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I. EXTRACTING THE CORE

A. Intersection of different levels of the multiplex system

Let us have a graph G(V,E) where V = {v1, ..., vn} is the set of nodes and E = {ei, ..., em} the set of links
connecting this nodes. Given a node vi its degree is the number of first neighbors, or nodes a given node is linked
to, to be written as k(vi). The probability that a randomly choosen has degree k is p(k). The first moment of the
degree distribution gives us the average degree 〈k〉 =

∑
k kp(k) [1]. Social systems are better described by means of

multiplex graphs, [2] which can be thought of as different graphs sharing the same set of nodes. In a multiplex graph,
M, the set of nodes V = {v1, ..., vn} can be connected by different types of relations or links E = {Eα1 , ..., EαM },
Eαk = {ei(αk), ..., em(αk)}. The whole multiplex system is thus described by:

M =M(V,Eα1 × ...× EαM ). (1)

In these networks, concepts such as degree distribution or average degree are relative to the type of relations (links)
we are interested in. Now let E′ = {Eαi , ..., Eαk}, E′ ⊂ E, be a subset of the overall type of potential relations that
can exist between two nodes. We define the E′-intersection network, GE′ as follows:

GE′ = G
V, ⋂

Eαi∈E′
Eαi

 (2)

In this network, links connect those pairs of nodes which are connected, at least, by links of type Eαi , ..., Eαk . Links
in GE′ are called multilinks.

B. The backbone of the multiplex system

A special and particularly interesting case of equation (2) is the graph of the intersection of all types of relations, GI
(to be named GFCT , in the main text), which depicts the backbone of the multiplex system depicted by M, namely:

GI = G
V, ⋂

1≤i≤M

Eαi

 . (3)

We point out that we have to be careful when choosing the different sets of links Eα1 , ..., EαM , since antagonistic
relationships (such as enmity and friendship) can lead to empty intersections. We thereby restrict the definition of
the intersection graph when this is performed over compatible sets of links.

C. The Generalized K-core subgraph

The Generalized K-core subgraph of a given graph G, GK(G) or GK-core of G, is the maximal induced subgraph
within which every node is either a hub (its degree is equal or higher than K) or a connector (its degree is lower than
K but it connects at least 2 hubs). Increasing the threshold K we obtain the decomposition sequence of G in terms of
GK , namely:

... ⊆ GK(G) ⊆ GK−1(G) ⊆ ... ⊆ G2(G) ⊆ G.
We will refer to the above sequence as the GK-decomposition sequence of G. The GK-core of a given graph G can be
obtained through an iterative pruning process: Suppose an operation HK(G) by which we prune all the nodes vi ∈ G
satisfying both that
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FIG. 1: Evolution of the size of the GK-cores (a), K-cores (b) and the average connectivities of the GK-cores as a function
of the threshold K in a B-A ensemble containing 3000 nodes and with 〈k〉 = 12. Evolution of the size of the GK-cores (d),
K-cores (e) and the average connectivities of the GK-cores (f) as a function of the threshold K in a ER ensemble containing
3000 nodes and with 〈k〉 = 12. See text for details.

• its degree is lower than K and

• at most 1 of its nearest neighbors has degree equal or higher than K.

If we iteratively apply this operation over a finite graph G,

Hn
K(G) =

n︷ ︸︸ ︷
HK ◦ ... ◦HK(G),

we will reach a value, n = N , by which (∀M > N) HN
K (G) = HM

K (G). We can take it as a definition of the generalized
K-core, by saying that:

GK(G) = HN
K (G). (4)

The equivalence between this definition and the one provided above can be easily checked: Indeed, on one hand, the
algorithm itself forbids the presence of a node which is neither a hub or a connector, because, thank to its iterative
nature, it only stops when all surviving nodes satisfy the conditions to belong to the GK . On the other hand, we
observe that the set isolated by the iterative algorithm is maximal: If a node (or a set of nodes) satisfies the conditions
imposed by the algorithm, it is not pruned. We observe that, in any finite graph, ∃K∗ by which although GK∗ 6= ∅,
(∀K > K∗) GK(G) = ∅. We will refer to GK∗(G) as the deepest GK-core of G.

