Ensemble NMA of E.coli DHFR structures

Lars Skjaerven, Xin-Qiu Yao, Guido Scarabelli & Barry J. Grant
October 1, 2014

This document provides Additional File 2 for Integrating protein structural dynamics and evolu-
tionary analysis with Bio3D.

Background

Bio3D! is an R package that provides interactive tools for structural bioinformatics. The primary
focus of Bio3D is the analysis of bimolecular structure, sequence and simulation data (Grant et al.
2006).

Normal mode analysis (NMA) is one of the major simulation techniques used to probe large-
scale motions in biomolecules. Typical application is for the prediction of functional motions in
proteins. Version 2.0 of the Bio3D package now includes extensive NMA facilities (see also the
NMA Vignette). These include a unique collection of multiple elastic network model force-fields,
automated ensemble analysis methods, and variance weighted NMA. Here we provide an in-depth
demonstration of ensemble NMA with working code that comprise complete executable examples?.

Requirements

Detailed instructions for obtaining and installing the Bio3D package on various platforms can
be found in the Installing Bio3D Vignette available both on-line and from within the Bio3D
package. In addition to Bio3D the MUSCLE multiple sequence alignment program (available from
the muscle home page must be installed on your system and in the search path for executables.
Please see the installation vignette for further details.

About this document

This vignette was generated using Bio3D version 2.1.0.

1 Part I: Ensemble NMA of FE.colt DHFR structures

In this vignette we perform ensemble NMA on the complete collection of E.coli Dihydrofolate
reductase (DHFR) structures in the protein data-bank (PDB). Starting from only one PDB identifier
(PDB ID 1rx2) we show how to search the PDB for related structures using BLAST, fetch and align
the structures, and finally calculate the normal modes of each individual structure in order to probe
for potential differences in structural flexibility.

!The latest version of the package, full documentation and further vignettes (including detailed installation
instructions) can be obtained from the main Bio3D website: http://thegrantlab.org/bio3d/
2This vignette contains executable examples, see help(vignette) for further details.

http://thegrantlab.org/bio3d/tutorials
http://thegrantlab.org/bio3d/tutorials
http://www.drive5.com/muscle/
http://thegrantlab.org/bio3d/
http://thegrantlab.org/bio3d/

1.1 Search and retrieve DHFR structures

Below we perform a blast search of the PDB database to identify related structures to our query
E.coli DHFR sequence. In this particular example we use function get.seq() to fetch the query
sequence for chain A of the PDB ID 1RX2 and use this as input to blast.pdb(). Note that
get.seq() would also allow the corresponding UniProt identifier.

library(bio3d)

aa <- get.seq("1rx2_A")
blast <- blast.pdb(aa)

Searching ... please wait (updates every 5 seconds) RID = 2NOCZO5HO1R
2
Reporting 548 hits

Function plot.blast() facilitates the visualization and filtering of the Blast results. It will attempt
to set a seed position to the point of largest drop-off in normalized scores (i.e. the biggest jump in
E-values). In this particular case we specify a cutoff (after initial plotting) of 225 to include only
the relevant F.coli structures:

hits <- plot(blast, cutoff=225)

* Possible cutoff values: 250 22
Yielding Nhits: 101 548
##

#i * Chosen cutoff value of: 225

Yielding Nhits: 101

The Blast search and subsequent filtering identified a total of 101 related PDB structures to our
query sequence. The PDB identifiers of this collection are accessible through the pdb.id attribute
to the hits object (hits$pdb.id). Note that adjusting the cutoff argument (to plot.blast()) will
result in a decrease or increase of hits.

We can now use function get.pdb() and pdbslit() to fetch and parse the identified structures.
Finally, we use pdbaln() to align the PDB structures.

fetch PDBs
raw.files <- get.pdb(hits$pdb.id, path = "raw_pdbs", gzip=TRUE)

split by chain ID
files <- pdbsplit(raw.files, ids = hits$pdb.id, path = "raw_pdbs/split_chain", ncore=4)

align structures
pdbs.all <- pdbaln(files, fit=TRUE)

m 2 - = Nhit=101, x=250
> i 1%
©
> Qg
o = -
B _
i)
T B .
T T T T I T
0 100 200 300 400 500
_ = Nhit=101, x=313
3 o] -
B %
o
0 T T T T I
0 100 200 300 400 500
o
S 7| === Nhit=101, x=96
z 8- ®
c
o _|
s -
Q w _ —
T T T T T L
0 100 200 300 400 500
_ ol® @ oo
_ - s
£ § 4 cm— NDit=101, x=162
(@) o
c —
1 o [)
g - - .
Nhi=s548. x:]leL
T T T T I
0 100 200 300 400 500

Figure 1: Blast results. Visualize and filter blast results through function plot.blast(). Here we
proceed with only the top scoring hits (black).

