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1 Introduction 

This document supplements the paper, ‘Enhancing in silico protein-based vaccine discovery for 

eukaryotic pathogens using predicted peptide-MHC binding and peptide conservation scores’. It provides 

background information on epitope prediction but in particular, peptide-MHC I allele binding predictions. The 

two main methods for peptide-MHC predictions that are used in the machine learning (ML) strategy presented 

in the paper are artificial neural network (ANN) and Stabilized matrix method (SMM). This document describes 

both methods. The last section is a description of two machine leaning algorithms, and in particular random 

forest, which are used to classify vaccines based on binding affinity scores. 

2 Epitope prediction 

The current trend in vaccine development is epitope-based due to its potential to be more specific, safer, and 

easier to produce than traditional vaccines [1]. At the time of writing, there were no commercial epitope-based 

vaccines. The literature, however, provides examples of the potential of epitope-based vaccines to be 

immunogenic and protective. Some examples under evaluation are: a human CD8(+) T-cell epitope-based 

vaccine against primary ocular herpes infection and disease [2]; a conserved HIV epitope that neutralizes 

genetically divergent HIV strains [3]; and an epitope-based vaccine capable of eliciting immune responses 

against Schistosoma japonicum [4]. There are of two types of epitopes on protein antigens: linear (or 

continuous) and conformational (or discontinuous). Linear epitopes are continuous stretches of amino acids in a 

protein sequence, and conformational epitopes are formed through folding of the protein bringing together 

discontinuous amino acid sequences to form the epitope [5]. Epitopes that are recognised by T-cells are called 

T-cell epitopes, and likewise, epitopes recognised by B-cells are B-cell epitopes. B cell epitopes contain both 

continuous (~10%) and discontinuous (~90%) epitopes, while the majority of T cell epitopes are continuous [5]. 

It is the recognition of epitopes on pathogens by T- and B-cells (and soluble antibodies) that activates the 

cellular and humoral immune response [6]. Several studies have shown that protective immunity to 

apicomplexans under study, and in particular T. gondii and N.caninum, is through cell-mediated responses 

which are regulated by the production of interferon γ [7-10]. 
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Many methods have and are still being developed to computationally predict epitopes [1,5,11-14]. There are 

both sequence- and structure-driven [15] methods i.e. prediction based on amino acid sequences (primary 

structure) as opposed to three dimensional structures.  

T-cell epitopes, which are typically short linear peptides, are created either as a result of proteasomal 

cleavage from antigenic proteins or from protein splicing [16]. Theoretically, there are two computational 

approaches to T-cell epitope prediction: direct and indirect. A direct approach involves predicting short peptides 

recognised by T-cells i.e. predicting epitopes based on the hypothesis that epitopes have amphipathic1 structures 

[17]. An indirect method focuses on prediction of peptide binding to major histocompatibility complex (MHC) 

molecules. The MHC binds short peptides (i.e. epitopes) derived from host and pathogen proteins and presents 

them on cell surface for inspection by T-cell receptors (TCRs) in the surface of cytotoxic T lymphocytes (CTL) 

and helper T lymphocytes (HTLs). The CTLs recognise and kill infected or malfunctioning cells that present 

epitopes [11]. Different MHC molecules have different binding affinities for antigenic peptides i.e. each MHC 

allele binds to a limited set of peptides [12]. There are two main classes of MHC molecules: class I and class II. 

One important difference between the two classes is that the binding groove for MHC class I is closed at both 

ends and open at both ends for class II. [18] The open-ended MHC II molecule allows the bound peptide to have 

significant protrusions at both ends, which complicates the MHC II binding prediction [12]. As a consequence 

of the extension beyond the groove, MHC class II molecules tend to be of variable length but are typically 12 to 

25 amino acids long [19]. Peptides that bind to MHC class I molecules are typically 8 to 11 amino acids long 

[20]. 

Indirect prediction is dependent on adequate MHC allele data from the host of the target pathogen. i.e. 

successful computational prediction requires training data with a sufficiently large set of MHC-peptide binding 

affinities that are experimentally validated [18]. Data for human MHC alleles, referred to as human leukocyte 

antigen (HLA), is by far the most abundant. Binding studies show that HLAs are the most polymorphic human 

genes known [21] and each HLA allele recognizes a restricted set of peptides [13]. Direct methods, as to date, 

have proved to be of insufficient accuracy [22] and this may be why the majority of T-cell epitope predictors 

currently found online are indirect methods. Table S1-1 lists some of the T-cell epitope predictors. The program 

ctlpred is the only direct method available online2. 