Due to the potential richness of connectivity patterns that are allowed inside the GK-core, we can categorize its
nodes according to their topological roles:

• GCon
K (G) is the set of nodes of GK(G) whose degree is lower than K, the K-connectors,

• GHub
K (G) is the set of nodes of GK(G) whose degree is equal or higher than K, the K-hubs.

• The set of K-critical connectors. A K-critical connector is a K-connector whose removal implies the breaking
of the GK(G) in two or more parts. We can analogously define the set of K-critical hubs.

D. The K-core subgraph

For the K-core definition and the exploration of its interesting properties, we refer the interested reader to [3–5].
The K-core of a given graph G, KC(G), is the maximal induced subgraph whose nodes have degree at least K. It
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can be obtained through the application of an algorithm qualitatively close to the one described above by iteratively
removing nodes whose degree is lower than K. The sequence

... ⊆ KC(G) ⊆ (K − 1)K(G) ⊆ ... ⊆ 2C(G) ⊆ G.
is the KC-decomposition sequence, and the largest K by which KC(G) 6= ∅, the deepest K-core, will be referred to
as K∗C(G).

E. The M-core subgraph

We end this section by describing the M -core subgraph. We refer the interested reader to [7]. The M -core of a
given graph G, M(G) is the maximal induced subgraph whose links participate, at least in M triangles. The M -core
can be obtained by the application of an iterative algorithm as the one presented above which iteratively removes
links participating in less than M triangles. Although it has not been used for the particular purposes of the current
study, we can also define a M -core decomposition sequence in the same way we did with the GK-core and the K-core.

II. MODEL NETWORKS

We now explore the behavior of the GK decomposition of two standard models of random graphs, namely, the
Erdös-Rényi (ER) graph [1] and the Barabási-Albert (BA) graph [6]. For every type of graph we create an ensemble
of 100 networks each, with 〈k〉 = 12 in both the BA and the ER ensemble. We compute the evolution of the Giant
Connected Component of all the non-empty GK-cores and K-cores of the corresponding decomposition sequences and
we plot them as a function of the threshold defined by K, see Fig. 1. For the BA scale-free networks, we observe a
long decomposition sequence, thereby obtaining a picture of the core topology of the net at many different levels, see
Fig. 1a.The behavior of the GK-decomposition sequence for the ER ensemble shows that the GK-core is either the
whole graph or empty which can be due to the almost uniform degree distribution of this kind of graph see Fig. 1d.
The behavior of the two ensembles is qualitatively similar under the KC-decomposition, showing an all-to-nothing
transition at values close to 〈k〉/2, see Fig. 1b,e. The average degree of the successive GK-core subgraphs shows a
slightly descending trend, whereas it remains constant in the case of the ER ensemble, mainly because, if the GK-core
is non-empty, it contains almost the whole graph. The counterintuitive decay in 〈k〉 for the BA ensemble can be
explained by the increasing relative abundance of connectors against hubs within GK as long as K increases.

III. INDICATORS OF PERFORMANCE

We explored the behavior of 7 quantitative indicators of social performance within the ‘Pardus’ game
(www.pardus.at):

• Experience is a numerical indicator accounting for the experience of the player, related to battles in which the
player has participated, or the number monsters he/she killed.

• Activity is a numerical indicator related to the number of actions performed by the player.

• Age is the number of days after the player joined the game,

• Wealth, numerical indicator accounting for the wealth of the player within the game. Wealth accounts for cash
money, value of the equipment the player owns within the game.

• Fraction of leaders fraction of players who are leaders in some aspect in a given alliance. Alliance should not
be confused with nations. Alliances are small, organized groups of players. In the studied universe, we identify
around ∼ 140 different alliances. Every alliance has its own local leaders.

• Global leadership is numerical indicator evaluating the degree of leadership of the player. It is increased by
doing missions, which are mainly transporting goods or killing monsters. The higher the Global leadership, the
more powerful items may be bought – and the more missions are required to reach the next level. In general we
can say that the higher this indicator, the more powerful and influential is the player within the whole society
defined by the game.

• Gender composition evaluates the fraction of males within a given group of players.
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In the table we show the scores of all these indicators for all 7 studied graphs at their respective K̃ and K∗-levels.
We distinguish between connectors and hubs. We compute theses social indicators for the K∗-core as well.c The last
column NumberInd is the number of individuals of the observed subset of nodes.