The pdbs.all object now contains aligned C-alpha atom data, including Cartesian coordinates, residue
numbers, residue types, and B-factors. The sequence alignment is also stored by default to the
FASTA format file ‘aln.fa’ (to view this you can use an alignment viewer such as SEAVIEW, see
Requirements section above). In cases where manual edits of the alignment are necessary you can
re-read the sequence alignment and coordinate data with:

aln <- read.fasta(’aln.fa’)
pdbs.all <- read.fasta.pdb(aln)

At this point the pdbs.all object contains all identified 101 structures. This might include structures
with missing residues, and/or multiple structurally redundant conformers. For our subsequent NMA
missing in-structure residues might bias the calculation, and redundant structures can be useful to
omit to reduce the computational load. Below we inspect the connectivity of the PDB structures
with a function call to inspect.connectivity(), and pdbs.filter() to filter out those structures
from our pdbs.all object. Similarly, we omit structures that are conformationally redundant to
reduce the computational load with function rmsd.filter():

remove structures with missing residues
conn <- inspect.connectivity(pdbs.all, cut=4.05)
pdbs <- pdbs.filter(pdbs.all, row.inds=which(conn))

which structures are omitted
which(!conn)

remove conformational redundant structures
rd <- rmsd.filter(pdbs$xyz, cutoff=0.1, fit=TRUE)
pdbs <- pdbs.filter(pdbs, row.inds=rd$ind)

remove "humantized" e-colt dhfr
excl <- unlist(lapply(c("3QLO", "4GH8"), grep, pdbs$id))
pdbs <- pdbs.filter(pdbs, row.inds=which(!(1:length(pdbs$id) %in% excl)))

a list of PDB codes of our final selection
ids <- unlist(strsplit(basename(pdbs$id), split=".pdb"))

Use print() to see a short summary of the pdbs object:

print (pdbs, alignment=FALSE)

##

Call:

pdbs.filter(pdbs = pdbs, row.inds = which(!(1:length(pdbs$id) %in%
#it excl)))

##

Class:

pdbs, fasta

##

Alignment dimensions:

82 sequence rows; 159 position columns (159 non-gap, 0 gap)
##

+ attr: id, xyz, resno, b, chain, ali, resid, call

1.2 Annotate collected PDB structures
Function pdb.annotate() provides a convenient way of annotating the PDB files we have collected.
Below we use the function to annotate each structure to its source species. This will come in handy

when annotating plots later on:

anno <- pdb.annotate(ids)
print (unique (anno$source))

[1] "Escherichia coli" "Escherichia coli K12" "Escherichia coli K-12"

1.3 Principal component analysis

A principal component analysis (PCA) can be performed on the structural ensemble (stored in
the pdbs object) with function pca.xyz(). To obtain meaningful results we first superimpose all
structures on the invariant core (function core.find()).

find invariant core
core <- core.find(pdbs)

superimpose all structures to core
pdbs$xyz = pdbfit(pdbs, core$cO.5A.xyz)

tdentify gaps, and perform PCA
gaps.pos <- gap.inspect (pdbs$xyz)

gaps.res <- gap.inspect(pdbs$ali)
pc.xray <- pca.xyz(pdbs$xyz[,gaps.pos$f.inds])

plot PCA
plot(pc.xray)

Note that a call to the wrapper function pca() would provide identical results as the above code:

pc.xray <- pca(pdbs, core.find=TRUE)

Function rmsd() will calculate all pairwise RMSD values of the structural ensemble. This facilitates
clustering analysis based on the pairwise structural deviation:

rd <- rmsd(pdbs)
hc.rd <- hclust(dist(rd))
grps.rd <- cutree(hc.rd, k=4)

Projection of the X-ray conformers on to their two largest eigenvectors shows that the E.coli DHFR
structures can be divided into three major groups: closed, open, and occluded conformations:

plot(pc.xray$z[,1:2], col="grey50", pch=16, cex=1.3,
ylab="Prinipcal Component 2", xlab="Principal Component 1")
points(pc.xray$z[,1:2], col=grps.rd, pch=16, cex=0.9)

°
<) ()
‘o d
N []
4 ANl — '
S H
S (]
= °] :
3 '.o v
—_ [)
g Q- ‘.:o
=t L d
=
s Y -°s
o | 'P e
] ®
4, °
I I I I
-5 0 5 10

Principal Component 1

Figure 2: Projection of MD conformers onto the X-ray PC space reveals that the E.coli DHFR
structures can be divided into three major groups along their two first eigenvectors. Each dot is
colored according to their cluster membership: occluded conformations (green), open conformations
(black), and closed conformations (red).

