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Introduction
Here we fully describe both the models and the methods used to obtain the results in
the main text. We begin by describing the non-spatial model of the X-shredder genetic
construct. We next develop the non-spatial model into the spatial model, and describe
the simulation algorithm. Finally, we describe how the models are modified to study
the classical HEG construct.

1 X-shredder model
As stated in the main text, the mosquito life-cycle is decomposed into a juvenile
stage J, adult males M, and three adult female stages (unmated females U, mated fe-
males searching for hosts H, and ovipositing females O). The nature of the X-shredder
construct requires the model to keep track of the genotype of juveniles, which may
be JX (female), JY0

(wildtype male), or JY1
(HEG male), and adult males (MY0

or MY1 ). For mated females, it is necessary to keep track of the genotype of the
male she mated with, which we denote by a superscript (e.g. HY0 ). This com-
bination of mosquito types and genotype gives rise to 10 distinct mosquito classes
{(JX , JY0

, JY1
), (MY0

,MY1
), U, (HY0 , HY1), (OY0 , OY1)}.
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1.1 Non-spatial X-shredder model
Our non-spatial models are mean-field in the sense that interactions among individuals
are governed by global mean densities of resources and con-specifics rather than by
local variations in these quantities. As such, the spatial distribution of individuals has
no bearing on the population’s dynamics, which can thus be fully described by a set of
ordinary differential equations,

dJX/dt = κν

(
OY0

2
+

1− e
2

OY1

)
− γJJX − µJJX − αJX (JX + JY0 + JY1) ,

dJY0
/dt = κν

(
OY0

2

)
− γJJY0

− µJJY0
− αJY0

(JX + JY0
+ JY1

) ,

dJY1/dt = κν

(
1 + e

2
OY1

)
− γJJY1 − µJJY1 − αJY1 (JX + JY0 + JY1) ,(

dMG/dt = γJJG − µMMG

)
G∈{Y0,Y1}

,

dU/dt = γJJX − µUU −mU (MY0
+MY1

) ,(
dHG/dt = mUMG + νOG − µHHG − γHHG

)
G∈{Y0,Y1}

,

(
dOG/dt = −νOG − µOOG + γHH

G

)
G∈{Y0,Y1}

.

The demographic parameters {κ, ν, γJ , α, µJ , µU , µM , µH , µO,m, γH} and the cleav-
age rate e are defined in Table S1. Recall from the main text that 0 ≤ e ≤ 1 and the
probability with which a randomly-chosen gamete from a HEG-bearing male carries
the Y chromosome is e+1

2 . The equilibrium densities can be found for any given set of
parameters by numerically solving these equations after setting the left-hand sides to
zero.

1.2 Spatial X-shredder model
To extend the non-spatial model into a spatial model, we re-define the population as
a set of discrete individuals in a continuous plane. Stochasticity is incorporated by
supposing that transition events such as mortality are random variables in any given
time interval ∆t. In the limit of ∆t → 0, the probability that a particular event occurs
is r ×∆t where r is the appropriate rate parameter. This assumption ensures that the
time intervals separating events are exponentially distributed, and the model is formally
a Markov process. Henceforth, we use the term “rate” in the Markov sense: a measure
of how quickly a particular transition occurs.

The demographic model is embedded in a landscape defined by its distribution of
adult feeding and breeding sites. A feeding site is a point location that a mated female
must visit in order to take a blood-meal, while a breeding site is a point location where
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a blood-fed female may oviposit. We assume that mated females are able to move
freely through the landscape in search of these resources.

1.2.1 Demographic rates

The mathematical model is described completely by the set of transition and mortality
rates. We assume that the background mortality rates, {µJ , µU , µM , µH , µO}, and
the juvenile emergence rate γJ , are unaffected by spatial location and so correspond
exactly to those of the non-spatial model. We account for local interaction among
individuals by allowing the rate of mortality caused by competition, and the rate of
mating, to vary with local conspecific densities. Interaction between individuals and
their local environment is incorporated by allowing the rates of feeding and oviposition
to vary with the local density of feeding and breeding sites.

