Appendix S1. Proofs.

Lemma 1

If $a, b \in \mathbb{N}$ and a, b > 0, then $\lambda(a, b) = \ln(1 + \frac{a}{b})$ b is an increasing function of b.

Proof

Since by hypothesis $\frac{a+b}{b} > 1$, and since $\partial_b (\lambda(a,b)) = \ln(\frac{a+b}{b}) + \frac{b}{a+b} - 1$, it is sufficient to prove that the function $\xi(z) = \ln(z) + z^{-1} - 1 > 0 \ \forall z > 1$. This follows from the fact that $\xi(1) = 0$ and $\xi'(z) = (z-1) \cdot z^{-2} > 0 \ \forall z > 1$.

Note: in the following proofs we refer without loss of generality to L instead of l: indeed, because l is a monotone transformation of L, the results hold true for both of them.

Denote with \mathbf{u}_{\downarrow} the non-increasing re-arrangement of the vector $\mathbf{u} = (u_1, \dots, u_n)$, so that if $\mathbf{v} = (v_1, \dots, v_n) = \mathbf{u}_{\downarrow}$ then $v_1 \geq v_2 \geq \dots \geq v_n$.

Property 1

If
$$\mathbf{x} = (x_1, \dots, x_{n_x})$$
 and $\mathbf{y} = (x_1, \dots, x_k + 1, \dots, x_{n_x})_+$ then $l(\mathbf{y}) > l(\mathbf{x})$.

Proof

Consider the two possible cases: 1) $k > n_x^*$ and 2) $k \le n_x^*$.

Suppose $h^*(\mathbf{x}) = h^*(\mathbf{y}) = h^*$.

1.
$$L(\mathbf{y}) - L(\mathbf{x}) = \sum_{i=1}^{h^*+1} [\lambda(x_i, y_i^*) - \lambda(x_i, x_i^*)].$$

As $C_y > C_x$ then $y_i^* \ge x_i^*$ for $i = 1, ..., h^*$ and there exists at least one element, say y_j^* , $j \in \{1, ..., h^*\}$, such that $y_j^* \ge x_j^*$. Thus Lemma 1 yields $\lambda(x_i, y_i^*) - \lambda(x_i, x_i^*) \ge 0$, for any $i = 1, ..., h^*$ and $\lambda(x_j, y_j^*) - \lambda(x_j, x_j^*) > 0$. Hence $L(\mathbf{y}) - L(\mathbf{x}) > 0$ and we obtain the thesis.

2. $L(\mathbf{y}) - L(\mathbf{x}) = \sum_{i \neq k} [\lambda(x_i, y_i^*) - \lambda(x_i, x_i^*)] + \lambda(x_k + 1, y_k^*) - \lambda(x_k, x_k^*), \text{ where } \sum_{i \neq k} [\lambda(x_i, y_i^*) - \lambda(x_i, x_i^*)] > 0 \text{ for point i)}.$ Moreover, $\lambda(a, b)$ is also an increasing function of a, thus $\lambda(x_k + 1, y_k^*) - \lambda(x_k, x_k^*) > 0$ which yields the thesis.

Suppose $h^*(\mathbf{x}) < h^*(\mathbf{y})$, then the thesis holds true a fortiori.

Property 2

Let $\mathbf{x} = (x_1, ..., x_{n_x}), \ \mathbf{y} = (x_1, ..., x_u + 1, ..., x_{n_x})_{\downarrow} \ and \ \mathbf{w} = (x_1, ..., x_v + 1, ..., x_n)_{\downarrow}.$ If $u \le n_x^* < v$, then $l(\mathbf{y}) > l(\mathbf{w})$.

Proof

Clearly, $\mathbf{y}^* = \mathbf{w}^*$ and $h^*(\mathbf{y}) = h^*(\mathbf{w}) = h^*$.

$$L(\mathbf{y}) - L(\mathbf{w}) =$$

$$= \sum_{i \neq u} \lambda(x_i, y_i^*) + \lambda(x_u + 1, y_u^*) - \sum_{i=1}^{h^* + 1} \lambda(x_i, y_i^*) =$$

$$= \sum_{i \neq u} \lambda(x_i, y_i^*) + \lambda(x_u + 1, y_u^*) - \sum_{i \neq u} \lambda(x_i, y_i^*) - \lambda(x_u, y_u^*) =$$

$$= \lambda(x_u + 1, y_u^*) - \lambda(x_u, y_u^*).$$
(1)

As $\lambda\left(a,b\right)$ is an increasing function of $a, \lambda\left(x_{u}+1,y_{u}^{*}\right)-\lambda\left(x_{u},y_{u}^{*}\right)>0$ which yields the thesis.

Property 3

Let $\mathbf{x} = (x_1, ..., x_{n_x})$, $\mathbf{y} = (x_1, ..., x_u + 1, ..., x_{n_x})_{\downarrow}$ and $\mathbf{w} = (x_1, ..., x_v + 1, ..., x_{n_x})_{\downarrow}$ and suppose $x_v \neq x_u$. If $u < v \leq h^*(\mathbf{x})$ then $l(\mathbf{y}) < l(\mathbf{w})$.