To visualize the major structural variations in the ensemble function mktrj() can be used to
generate a trajectory PDB file by interpolating along the eigenvector:

mktrj(pc.xray, pc=1,
resno=pdbs$resno[l, gaps.res$f.inds],
resid=pdbs$resid[1, gaps.res$f.inds])

Function pdbfit() can be used to write the PDB files to separate directories according to their
cluster membership:

pdbfit (pdbs.filter(pdbs, row.inds=which(grps.rd==1)), outpath="grpsi") ## closed
pdbfit(pdbs.filter(pdbs, row.inds=which(grps.rd==2)), outpath="grps2") ## open
pdbfit(pdbs.filter(pdbs, row.inds=which(grps.rd==3)), outpath="grps3") ## occluded

1.4 Normal modes analysis

Function nma.pdbs() will calculate the normal modes of each protein structure stored in the pdbs
object. The normal modes are calculated on the full structures as provided by object pdbs. With
the default argument rm.gaps=TRUE unaligned atoms are omitted from output:

modes <- nma.pdbs(pdbs, rm.gaps=TRUE, ncore=4)

The modes object of class enma contains aligned normal mode data including fluctuations, RMSIP
data, and aligned eigenvectors. A short summary of the modes object can be obtain by calling the
function print(), and the aligned fluctuations can be plotted with function plot.enma(). This
function also facilitates the calculation and visualization of sequence conservation (use argument
conservation=TRUE), and fluctuation variance (use argument variance=TRUE).

print (modes)

##

Call:

nma.pdbs(pdbs = pdbs, rm.gaps = TRUE, ncore = 4)
#i#

Class:

enma

##

Number of structures:

82

##

Attributes stored:

- Root mean square inner product (RMSIP)

- Aligned atomic fluctuations

- Aligned eigenvectors (gaps removed)

- Dimensions of x$U.subspace: 477x471x82

##

Coordinates were aligned prior to NMA calculations
##

+ attr: fluctuations, rmsip, U.subspace, L, full.nma, xyz,
call

plot modes fluctuations
plot (modes, pdbs=pdbs, col=grps.rd, variance=TRUE)

OO _
2 o
kS _
S
T ¥ |
> © '
L | "'}_
o | W WM s
o
0 50 100 150
Alignment Position
8 o
S o
S 3
o © |
§ L il hh il .I|||||] |H....|||”. o |‘|.. I
o | | | |

0 50 100 150

Alignment Position

Figure 3: Normal mode fluctuations of the E.coli DHFR ensemble. (upper panel) Each line
represent the mode fluctuations for the individual structures. Color coding according to structural
clustering: green (occluded), black (open), and red (closed). (lower panel) Variance of mode
fluctuations. The Met20 loop seems to display the largest deviations / differences in predicted
fluctuations.

hc.nma <- hclust(as.dist(l-modes$rmsip))
grps.nma <- cutree(hc.nma, k=4)

heatmap(1-modes$rmsip, distfun = as.dist, labRow = ids, labCol = ids,
ColSideColors=as.character(grps.nma), RowSideColors=as.character(grps.nma))

Figure 4: Clustering of structures based on their normal modes similarity (in terms of pair-wise
RMSIP values).

1.5 Fluctuation analysis

Comparing the mode fluctuations of two groups of structures can reveal specific regions of distinct
flexibility patterns. Below we focus on the differences between the open (black), closed (red) and
occluded (green) conformations of the E.coli structures:

cols <- grps.rd
cols[which(cols!=1 & cols!=2)]=NA
plot(modes, pdbs=pdbs, col=cols, signif=TRUE)

o | I || ||
2
© |
o
2
S 27
©
=]
e
s < ‘
T o , /
1
N
o
- | I
o

0 50 100 150

Alignment Position

Figure 5: Comparison of mode fluctuations between open (black) and closed (red) conformers.
Significant differences among the mode fluctuations between the two groups are marked with shaded
blue regions.

cols <- grps.rd
cols[which(cols!=1 & cols!=3)]=NA
plot(modes, pdbs=pdbs, col=cols, signif=TRUE)

cols <- grps.rd
cols[which(grps.rd!=2 & grps.rd!=3)]=NA
plot (modes, pdbs=pdbs, col=cols, signif=TRUE)