In tables I and II we provide the above mentioned social indicators of the nodes belonging to i) the critical GK-cores
and their hubs, ii) the deepest GK-cores and their hubs, iii) the deepest K-core subgraphs and the whole networks.

IV. SOCIAL NETWORKS OF THE ’PARDUS’ VIRTUAL SOCIETY

Throughout the paper we based our analysis in three social networks, namely:

• Communication network: A link between two players is established if they had a communicative interaction
(a player sent a message to the other player, regardless the direction of the informative exchange) within the
period under study.

• Trade network: A link is established if two players had a commercial relation within the period under study.

• Friendship network: A link is established if a given player identifies the other as ’friend’. This identification an
be previous to the period of study; each player has a list of those players who are tagged as friends within the
virtual society.

We studied two periods of time: i) from day 796 to day 856 and ii) from day 1140 to day 1200; being the day ’0’ the
day in which the game was launched. In figures 2-8 we study the evolution of basic statistical indicators of the studied
networks and the intersections we can extract from them. In black we have the behaviour of the real networks, in
read, the average behaviour of an ensemble of 25 randomised versions of the original one. Networks obtained through
intersection are randomised after performing the intersection. Otherwise, it is likely that we would end up quickly to
empty networks.
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FIG. 2: Evolution of the size of the Giant Connected Component of the K-core for the networks corresponding to the period
796-856 as a function of K. a) GFTC , b) GFC , c) GFT , d) GTC , e) GC , f) GT , g) GF and the networks corresponding to the
period 1140–1200, h) GFTC , i) GFC , j) GFT , k) GTC , l) GC , m) GT , n) GF . Black triangles depict the behaviour of real networks,
red circles and their associated error bars depict the average behaviour of an ensemble of 25 randomised versions of the original
networks.
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FIG. 3: Evolution of the size of the Giant Connected Component of the GK-core for the networks corresponding to the period
796–856 as a function of K. a) GFTC , b) GFC , c) GFT , d) GTC , e) GC , f) GT , g) GF . Black triangles depict the behaviour of real
networks, red circles and their associated error bars depict the average behaviour of an ensemble of 25 randomised versions of
the original networks.
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FIG. 4: Evolution of the size of the Giant Connected Component of the GK-core for the networks corresponding to the period
1140–1200 as a function of K. a) GFTC , b) GFC , c) GFT , d) GTC , e) GC , f) GT , g) GF . Black triangles depict the behaviour of
real networks, red circles and their associated error bars depict the average behaviour of an ensemble of 25 randomised versions
of the original networks.
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FIG. 6: Evolution of the average degree of the Giant Connected Component of the GK-core for the networks corresponding
to the period 1140–1200 as a function of K. a) GFTC , b) GFC , c) GFT , d) GTC , e) GC , f) GT , g) GF . Black triangles depict
the behaviour of real networks, red circles and their associated error bars depict the average behaviour of an ensemble of 25
randomised versions of the original networks.



8

0 10 20 30
0

0.2

0.4

0.6

0.8

A

<
C

>
 G

K
−

co
re

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B

0 10 20 30
0

0.2

0.4

0.6

0.8
C

K
0 20 40 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D

K

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

E

K

<
C

>
 G

K
−

co
re

0 50 100 150
0

0.1

0.2

0.3

0.4

F

K
0 50 100

0

0.1

0.2

0.3

0.4

G

K

FIG. 7: Evolution of the average clustering coefficient of the Giant Connected Component of the GK-core for the networks
corresponding to the period 796–856 as a function of K. a) GFTC , b) GFC , c) GFT , d) GTC , e) GC , f) GT , g) GF . Black triangles
depict the behaviour of real networks, red circles and their associated error bars depict the average behaviour of an ensemble
of 25 randomised versions of the original networks.
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TABLE I: Table with the social indicators. Period 796-856
〈Experience〉 〈Activity〉 〈Age〉 〈Wealth〉 gendComp FracLead 〈GlobalLead〉 NInd

