## Rapid Identification of Bacterial Biofilms and Biofilm Wound Models Using a Multichannel Nanosensor

Xiaoning Li<sup>a,†</sup>, Hao Kong<sup>c,†</sup>, Rubul Mout<sup>a</sup>, Krishnendu Saha<sup>a</sup>, Daniel F. Moyano<sup>a</sup>, Sandra M. Robinson<sup>b</sup>, Subinoy Rana<sup>a,</sup><sup>‡</sup>, Xinrong Zhang<sup>c</sup>, Margaret A. Riley<sup>b</sup>, and Vincent M. Rotello<sup>a,\*</sup>

a. Department of Chemistry, b. Biology Department, University of Massachusetts, 710 North Pleasant Street, Amherst, USA;c. Beijing Key Laboratory of Analytical Methods and Instrumentation, Department of Chemistry, Tsinghua University,

Beijing, 100084, P.R. China.

\*Corresponding author. E-mail: rotello@chem.umass.edu.

†These authors contributed equally to this work.

<sup>‡</sup>Present address: Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

## Supporting Information



Fig. S1. The absorption and emission spectra of the three fluorescent proteins.



Fig. S2. Fluorescence titration of an equal-molar mixture of the three FPs by (A) NP1; (B) NP2; (C) the equalmolar mixture of NP1 and NP2, and the [NP] is the total concentration of NP1 and NP2. Each value is an average of three data points, and the error bars are standard deviations.

| AuNP    | Protein  | Binding constant ( $K_s$ ), M <sup>-1</sup> | Association stoichiometry $(n)$ | $\mathbb{R}^2$ |
|---------|----------|---------------------------------------------|---------------------------------|----------------|
|         | EBFP2    | $(4.18\pm3.15)\times10^8$                   | 2.34±0.22                       | 0.9822         |
| NP1     | EGFP     | $(8.03\pm2.09)\times10^9$                   | $1.68 \pm 0.08$                 | 0.9837         |
|         | tdTomato | $(5.52\pm5.24)\times10^{8}$                 | $0.89 \pm 0.03$                 | 0.9830         |
|         | EBFP2    | $(1.54\pm1.10)\times10^7$                   | 6.86±3.34                       | 0.9727         |
| NP2     | EGFP     | $(2.86\pm0.50)\times10^8$                   | $2.52 \pm 0.08$                 | 0.9938         |
|         | tdTomato | $(6.44\pm6.66)\times10^{6}$                 | 4.20±2.82                       | 0.9948         |
|         | EBFP2    | $(7.77\pm3.73)\times10^7$                   | 3.18±0.49                       | 0.9856         |
| NP1+NP2 | EGFP     | $(7.86\pm2.43)\times10^{8}$                 | $2.08 \pm 0.06$                 | 0.9897         |
|         | tdTomato | $(3.31\pm2.62)\times10^7$                   | $1.88 \pm 0.41$                 | 0.9766         |

Table S1. The binding parameters derived from the fitting of the fluorescence titration data.

Table S2. The jackknifed classification accuracy based on the parts of the triple-channel fluorescence (R: tdTomato, G: EGFP, and B: EBFP2).

| Channel               | Accuracy | Channel | Accuracy |
|-----------------------|----------|---------|----------|
| R                     | 61%      | R+B     | 78%      |
| G                     | 90%      | R+G     | 90%      |
| В                     | 66%      | G+B     | 93%      |
| <b>R</b> +G+ <b>B</b> | 100%     |         |          |

| #  |        | $I/I_0$ |       | Identification | Verification |
|----|--------|---------|-------|----------------|--------------|
| _  | Blue   | Green   | Red   |                |              |
| 1  | 4.151  | 1.734   | 1.119 | A.azu          | A.azu        |
| 2  | 12.435 | 4.817   | 1.370 | B.mega         | B.mega       |
| 3  | 1.485  | 1.088   | 1.134 | CD-3           | CD-3         |
| 4  | 5.091  | 1.924   | 1.318 | DH5a           | DH5a         |
| 5  | 18.641 | 6.802   | 1.523 | B.liche        | B.liche      |
| 6  | 20.647 | 8.973   | 1.507 | P.aeru         | P.aeru       |
| 7  | 17.847 | 8.422   | 1.487 | P.aeru         | P.aeru       |
| 8  | 1.576  | 1.120   | 1.165 | CD-3           | CD-3         |
| 9  | 14.836 | 5.475   | 1.466 | B.mega         | B.mega       |
| 10 | 4.605  | 1.878   | 1.279 | A.azu          | A.azu        |
| 11 | 5.406  | 1.978   | 1.338 | DH5a           | DH5a         |
| 12 | 18.279 | 6.946   | 1.589 | B.liche        | B.liche      |
| 13 | 4.381  | 1.895   | 1.250 | A.azu          | A.azu        |
| 14 | 1.880  | 1.194   | 1.142 | CD-3           | CD-3         |
| 15 | 6.066  | 2.262   | 1.324 | DH5a           | DH5a         |
| 16 | 20.273 | 7.530   | 1.568 | B.liche        | B.liche      |
| 17 | 19.794 | 9.111   | 1.370 | P.aeru         | P.aeru       |
| 18 | 16.566 | 6.466   | 1.465 | B.liche        | B.mega       |
| 19 | 7.353  | 2.720   | 1.431 | DH5a           | DH5a         |
| 20 | 17.404 | 7.041   | 1.663 | B.liche        | B.liche      |
| 21 | 14.372 | 5.405   | 1.422 | B.mega         | B.mega       |
| 22 | 4.690  | 1.699   | 1.187 | A.azu          | A.azu        |
| 23 | 2.055  | 1.129   | 1.171 | CD-3           | CD-3         |
| 24 | 25.131 | 11.287  | 1.560 | P.aeru         | P.aeru       |