Only NetMHC, netMHCII, and tools from the Immune Epitope Database and Analysis Resource (IEDB) 

from Table S1-1 have standalone packages that can be downloaded. In particular, IEDB provides a download 

Linux package (for a 32 bit system) that contains a collection of peptide binding prediction tools for MHC class 

I and class II molecules. Included in the package are NetMHCpan and NetMHCIIpan, which are extended 

versions to NetMHC and netMHCII. The collection of tools is a mixture of Python scripts and Linux specific 

binary files. Python 2.5 or higher is therefore a prerequisite to run the tools. These tools take as input an amino 

acid sequence (or a set of sequences) and determine each subsequence's ability to bind to a specific MHC 

molecule. For MHC class I the available prediction methods are: artificial neural network (ANN) [23], Average 

relative binding (ARB) [24], Stabilized matrix method (SMM) [25], SMM with a Peptide-MHC Binding Energy 

Covariance matrix (SMMPMBEC), Scoring Matrices derived from Combinatorial Peptide Libraries 

(Comblib_Sidney2008) [26], Consensus [27], and NetMHCpan [28]. 

                                                           
1 a hydrophobic side facing the major histocompatibility complex molecule and a hydrophilic side interacting 
with the T-cell receptor 
2 Direct method program ctlpred at http://www.imtech.res.in/raghava/ctlpred/ 



Supporting Information S1 

3 
 

Table S1-1. MHC binding peptide predictors 

Name MHC Class Algorithm URL (last viewed April 2013) 

ProPred I I QM http://www.imtech.res.in/raghava/propred1/index.html 
MAPPP I Motif-based http://www.mpiib-berlin.mpg.de/MAPPP/binding.html 
NetMHC  I ANN http://www.cbs.dtu.dk/services/NetMHC/ 

PREDEP I Threading http://margalit.huji.ac.il/Teppred/mhc-bind/index.html 

nHLAPred I ANN http://www.imtech.res.in/raghava/nhlapred/ 
EpiJen I Multistep algorithm http://www.ddg-pharmfac.net/epijen/EpiJen/EpiJen.htm 
HLABIND I Threading http://atom.research.microsoft.com/hlabinding/hlabinding.aspx 
PEPVAC I User profile, PSSM http://imed.med.ucm.es/PEPVAC/ 
KISS I SVM http://cbio.ensmp.fr/kiss/ 
MHC-Thread II Threading http://www.csd.abdn.ac.uk/~gjlk/MHC-Thread/ 
ProPred II QM http://www.imtech.res.in/raghava/propred/ 
MHC2Pred II SVM http://www.imtech.res.in/raghava/mhc2pred/index.html 
netMHCII  II SMM-QM http://www.cbs.dtu.dk/services/NetMHCII/ 
SVMHC I & II SVM http://abi.inf.uni-tuebingen.de/Services/SVMHC 
Rankpep I & II Profiles, PSSM http://immunax.dfci.harvard.edu/Tools/rankpep.html 
SYFPEITHI I & II Motif matrices http://www.syfpeithi.de/home.htm 
SVRMHC I & II SVM-regression http://svrmhc.biolead.org/ 
EPIMHC I & II User Profiles http://imed.med.ucm.es/epimhc/ 
POPI I & II SVM http://iclab.life.nctu.edu.tw/POPI/ 
TEpredict I & II QM http://tepredict.sourceforge.net/index.html 
IEDB I & II Various http://tools.immuneepitope.org/main/html/tcell_tools.html 
MHCBench++ I & II Evaluation  http://www.imtech.res.in/raghava/mhcbench/ 
++ Used to evaluate MHC binding peptide prediction algorithms 

Abbreviations: QM = quantitative matrices, ANN = artificial neural networks, PSSM = position-specific scoring matrix, 
SMM = stabilized matrix method, SVM = support vector machine. 