Proof

Clearly, $\mathbf{y}^* = \mathbf{w}^*$ and $h^*(\mathbf{y}) = h^*(\mathbf{w}) = h^*$.

$$L(\mathbf{y}) - L(\mathbf{w}) =$$

$$= \sum_{i \neq k, l} \lambda(x_i, x_i^*) + \lambda(x_u + 1, x_u^*) + \lambda(x_v, x_v^*) +$$

$$- \sum_{i \neq u, v} \lambda(x_i, x_i^*) - \lambda(x_u, x_u^*) - \lambda(x_v + 1, x_v^*) =$$

$$= \lambda(x_u + 1, x_u^*) + \lambda(x_v, x_v^*) - \lambda(x_u, x_u^*) - \lambda(x_v + 1, x_v^*) =$$

$$= \delta(u) - \delta(v), \qquad (2)$$

where $\delta\left(u\right) = \lambda\left(x_{u}+1, x_{u}^{*}\right) - \lambda\left(x_{u}, x_{u}^{*}\right) = x_{u}^{*} \ln \frac{x_{u}^{*}+x_{u}+1}{x_{u}^{*}+x_{u}}$ and $\delta\left(l\right) = \lambda\left(x_{v}+1, x_{v}^{*}\right) - \lambda\left(x_{v}, x_{v}^{*}\right) = x_{v}^{*} \ln \frac{x_{v}^{*}+x_{v}+1}{x_{v}^{*}+x_{v}}$. We need to prove that $\delta\left(u\right) - \delta\left(l\right) < 0$. Note that, for all integer numbers $m < n, \frac{m+1}{m} > \frac{n+1}{n}$. Thus, as $x_{u}^{*} \geq x_{v}^{*}$ and $x_{u} > x_{v}$ we derive that:

$$\frac{x_u^* + x_u + 1}{x_u^* + x_u} < \frac{x_v^* + x_v + 1}{x_v^* + x_v},\tag{3}$$

which yields $\delta(u) < \delta(v)$ or equivalently $\delta(u) - \delta(v) < 0$.

Property 4

If $\mathbf{x} = (x_1, \dots, x_{n_x})$ and $\mathbf{y} = (x_1, \dots, x_u - 1, \dots, x_v + 1, \dots, x_{n_x})_{\downarrow}$ where $u < v \le h^*(\mathbf{x})$ and $x_v < x_u$, then $l(\mathbf{y}) \ge l(\mathbf{x})$. Strict inequality holds if $x_u - x_v \ge 2$.

Proof

The proof is similar to the proof of property 3.

Clearly, $\mathbf{y}^* = \mathbf{x}^*$ and $h^*(\mathbf{y}) = h^*(\mathbf{x}) = h^*$.

$$L(\mathbf{y}) - L(\mathbf{x}) =$$

$$= \sum_{i \neq u, v} \lambda(x_i, x_i^*) + \lambda(x_u - 1, x_u^*) + \lambda(x_v + 1, x_v^*) +$$

$$- \sum_{i \neq u, v} \lambda(x_i, x_i^*) - \lambda(x_u, x_u^*) - \lambda(x_v, x_v^*) =$$

$$= \lambda(x_u - 1, x_u^*) - \lambda(x_u, x_u^*) + \lambda(x_v + 1, x_v^*) - \lambda(x_v, x_v^*) =$$

$$= -\delta(u) + \delta(v),$$
(4)

where $\delta\left(k\right)=\lambda\left(x_{u},x_{u}^{*}\right)-\lambda\left(x_{u}-1,x_{u}^{*}\right)=x_{u}^{*}\ln\frac{(x_{u}^{*}+x_{u}-1)+1}{x_{u}^{*}+x_{u}-1}$ and $\delta\left(l\right)=\lambda\left(x_{v}+1,x_{v}^{*}\right)-\lambda\left(x_{v},x_{v}^{*}\right)=x_{v}^{*}\ln\frac{x_{v}^{*}+x_{v}+1}{x_{v}^{*}+x_{v}}$. We need to prove that $-\delta\left(u\right)+\delta\left(v\right)>0$. For all integer numbers $m\leq n,\,\frac{m+1}{m}\geq\frac{n+1}{n}$. Thus, as $x_{u}^{*}\geq x_{v}^{*}$ and $x_{u}-1\geq x_{v}$ we derive that:

$$\frac{(x_u^* + x_u - 1) + 1}{x_u^* + x_u - 1} \le \frac{x_v^* + x_v + 1}{x_v^* + x_v},\tag{5}$$

which yields $\delta\left(u\right) \leq \delta\left(v\right)$ or equivalently $-\delta\left(u\right) + \delta\left(v\right) \geq 0$. If $x_{u} - x_{v} \geq 2$ it is trivial to derive that

 $l(\mathbf{y}) > l(\mathbf{x}).$