Table S3. Identification of 24 unknown biofilm samples.

Table S4. Identification of 12 unknown co-culture samples.

| #  |      | $I/I_0$ |      | Identification | Verification |
|----|------|---------|------|----------------|--------------|
|    | Blue | Green   | Red  |                |              |
| 1  | 1.77 | 3.54    | 1.74 | Cell           | B.liche      |
| 2  | 1.47 | 1.47    | 1.51 | E.coli         | E.coli       |
| 3  | 1.69 | 3.63    | 1.71 | Cell           | Cell         |
| 4  | 1.68 | 3.72    | 1.72 | Cell           | Cell         |
| 5  | 1.53 | 1.44    | 1.51 | E.coli         | E.coli       |
| 6  | 1.63 | 2.99    | 1.62 | B.liche        | B.liche      |
| 7  | 1.75 | 3.74    | 1.76 | Cell           | Cell         |
| 8  | 1.45 | 1.20    | 1.47 | E.coli         | E.coli       |
| 9  | 1.74 | 3.20    | 1.69 | B.liche        | B.liche      |
| 10 | 1.72 | 3.35    | 1.70 | B.liche        | B.liche      |
| 11 | 1.75 | 3.92    | 1.69 | Cell           | Cell         |
| 12 | 1.62 | 1.87    | 1.57 | B.liche        | E.coli       |

| Biofilms      | Blue (EBFP2) | Green (EGFP) | Red (tdTomato) |
|---------------|--------------|--------------|----------------|
| A.azu         | 4.328        | 1.857        | 1.131          |
| A.azu         | 4.459        | 1.816        | 1.220          |
| A.azu         | 3.825        | 1.757        | 1.161          |
| A.azu         | 3.962        | 1.751        | 1.245          |
| A.azu         | 4.612        | 1.957        | 1.291          |
| A.azu         | 4.716        | 1.923        | 1.280          |
| B.liche       | 18.612       | 6.805        | 1.658          |
| B.liche       | 18.579       | 7.218        | 1.402          |
| B.liche       | 16.082       | 6.942        | 1.536          |
| B.liche       | 18.607       | 6.907        | 1.502          |
| B.liche       | 17.820       | 7.468        | 1.573          |
| B.liche       | 17.372       | 6.517        | 1.662          |
| B.mega        | 14.634       | 5.435        | 1.437          |
| B.mega        | 15.153       | 5.650        | 1.395          |
| B.mega        | 13.814       | 5.234        | 1.377          |
| B.mega        | 13.918       | 5.168        | 1.442          |
| B.mega        | 12.798       | 4.658        | 1.455          |
| B.mega        | 16.077       | 5.789        | 1.474          |
| DH5a          | 5.590        | 1.950        | 1.342          |
| DH5a          | 5.579        | 2.068        | 1.292          |
| DH5a          | 5.372        | 1.995        | 1.313          |
| DH5a          | 5.792        | 2.170        | 1.338          |
| DH5a          | 5.273        | 2.002        | 1.331          |
| DH5a          | 6.634        | 2.321        | 1.348          |
| CD-3          | 1.464        | 1.167        | 1.171          |
| CD-3          | 0.820        | 1.052        | 1.110          |
| CD-3          | 0.989        | 1.054        | 1.115          |
| CD-3          | 1.568        | 1.125        | 1.159          |
| CD-3          | 1.426        | 1.141        | 1.197          |
| CD-3          | 1.541        | 1.157        | 1.201          |
| P.aeru        | 16.557       | 8.234        | 1.497          |
| P.aeru        | 19.344       | 9.458        | 1.426          |
| P.aeru        | 19.126       | 9.204        | 1.584          |
| P.aeru        | 17.290       | 8.389        | 1.486          |
| P.aeru        | 18.109       | 8.699        | 1.577          |
| P.aeru        | 21.109       | 9.979        | 1.600          |
| Media control | 1.306        | 1.058        | 1.069          |
| Media control | 1.536        | 1.018        | 1.054          |
| Media control | 1.169        | 1.028        | 1.080          |
| Media control | 1.699        | 1.033        | 1.063          |
| Media control | 1.426        | 1.067        | 1.069          |