 

A large scale evaluation of three MHC class I binding prediction methods (ANN, SMM, and ARB) was 

conducted in 2006 [29]. Each of the three methods predicts the quantitative affinity of a peptide for an MHC 

molecule. In the evaluation, the predicted affinities of all three methods were compared to a collection of 

experimentally measured peptide affinities to MHC class I molecules. Linear correlation coefficients were 

calculated between predicted and measured affinities on a logarithmic scale. The evaluation reported that ANN 

performed the best in a statistically significant manner (with a correlation coefficient of 0.69), followed by 

SMM (0.62) and then ARB (0.55) [29]. 

The performance of a prediction method is governed by the availability of MHC alleles. In other words, not 

all methods can currently make predictions for all MHC allele and peptide length combinations (e.g. there may 

be insufficient experimental data available to generate the combinations). The Consensus method is 

recommended by the creators because this method consecutively uses several prediction methods. For example, 

for each MHC allele and peptide length combination ANN method is tried first, SMM is tried next, and then 

comblib_Sidney2008, ARB, and finally NetMHCpan is tried if no previous method was available for the allele-

length combination. 

Prediction methods are encapsulated in two programs: predict_binding for MHC class I and mhc_II_binding 

for MHC class II. The method to use in the prediction is given as a command-line parameter. Figure S1-1 shows 

an example of the command line syntax. Only one MHC allele is analysed at a time. Therefore, the relevant 

program needs to be executed multiple times for each possible MHC allele-peptide length combination.  

The MHC source species available in IEDB are: human, cow, pig, mouse, gorilla, chimpanzee, and 

macaque; and the peptide lengths that can be specified are typically from 8 to 11. A distinct set of MHC alleles 

and peptide lengths are related to each MHC source species. 
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Figure S1-2 shows a typical output from the MHC class I predictor using a Consensus method (some columns 

have been deleted and the format adjusted to fit output on the page). Beginning at the start amino acid 

(numbered 1) of each sequence (denoted by #), a test subsequence of a specific peptide length (e.g. PepLengh = 

9) is created (e.g. Sequence = MSMEGDRPS and is located from amino acids 1 to 9 on sequence input #1). The 

subsequence is scored (e.g. in units of IC50nM) for binding affinity against the MHC allele e.g. HLA-A*02:05, 

using different prediction methods i.e. scores are calculated for each amino acid at each position in the 

subsequence, which are then added to yield the overall binding affinity. In the example in Figure S1-2, method 

NetMHCpan was used because no previous method was available for the allele-length combination. However, 

the output could in theory contain scores from multiple methods if the method was available for the allele-length 

combination. The next test subsequence in Figure S1-2 is “SMEGDRPSG” from amino acids 2 to 10 on 

sequence input #1 and is scored against the same MHC allele, and so on. The affinity of the MHC allele and 

subsequence binding is greater the lower the IC50 value. The program creators propose a rough guideline for 

interpretation: peptides with IC50 values <50 nM are considered high affinity, <500 nM intermediate affinity, 

and <5000 nM low affinity.  

 

 

 

 

 

2.1 Prediction methods used for MHC class I  

Two methods in particular are used in the paper: artificial neural network (ANN) and Stabilized matrix 

method (SMM). Both are trained to perform quantitative predictions of peptide-MHC binding as opposed to 

predicting binding versus nonbinding. 

The ANN method combines two types of neural network predictions. In half the networks the amino acid 

sequence is encoded using a conventional sparse (orthogonal) encoding and in the other half of the networks the 

amino acids are encoded as their Blosum50 scores to the 20 different amino acids [23]. Blosum (BLOck 

SUbstitution Matrix) is a substitution matrix used in sequence alignments of proteins. A Blosum score describes 

the rate at which one amino acid in a sequence changes to another over time. Substituting an amino acid with 

similar physicochemical properties is more likely to have a smaller impact on the structure and function of a 

protein than a substitution with an amino acid with dissimilar physicochemical properties. Blosum50, in this 

## Command-line syntax For MHC I ## 
predict_binding.py arb "HLA-A*02:01" 9 sequence.fasta 

# arb = ARB prediction method 
# "HLA-A*02:01" = MHC allele name 
# 9 = peptide length 
# sequence.fasta = name of file containing amino acid sequences in a FASTA format 