GFCT

Characteristic GK 4.9× 105 3.6× 106 684 5.37× 107 0.809 0.127 8.53 110

Hubs 6.03× 105 4.57× 106 735 5.89× 107 0.947 0.526 9.32 19

Deepest GK 6.24× 105 4.45× 106 777 7.89× 107 0.88 0.08 10 25

Hubs 1.56× 106 6.14× 106 855 8.03× 107 1 1 13 2

Deepest K-Core 1 4.34× 105 3.7× 106 675 4.88× 107 0.7 0.3 9.1 10

All Net 3.59× 105 2.81× 106 615 3.19× 107 0.871 0.165 6.84 1564

GFC

Critical GK 3.77× 105 2.97× 106 639 3.45× 107 0.875 0.14 6.96 784

Hubs 5.51× 105 3.8× 106 690 4× 107 0.885 0.33 8.24 288

Deepest GK 5.71× 105 3.71× 106 691 4.64× 107 0.907 0.215 8.78 107

Hubs 8.68× 105 4.97× 106 718 4.26× 107 1 0.8 9.4 5

Deepest K-Core 2 7.11× 105 4.36× 106 724 5.16× 107 0.841 0.305 9.18 82

All Net 3.43× 105 2.7× 106 610 2.91× 107 0.868 0.145 6.63 1915

GFT

Characteristic GK 4.6× 105 3.39× 106 688 4.62× 107 0.797 0.138 8.08 123

Hubs 6.54× 105 4.8× 106 792 6.02× 107 0.929 0.429 8.86 14

Deepest GK 6.14× 105 4.41× 106 786 7.42× 107 0.857 0.107 10.2 28

Hubs 1.56× 106 6.14× 106 855 8.03× 107 1 1 13 2

Deepest K-Core 3 4.23× 105 3.71× 106 687 5.53× 107 0.727 0.273 8.91 11

All Net 3.37× 105 2.68× 106 618 2.89× 107 0.871 0.137 6.64 2012

GCT

Characteristic GK 3.63× 105 2.8× 106 615 3.02× 107 0.862 0.116 7.06 950

Hubs 4.89× 105 3.61× 106 647 5.01× 107 0.905 0.293 8.88 222

Deepest GK 6.04× 105 4.04× 106 745 5.93× 107 0.947 0.158 10.1 76

Hubs 1.09× 106 5.36× 106 835 9.25× 107 1 0.333 11.3 3

Deepest K-Core 4 6.3× 105 4.2× 106 741 7.85× 107 0.971 0.176 10 34

All Net 3.18× 105 2.57× 106 606 2.72× 107 0.872 0.128 6.55 2196

GC

Deepest GK 5.37× 105 3.68× 106 693 4.22× 107 0.915 0.23 8.15 248

Hubs 9.71× 105 5.14× 106 709 5.18× 107 1 0.5 8.5 4

Deepest K-Core 6.67× 105 4.24× 106 716 4.63× 107 0.93 0.279 8.76 129

GT

Deepest GK 4.27× 105 3.11× 106 657 3.45× 107 0.884 0.149 7 1019

Hubs 5.17× 105 4.15× 106 766 6.69× 107 0.733 0.167 9.1 30

Deepest K-Core 3.82× 105 2.88× 106 600 3.34× 107 0.896 0.127 8.49 347

GF

Characteristic GK 1.72× 105 1.66× 106 512 1.52× 107 0.874 0.0402 5.69 697

Hubs 4.07× 105 3.13× 106 687 3.35× 107 0.87 0.171 6.96 1487

Deepest GK 5.34× 105 3.6× 106 712 4.3× 107 0.868 0.196 7.31 372

Hubs 9.32× 105 4.96× 106 807 6.18× 107 0.818 0.455 10.1 11

Deepest K-Core 6.81× 105 4.33× 106 775 4.85× 107 0.881 0.252 8.1 218

All Players 3.07× 105 2.5× 106 606 2.59× 107 0.87 0.119 6.39 2422
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TABLE II: Table with the social indicators. Period 1140-1200

