Table S1: Model parameters. The default values are obtained from a variety of sources (Gwadz and Collins, 1996; Smith and McKenzie, 2004; Tuno et al., 2005; Afrane et al., 2005; Chen et al., 2006); where no estimates were available values were varied within what we believe are plausible limits.

Parameter	Symbol	Default value
Parameters used in non-spat	ial models	
Egg laying rate	ν	0.12 $(\text{day}^{-1}C_{O}^{-1})^{*}$
Feeding rate	γ_{H}	$\begin{array}{rl} 0.12 & ({\rm day}^{-1}C_O^{-1})^* \\ 0.015 & ({\rm day}^{-1}C_H^{-1})^{**} \end{array}$
Egg load after feeding	κ	120
Rate of mortality from competition	α	$0.05 (\mathrm{day}^{-1} n_{T}^{-1})^{\dagger}$
Background mortality from stage $X \in \{J, U, M, H, O\}$	μ_X	0.1 $(\forall X, day^{-1})$
Rate of juvenile maturation	γ_J	$\begin{array}{cccc} 0.05 & ({\rm day}^{-1}n_J^{-1}) \\ 0.1 & (\forall X, {\rm day}^{-1}) \\ 0.1 & ({\rm day}^{-1}) \end{array}$
Mating rate	m^{\ddagger}	$0.01 (\text{day}^{-1}C^{-1})$
Rate of HEG cleavage (X-shredder) or homing (classical HEG)	e	0.6 (generation ⁻¹)
Demographic parameters exclusive	to crotial	models
Demographic parameters exclusive	io spatiai i	inoucis
Mean number of eggs laid per oviposition	ω	40
Maximum mating distance	s_M	0.3 (km)
Feeding site detection distance	s_H	0.5 (km)
Breeding site detection distance	s_O	0.15 (km)
Basic jump rate	r	$10 (day^{-1})$
Maximum jump distance	s_G	0.3 (km)
Strength of the reduction in movement near the object of search	β	10
Environmental parame	ters	
Mean density of feeding sites	$ heta_A$	$(2^{1.5}, 2^{3.5})$ (km ⁻² ; pt.A,pt.B)
Mean density of breeding sites	$\theta_A \\ \theta_B$	$(64, 2^{6.5})$ (km ⁻² ; pt.A,pt.B)
	_	$(64, 2^{3/3})$ (km ; pi.A,pi.B 0.05 (day ⁻¹)
Breeding site turnover rate	σ	0.05 (day
Covariance between feeding and breeding sites Covariance length scale	ρ	0.5 (km)
•	$s_{ ho}$ $\theta_{ m ev}$	$100 (\text{km}^{-2})$
Mean density of sample points Sample point turnover rate	θ_C	$0.1 (day^{-1})$
	σ_C	U.I. (dav

* In spatial models, local density of breeding sites $C_O(x)$ at a location x is the number of breeding sites within distance s_O of x. In non-spatial models, C_O is defined $\theta_B \pi s_O^2 \omega / \kappa$.

** In spatial models, local density of feeding sites $C_H(x)$ at a location x is the number of feeding sites within distance s_H of x. In non-spatial models, C_H is defined $\theta_A \pi s_H^2$.

 † In spatial models, $n_J=n_{J_i}$ is the number of juveniles at a breeding site i.

In non-spatial models, n_J is set to n'_J/θ_B where n'_J is density of juveniles.

[‡] In spatial models, local density of mates $C_M(x)$ at a location x is the number of mates within mating distance s_M of x. In non-spatial models, C_M is defined $C'_M \pi s_M^2$ where C' is the density of mates.

References

- Afrane, Y. A., Lawson, B. W., Githeko, A. K., and Yan, G. (2005). Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of anopheles gambiae (diptera: Culicidae) in western kenya highlands. *Journal of medical entomology*, 42(6):974–980.
- Chen, H., Fillinger, U., and Yan, G. (2006). Oviposition behavior of female anopheles gambiae in western kenya inferred from microsatellite markers. *The American journal of tropical medicine and hygiene*, 75(2):246–250.
- Gwadz, R. and Collins, F. (1996). Anopheline mosquitoes and the agents they transmit. In Beaty, B. and Marquardt, W., editors, *The Biology of Disease Vectors*, pages 73–84. University Press of Colorado.
- Smith, D. L. and McKenzie, F. E. (2004). Statics and dynamics of malaria infection in anopheles mosquitoes. *Malaria Journal*, 3(1):13.
- Tuno, N., Okeka, W., Minakawa, N., Takagi, M., and Yan, G. (2005). Survivorship of anopheles gambiae sensu stricto (diptera: Culicidae) larvae in western kenya highland forest. *Journal of Medical Entomology*, 42(3):270–277.