## Command-line syntax For MHC II ## 
mhc_II_binding.py consensus3 HLA-DRB1*03:01 sequence.fasta 

# consensus = consensus prediction method 
# HLA-DRB1*03:01 = MHC allele name 
# sequence.fasta = name of file containing amino acid sequences in a FASTA format 

Figure S1-1. Command-line syntax for executing IEDB MHC binding peptide 

Allele   #  Start   End   PepLength  Sequence  Method   IC50(nM) 

HLA-A*02:05 1  1 9 9 MSMEGDRPS NetMHCpan 6829.04 

HLA-A*02:05 1  2 10 9 SMEGDRPSG NetMHCpan 26123.53 

HLA-A*02:05 1 3 11 9 MEGDRPSGA NetMHCpan 3.32 

Figure S1-2. Typical output from IEDB MHC I peptide binding predictor 
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particular case, uses a 50% identify threshold to address more distantly related proteins in computing the score. 

The final prediction is calculated as a linear combination of the two network predictions. Nielsen and colleagues 

(the developers of ANN method) state that the extra predictive power over other methods can be attributed to 

the mutual information between positions in a motif. In simpler prediction tools it is assumed that the amino 

acids at each position along the peptide sequence contribute with a given binding energy, which can be 

independently added up to yield the overall binding energy of the peptide [23]. These predictions fail to 

recognize correlated effects where the binding affinity of a given amino acid at one position is influenced by 

amino acids at other positions in the peptide. Two adjacent amino acids may, for example, compete for the space 

in a pocket in the MHC molecule [23]. The ANN method takes into account these correlated effects using 

combination of neural networks defined by different encoding schemes such as Blosum matrices and hidden 

Markov model encoding, in addition to the conventional sparse encoding.  

The Stabilized Matrix Method (SMM) 2005) calculates matrices from quantitative affinity data of peptides 

binding to MHC molecules. SMM incorporates a regularization parameter that suppresses the noise present in 

the training data that is inevitably present in all experimental measurements. This method also extracts 

information from upper and lower boundary values that define the range of experimental measurements, which 

in certain instances are no longer quantitatively accurate [25]. Another advantage of SMM is that experimental 

data from randomized peptide libraries can be combined with conventional peptides. This helps avoid selecting 

sequences for training data that introduce bias e.g. over- or under-representing residues at specific sequence 

positions [25]. 

The difference in predictive performance between ANN and that of the matrix-driven methods occurs 

mainly for high-affinity peptides, confirming that the signal of higher order sequence correlation is most 

strongly present with these peptides [23]. If higher order sequence correlations are expected to be the dominant 

influence on experimental outcomes, ANN is better suited than the SMM method (SMM can only incorporate 

pair correlations between positions of a sequence) [25]. 

3 Algorithms used for machine learning 

A random forest (RF) algorithm was used via the randonForest R function [30]. The general idea behind a 

random forest algorithm is the combining of multiple unpruned decision trees (a forest of trees) into a single 

ensemble of models. Each tree has an equal weight in voting for the final collective decision and a majority vote 

wins (for regression, the average value over the ensemble of regression trees is the outcome). 

A single decision tree uses a recursive partitioning approach whereby a tree is created by recursively 

splitting the dataset into subsets based on a test of an input variable value until the splitting adds no further value 

to the prediction i.e. a point at which the subset has all or almost all of the same value of the target variable. A 

constant is fitted to terminal nodes or leaves: the most probable class (e.g. YES’ or ‘NO’) for classification trees 

and a mean value for regression trees. The general idea is to minimise training error in each leaf by the choice of 

predictors i.e. variables at split points. In effect a built decision tree represents a set of rules that can be used to 

predict classifications of new data with the same input variables. The random forest algorithm uses a similar 

ensemble approach to Adaptive boosting but the models are built simultaneously as opposed to one after another 

(Adaptive boosting is a meta-algorithm in the sense that it is used in conjunction with other ML algorithms, e.g. 
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decision trees, to build multiple models with the objective to perform better than any one single model). The 

‘random’ aspect of the algorithm is the randomness in which it selects the input variables and the observations 

from the training dataset to build each individual decision tree. The function allows a user to vary either or both 

the number of decision trees and the number of variables to try at each split in the decision tree. In standard 

trees, each node is split using the best split among all variables. In a random forest, each node is split using the 

best among a subset of variables randomly chosen at that node. 