1. Competition. Competition for resources occurs amongst juveniles which share
the same breeding site. The rate of mortality caused by competition for an indi-
vidual in a breeding site i is α× nJi(t), where nJi(t) is the number of juveniles
in the site at time t.

2. Mating. Mating can only occur between a male and unmated female that are
within a distance sM of one another. The mating rate of a particular unmated
female at time t is mCM (t), where CM (t) is the number of males within the
radius sM from her location. Note that while we do not consider explicit move-
ment of unmated females, the parameter sM determines the typical distance she
might search to find a mate.

3. Adult feeding. Feeding can only occur if a female in search of hosts is within
a distance sH of a feeding site. The feeding rate of a particular female at time
t is γHCH(t) where CH(t) is the number of feeding sites within a distance sH
from her location. On feeding, the individual becomes an ovipositing female
carrying q eggs, where q is drawn from a Poisson distribution with mean κ, and
her location is updated to that of the feeding site.

4. Oviposition. Oviposition can only occur if an ovipositing female is within a
distance sO of a breeding site. The oviposition rate of a particular oviposit-
ing female at time t is νCO(t) where CO(t) is the number of breeding sites
within a radius sO from her location. On ovipositing, a female deposits pX fe-
male and pYi(i ∈ {0, 1}) type i male eggs into one of the detectable breeding
sites and her location is updated to that of the site. pX and pYi

are drawn from
Poisson distributions, Pois(ω/2) and Pois(ω/2) if the female is type OY0 and
(Pois(ω 1−e

2 ),Pois(ω 1+e
2 )) if the female is type OY1 . If the sum pX + pYi

ex-
ceeds her total store of eggs, then pX and pYi

are accordingly reduced so that she
deposits all her eggs, after which she reverts to hostseeker status.

1.2.2 Movement

Host-seeking and ovipositing females perform two types of movement, defined as
searching and dispersal. Searching refers to movements made by females both at the
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instance of feeding and at the instance of oviposition. Dispersal refers to further move-
ments that do not coincide with feeding or oviposition.

Dispersal is controlled by three parameters referred to as the basic jump rate r,
the strength of the reduction in movement near the object of search β (β ≥ 1), and
maximum jump distance sG. Specifically, a host-seeking female will make jumps at a
rate r/βCH(t), whereCH(t) is the number of feeding sites within the detection distance
sH at time t (note that r is the jump rate when no feeding sites are detectable). On
making a jump, a new location is drawn at random from a disk of radius sG that is
centred on her starting location. Ovipositing females move in the same manner, except
that the jump rate is influenced by proximity to breeding rather than feeding sites. If a
female searching for an oviposition site is within a distance sO from CO(t) breeding
sites, her jump rate will be r/βCO(t).

1.2.3 Variation in landscape characteristics

Landscape structure is controlled by varying the density of feeding sites, breeding sites,
and the covariance between the two types of site. The feeding sites are assumed to
be static, and are distributed according to a spatial Poisson process with density θA.
Breeding sites are created at rate σ × θB per unit area and destroyed at rate σ. θB
thus defines the density of breeding sites and 1/σ defines the typical longevity of a
breeding site. On the destruction of a breeding site, the juveniles present in the site
all die. Covariance between breeding and feeding sites is defined by the parameter ρ,
such that ρ > 0 indicates positive and ρ < 0 negative covariance. The procedure for
generating this covariance is as follows.

For the special case of no covariance between feeding and breeding sites (ρ = 0),
new breeding sites are placed in random locations so that the distribution of breeding
sites, at any time t, follows a spatial Poisson process with density θB . If the covariance
is strictly positive or negative (ρ 6= 0), the placement of new patches is biased by the
local density of feeding sites. We define the density of feeding sites at a location x,
h(x), as the number within a distance sρ of x. We generate a set of potential breeding
sites, X , through a Poisson spatial process with density θC . For each point xi ∈ X , we
define the suitability of xi, s(xi), by the function s(xi) = (1 + ρ)h(xi). Whenever a
new breeding site is to be created, a location is drawn fromX using the probability dis-
tribution

(
s(xi)/

∑
xi∈X s(xi)

)
xi∈X

to choose the index i. This location is removed
from the set X and a new location with random coordinates is added to X . In order
to ensure X retains an approximately uniform Poisson spatial distribution, points in X
are also created in random locations at rate σC × θC , and destroyed at rate σC .

