCGAGGACGCAGTTCA 

ACTIN1 
(intron) 

TGGCATCTCTCAGCACATTC GGCAAGCAACATTGTAAGCA 
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