Table S5. The fluorescence response ratio of  $I/I_0$  in the presence of biofilms. The sensing agent is made of 200 nM each of the three fluorescent proteins, 80 nM NP1 and 80 nM NP2 in 5 mM sodium phosphate buffer (pH=7.4).

Table S6. The fluorescence response ratio of  $I/I_0$  in the presence of co-cultures. The sensing agent is made of 200 nM each of the three fluorescent proteins, 80 nM NP1 and 80 nM NP2 in 5 mM sodium phosphate buffer (pH=7.4).

| Co-cultures             | Blue (EBFP2) | Green (EGFP) | Red (tdTomato) |
|-------------------------|--------------|--------------|----------------|
| B.licheniformis         | 1.67         | 2.85         | 1.64           |
| <b>B</b> .licheniformis | 1.63         | 2.69         | 1.62           |
| <b>B</b> .licheniformis | 1.63         | 3.24         | 1.62           |
| B.licheniformis         | 1.63         | 2.75         | 1.61           |
| B.licheniformis         | 1.67         | 3.12         | 1.61           |
| B.licheniformis         | 1.68         | 3.25         | 1.63           |
| E.coli                  | 1.39         | 1.27         | 1.36           |
| E.coli                  | 1.32         | 1.21         | 1.32           |
| E.coli                  | 1.35         | 1.21         | 1.38           |
| E.coli                  | 1.34         | 1.22         | 1.35           |
| E.coli                  | 1.34         | 1.24         | 1.37           |
| E.coli                  | 1.32         | 1.27         | 1.38           |
| 3T3 cell                | 1.64         | 4.19         | 1.63           |
| 3T3 cell                | 1.65         | 4.17         | 1.63           |
| 3T3 cell                | 1.68         | 3.87         | 1.63           |
| 3T3 cell                | 1.65         | 3.94         | 1.65           |
| 3T3 cell                | 1.64         | 3.83         | 1.63           |
| 3T3 cell                | 1.70         | 4.01         | 1.63           |

## Nanoparticles synthesis

2nm diameter gold nanoparticles were synthetized by the Brust-Schiffrin two-phase methodology<sup>1</sup> using pentanethiol as the stabilizer; these clusters were purified with successive extractions with ethanol and acetone. A Murray place exchange reaction<sup>2</sup> was carried out in dry DCM to functionalize the nanoparticles with each ligand (Fig.1, ligands synthetized according to the reported procedure).<sup>3,4</sup> The monolayer-protected nanoparticles were redispersed in water and the excesses of ligand/pentanethiol were removed by dialysis using a 10,000 MWCO snake-skin membrane. The final concentration was measured by UV spectroscopy on a Molecular Devices SpectraMax M2 at 506nm according to the reported methodology.<sup>5</sup> NPs were characterized on a Malvern Nano Zetasizer to obtain hydrodynamic diameter (Fig. S3) and zeta potential for surface charge (Fig. S4).



Fig. S3. DLS size distribution of NP1 and NP2.

Zeta Potential Distribution



Apparent Zeta Potential (mV)

Fig. S4. Zeta potential distribution of NP1 and NP2.

3. Miranda, O. R.; Chen, H-T.; You, C-C.; Mortenson, D. E.; Yang, X-C.; Bunz, U. H. F.; Rotello, V. M. Enzyme-Amplified Array Sensing of Proteins in Solution and in Biofluids. *J. Am. Chem. Soc.* **2010**, 132, 5285-5289.

4. De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.; Bunz, U. H. F.; Rotello, V. M. Sensing of Proteins in Human Serum Using Conjugates of Nanoparticles and Green Fluorescent Protein. *Nat. Chem.* **2009**, 1, 461-465.

5. Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction Coefficient of Gold Nanoparticles with Different Sizes and Different Capping Ligands. *Colloid. Surface. B* **2007**, 58, 3-7.

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System. *J. Chem. Soc., Chem. Commun.* 1994, 801-802.
Templeton, A. C.; Wuelfing, M. P.; Murray, R. W. Monolayer Protected Cluster Molecules. *Acc. Chem. Res.* 2000, 33, 27-36.