〈Experience〉 〈Activity〉 〈Age〉 〈Wealth〉 gendComp FracLead 〈GlobalLead〉 NInd

GFCT

Characteristic GK 7.72× 105 5.69× 106 1.02× 103 9.84× 107 0.885 0.195 10.7 87

Hubs 1.01× 106 6.86× 106 1.08× 103 1.23× 108 0.933 0.4 11.4 15

Deepest GK 9.78× 105 5.96× 106 1.09× 103 1.14× 108 0.962 0.154 11.3 26

Hubs 5.69× 105 7.39× 106 1.2× 103 3.03× 108 1 1 12 2

Deepest K-Core 7.18× 105 6.23× 106 1.09× 103 1.4× 108 0.889 0.111 11 9

All Net 4.86× 105 3.88× 106 857 4.87× 107 0.875 0.165 7.64 1303

GFC

Characteristic GK 8.47× 105 5.72× 106 1.04× 103 7.69× 107 0.884 0.207 9.41 121

HUBS 1.32× 106 6.96× 106 1.15× 103 1.24× 108 0.778 0.333 12.6 9

Deepest GK 8.07× 105 5.59× 106 1.01× 103 6.37× 107 0.882 0.235 8.69 85

Hubs 1.53× 106 6.84× 106 1.13× 103 7.26× 107 0.714 0.143 12.7 7

Deepest K-Core 9.4× 105 6.03× 106 1.01× 103 6.66× 107 0.882 0.329 9.5 76

All Net 4.69× 105 3.72× 106 842 4.35× 107 0.871 0.154 7.4 1600

GFT

Characteristic GK 8.48× 105 5.77× 106 1.05× 103 8.94× 107 0.892 0.169 10.6 83

Hubs 1.34× 106 7.37× 106 1.13× 103 1.8× 108 0.889 0.333 12.1 9

Deepest GK 9.2× 105 5.87× 106 1.11× 103 1.1× 108 0.935 0.194 11.3 31

Hubs 5.69× 105 7.39× 106 1.2× 103 3.03× 108 1 1 12 2

Deepest K-Core 7.18× 105 6.23× 106 1.09× 103 1.4× 108 0.889 0.111 11 9

All Net 4.76× 105 3.77× 106 869 4.46× 107 0.872 0.143 7.56 1660

GCT

Characteristic GK 7.38× 105 5.34× 106 989 9.17× 107 0.934 0.231 10.9 91

Hubs 4.68× 105 6.88× 106 1.11× 103 1.7× 108 1 0.6 11.8 5

Deepest GK 7.06× 105 5.43× 106 1.02× 103 1× 108 0.927 0.341 10.7 41

Hubs 2.98× 105 5.87× 106 982 4.03× 107 1 0.5 11 2

Deepest K-Core 9.53× 105 5.99× 106 1.03× 103 1.1× 108 0.912 0.206 11.3 34

All Net 4.33× 105 3.54× 106 831 4.22× 107 0.871 0.137 7.44 1788

GC

Deepest GK 6.25× 105 4.49× 106 884 5.53× 107 0.888 0.24 8.21 483

Hubs 5 1.21× 106 6.74× 106 1.03× 103 6.25× 107 0.929 0.429 10.1 14

Deepest K-Core 8.23× 105 5.57× 106 968 7.53× 107 0.874 0.394 8.77 127

GT

Deepest GK 4.27× 105 3.11× 106 657 3.45× 107 0.884 0.149 7 1019

Hubs 5.17× 105 4.15× 106 766 6.69× 107 0.733 0.167 9.1 30

Deepest K-Core 3.82× 105 2.88× 106 600 3.34× 107 0.896 0.127 8.49 347

GF

Characteristic GK 1.9× 105 1.88× 106 608 1.86× 107 0.86 0.0457 6.08 328

Hubs 5.05× 105 4× 106 925 4.65× 107 0.87 0.155 7.61 1585

Deepest GK 7.57× 105 5.34× 106 1.05× 103 5.96× 107 0.877 0.175 7.33 171

Hubs 1.39× 106 6.68× 106 1.15× 103 7.8× 107 0.6 0 12.8 5

Deepest K-Core 1× 106 6.12× 106 1.08× 103 6.83× 107 0.88 0.253 9.11 83

All players 4.3× 105 3.5× 106 841 3.96× 107 0.87 0.12 7.51 2059



11

[1] M. E. Newman, S. H. Strogatz, and D. J. Watts, Phys Rev E 64 (2001).
[2] M. Szell and S. Thurner, Social Networks 39, 313 (2010).
[3] S. B. Seidman, Social Networks 5, 269 (1983).
[4] B. Bollobás, Graph Theory and Combinatorics, Proc Cambridge Combinatorial Conf in honor to Paul Erdös, Academic

press pp. 35–57 (1984).
[5] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys Rev Lett 96, 040601 (2006).
[6] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
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