Following preliminary testing using samples from the training datasets used in the ML strategy, 500 

decision trees and 13 variables at each split were used throughout the RF testing. All 304 input variables were 

used to build the optimum RF model. If the target variable is a factor e.g. YES or NO, randomForest performs 

classification; if the target value is continuous e.g. 1.0 or 0.0, randomForest performs regression. However, 

arguments to randomForest ultimately determines the type of tree e.g. if ‘Candidate’ represents the target 

variable, ‘randomForest (as.factor(Candidate) …’ is used for classification trees, and randomForest (Candidate 

…’ for regression trees. 

randonForest computes an out-of-bag (OOB) estimate of error rate. The error is an indication that 

when the resulting model is applied to new data, the classification predictions are expected to be in error by a 

similar amount. Predictions for the same input data fluctuate when using random forest. For the ML strategy, 

randonForest and predict R functions were therefore executed multiple times (e.g. 100 runs) and the predictions 

averaged. Two in-house R functions were created to run these functions a user-defined number of times: 

runPred and makePred (see Figure S1-3). 

An advantage of random forest (and other ensemble algorithms) is that unimportant variables that have 

little relationship to the target variable do not greatly impact the accuracy of the resulting model. Another 

advantage is that the input data does not need to be normalised. 

A support vector machine (SVM) algorithm was used via the ksvm R function [31], which is 

contained in the kernlab package. SVM is a non-linear classifier. Support vectors lie at the edge of an area in 

feature space which presents a boundary between two classes of observations e.g. vaccine and non-vaccine 

candidates. The general idea is to identify a straight line in feature space that separates the classes. New 

observations can then be classified depending on which side of the line it falls on [32]. There are potentially 304 

input variables (see Figure S1-5) and the data is not distributed in such a way that it can be linearly separated. 

The package provides several kernels (e.g. Radial Basis ‘Gaussian’, polynomial, linear, hyperbolic tangent, 

Laplacian, Bessel, ANOVA RBF, and spline) that transform the data into high-dimensional feature space i.e. in 

effect create a gap between the two classes allowing linear separation by a hyperplane. There are also several 

model types (e.g. C, nu, and bound-constraint classifications) which determine the hyperplane. Two in-house R 

functions were created to run the SVM algorithm: runPred and makePred (see Figure S1-4). SVM only uses 

support vectors to build a model rather than the entire training dataset. This has the advantage that the size of the 

training set is not normally an issue and the model is not as susceptible to outliers. 
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runPred <- function (no_of_repeats) 

{ 

  require(randomForest, quietly=TRUE) 
  sink(file = "predictions.txt") 
  increment <- 1 
   

while( increment <= no_of_repeats) {  
   out <- makePred () 
   cat("Run:",increment,"\n") 
   print (out) 
   increment <- increment + 1 
  } 
   
  sink () 

} 
 
 

makePred <- function () 

{ 

 #training data 
 train <- 1:nrow (dataset) 
 #test data 
 prediction <- 1:nrow (candidates) 
 

#The following is the start of the code for the 304 input variables (for brevity only 4 are shown).  
#The 76 common alleles are listed in Figure S1-5 
input <- c("HLA.A.01.01.8","HLA.A.01.01.9","HLA.A.01.01.10","HLA.A.01.01.11",  … 

 
 #Target variable 
 target  <- "Candidate" 
   
 rf <- randomForest(as.factor(Candidate) ~ ., 
       data=dataset[train,c(input, target)],  
   ntree=500, 
  mtry=13, 
  importance=TRUE, 
   na.action=na.roughfix, 
  replace=FALSE) 
 
 # Make a prediction using the Random Forest model 
 pr_class <- predict(rf, na.omit(candidates[prediction, c(input, target)]),type="prob")  

 # Extract the relevant variables from the dataset. 
 sdata <- subset(candidates[prediction,], select=c("ID","Candidate")) 
 # Output the combined data. 
 output <- cbind(sdata,pr_class) 