1.2.4 Simulation method

The simulations correspond exactly to the mathematical model, except for the assump-
tions of finite space, and up to the accuracy of floating point arithmetic and random
number generation. In the simulation algorithm, individuals are represented by their
x and y coordinates in a toroidal two-dimensional space. The simulation iterates the
following sequence of procedures:

1. The rates of all possible events are summed to a total event rate rtot.
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2. A time interval ∆t is sampled from the exponential distribution with rate rtot, so
that ∆t has mean 1/rtot, and the simulation time is incremented by ∆t.

3. An event is chosen from the categorical distribution so that the probability that a
particular event is chosen is proportional the rate of that event.

4. The chosen event is then implemented by the simulation code, and the rates are
updated as necessary.

To investigate the process of HEG establishment, we utilised the simulation al-
gorithm as follows. A simulation began with a stochastic realisation of a landscape,
densely populated with wildtype individuals. The wildtype population dynamics were
allowed to run for sufficient time to reach a quasi-equilibrium, whereby population
density fluctuated around a carrying capacity. A number of adult males with the HEG
construct were then introduced at a number of breeding sites, chosen randomly except
for the stipulation that the sites must be occupied by larvae. After this introduction, the
dynamics of the population were allowed to run until a specified end time.

2 Classical HEG model

2.1 Non-spatial model
The classical HEG model differs from the X-shredder model in terms of genetic ar-
chitecture. In this model, individuals have genotypes W , S, or Z corresponding to
wildtype homozygous, heterozygous, or HEG homozygous, and we note that mated
females are characterised by both their own genotype (subscript) and the genotype of
the male they have mated with (superscript). We assume that the fecundity of HEG
homozygous females is reduced by a factor 1 − s, and the fecundity of heterozygous
females is reduced by a factor 1 − sh. The full set of equations for the non-spatial
model is as follows.
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dJW /dt = κν

(
OWW +

1− e
2

OSW + (1− sh)
1− e

2
OWS + (1− sh)

(
1− e

2

)2

OSS

)
−γJJW − µJJW − αJW (JW + JS + JZ) ,

dJS/dt = κν

(
1 + e

2
OSW + (1− sh)

1 + e

2
OWS + (1− s)OWZ

+OZW + (1− sh)
(1 + e)(1− e)

2
OSS + (1− s)1− e

2
OSZ + (1− sh)

1− e
2

OZS

)
−γJJS − µJJS − αJS (JW + JS + JZ) ,

dJZ/dt = κν

(
(1− s)OZZ + (1− s)1 + e

2
OSZ + (1− sh)

1 + e

2
OZS + (1− sh)

(
1 + e

2

)2

OSS

)
−γJJZ − µJJZ − αJZ (JW + JS + JZ) ,(

dMG/dt =
γJ
2
JG − µMMG

)
G∈{W,S,Z}

,

(
dUG/dt =

γJ
2
JG − µUU −mUG (MW +MS +MZ)

)
G∈{W,S,Z}

,

(
dHG′

G /dt = mUGMG′ + νOG
′

G − µHHG′

G − γHHG′

G

)
G,G′∈{W,S,Z}

,

(
dOG

′

G /dt = −νOG
′

G − µOOG
′

G + γHH
G′

G

)
G,G′∈{W,S,Z}

.

2.2 Spatial model
The transition from non-spatial to spatial model for the classical HEG construct follows
the same procedure to that of the X-shredder construct. In result, the spatial model of
the classical HEG differs from its X-shredder counterpart in the following items.

1. Since the classical HEG models do not keep track of juvenile sex, the sex of
emergent adults is drawn at random with an equal male/female probability.

2. At oviposition, the number of eggs a female deposits is Poisson distributed with a
mean that depends on her genotype. Of this number, the distribution of genotypes
is randomised after taking account of homing, which may occur during meiosis
in either parent.
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