} 

Figure S1-3.  runPred and makePred R functions for random forest  



Supporting Information S1 

8 
 

runPred <- function (no_of_repeats) 

{ 

  sink(file = "predictions.txt") 
  library (kernlab) 
  increment <- 1 
  while( increment <= no_of_repeats) {  
   out <- makePred () 
   cat("Run:",increment,"\n") 
   print (out) 
   increment <- increment + 1 
  } 
  sink () 

} 

 
makePred <- function () 

{ 

 test_numbers <- 1:nrow (candidates) 
 TrainingDS <- new.env () 
 evalq ({ 
   data <- dataset 
 

#The following is the start of the code for the 304 input variables (for brevity only 4 are 
#shown). The 76 common MHC I alleles are listed in Figure S1-5 

input <- 
c("HLA.A.01.01.8","HLA.A.01.01.9","HLA.A.01.01.10","HLA.A.01.01.11",  … 

   target  <- "Candidate" 
   train_numbers <- 1:nrow (data) 
   form <- formula (Candidate ~ .) 
  }, TrainingDS) 
 
  TrainingSVM <- new.env (parent=TrainingDS) 
  evalq ({ 
   model <- ksvm (form, 

kernel = "rbfdot", 
type = "C-svc", 
data=dataset[train_numbers,c(input, target)], 
prob.model=TRUE) 

   }, TrainingSVM) 
 
 # Make a prediction using the SVM model  
 pr_class <- predict(TrainingSVM$model, na.omit (candidates[test_numbers, c(TrainingDS$input)],)) 
 # Extract the relevant variables from the dataset. 
 subset_data <- subset(candidates[test_numbers,], select=c("ID","Candidate")) 
 # Output the combined data. 
 output <- cbind(subset_data,pr_class) 

} 

 

Figure S1-4. runPred and makePred R functions for Support Vector Machines 
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HLA-A*01:01 HLA-B*08:01 HLA-B*46:01 HLA-C*05:01 

HLA-A*02:01 HLA-B*13:01 HLA-B*48:01 HLA-C*06:02 

HLA-A*02:06 HLA-B*13:02 HLA-B*49:01 HLA-C*07:01 

HLA-A*03:01 HLA-B*14:02 HLA-B*50:01 HLA-C*07:02 

HLA-A*11:01 HLA-B*15:01 HLA-B*51:01 HLA-C*07:04 

HLA-A*23:01 HLA-B*15:02 HLA-B*52:01 HLA-C*08:01 

HLA-A*24:02 HLA-B*15:25 HLA-B*53:01 HLA-C*08:02 

HLA-A*25:01 HLA-B*18:01 HLA-B*55:01 HLA-C*12:02 

HLA-A*26:01 HLA-B*27:02 HLA-B*56:01 HLA-C*12:03 

HLA-A*29:02 HLA-B*27:05 HLA-B*57:01 HLA-C*14:02 

HLA-A*30:01 HLA-B*35:01 HLA-B*58:01 HLA-C*15:02 

HLA-A*30:02 HLA-B*35:03 HLA-B*58:02 HLA-C*16:01 

HLA-A*31:01 HLA-B*37:01 HLA-C*01:02 HLA-C*17:01 

HLA-A*32:01 HLA-B*38:01 HLA-C*02:02 HLA-E*01:01 

HLA-A*33:03 HLA-B*39:01 HLA-C*02:09 HLA-G*01:01 

HLA-A*68:01 HLA-B*40:01 HLA-C*03:02 HLA-G*01:02 

HLA-A*68:02 HLA-B*40:02 HLA-C*03:03 HLA-G*01:03 

HLA-A*74:01 HLA-B*44:02 HLA-C*03:04 HLA-G*01:04 

HLA-B*07:02 HLA-B*44:03 HLA-C*04:01 HLA-G*01:06 

 

Figure S1-5. Common human MHC I alleles 

Lists 76 MHC I alleles that commonly occur in at least 1% of the human population (18 HLA-A, 32 HLA-B, 20 

HLA-C, 1 HLA-E, 5 HLA-G). MHC I binds to peptides, typically eight to eleven amino acid residues in length. 

There are potentially 304 MHC allele-peptide length combinations (76 alleles * 4 peptide lengths).  
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