PDB has ALT records, taking A only, rm.alt=TRUE

1.6 Compare with MD simulation

The above analysis can also nicely be integrated with molecular dynamics (MD) simulations. Below
we read in a 5 ns long MD trajectory (of PDB ID 1RX2). We visualize the conformational sampling
by projecting the MD conformers onto the principal components (PCs) of the X-ray ensemble, and
finally compare the PCs of the MD simulation to the normal modes:

pdb <- read.pdb("md-traj/1rx2-CA.pdb")
trj <- read.ncdf("md-traj/1rx2_bns.nc")

10

|

Fluctuations
04

0.2

: 1iwﬂ]lm“l|||\llll|mwu|“ il

0 50 100 150

0.0

Alignment Position

Figure 6: Comparison of mode fluctuations between open (black) and occluded (green) conformers.
Significant differences among the mode fluctuations between the two groups are marked with shaded

blue regions.

| I || || |

1.0

06 0.8

Fluctuations
04

0.2

: M]N]N|||||||H|W|||ﬂ Ml

0 50 100 150

0.0

Alignment Position
Figure 7: Comparison of mode fluctuations between closed (red) and occluded (green) conformers.

Significant differences among the mode fluctuations between the two groups are marked with shaded
blue regions.

11

md.inds <- pdb2aln.ind(aln=pdbs, pdb=pdb, id="md", inds=gaps.res$f.inds)

trj <- trjl, atom2xyz(md.inds)]

trj <- fit.xyz(fixed=pdbs$xyz[1,], mobile=trj,
fixed.inds=core$c0.5A.xyz, mobile.inds=core$c0.54.xyz)

proj <- project.pca(trj, pc.xray)
cols <- densCols(projl[,1:2])

plot(proj[,1:2], col=cols, pch=16,
ylab="Prinipcal Component 2", xlab="Principal Component 1",
xlim=range (pc.xray$z[,1]), ylim=range(pc.xray$z[,2]1))
points(pc.xray$z[,1:2], col=1, pch=1, cex=1.1)
points(pc.xray$z[,1:2], col=grps.rd, pch=16)

[
<<) []
> ‘hd
T o~ - s
2 8
§_ °
o (@)
5 e ©
©) N g'irq;
© I @
] (0]
o
g < _|
= |
<?]
[
[[[
-5 0 5 10

Principal Component 1

Figure 8: Projection of MD conformers onto the X-ray PC space provides a two dimensional
representation of the conformational sampling along the MD simulation (blue dots).

PCA of the MD trajectory
pc.md <- pca.xyz(trj)

compare MD-PCA and NMA
r <- rmsip(pc.md$U, modes$U.subspacel,,1])

print (r)

$overlap

12

#it bl b2 b3 b4 b5 b6 b7 b8 b9 bl0

al 0.363 0.022 0.002 0.036 0.016 0.001 0.003 0.009 0.000 0.024
a2 0.176 0.236 0.004 0.000 0.089 0.011 0.004 0.000 0.001 0.005
a3 0.105 0.002 0.021 0.001 0.000 0.016 0.003 0.001 0.016 0.084
a4 0.003 0.094 0.157 0.116 0.067 0.016 0.045 0.045 0.029 0.000
ab 0.025 0.038 0.000 0.016 0.003 0.022 0.018 0.048 0.014 0.000
a6 0.053 0.015 0.044 0.053 0.056 0.077 0.034 0.112 0.005 0.007
a7 0.000 0.080 0.142 0.009 0.002 0.071 0.008 0.003 0.066 0.001
a8 0.030 0.228 0.066 0.331 0.013 0.024 0.000 0.001 0.010 0.001
a9 0.015 0.001 0.032 0.008 0.190 0.003 0.004 0.038 0.011 0.002
al10 0.002 0.034 0.137 0.000 0.027 0.001 0.067 0.018 0.005 0.004
#i#
$rmsip
[1] 0.6441
#it
attr(,"class")
[1] "rmsip"
plot(r, xlab="MD PCA", ylab="NMA")
RMSIP: 0.64
o _|
—
w_
< O —
=
P
<t —
N_
I I I I I
2 4 6 8 10
MD PCA

Figure 9: Overlap map between normal modes and principal components of a 5 ns long MD
simulation. The two subsets yields an RMSIP value of 0.64, where a value of 1 would idicate
identical directionality.

13

compare MD-PCA and X-rayPCA
r <- rmsip(pc.md, pc.xray)

1.7 Domain analysis with GeoStaS

Identification of regions in the protein that move as rigid bodies is facilitated with the implementation
of the GeoStaS algorithm (Romanowska, Nowinski, and Trylska 2012). Below we demonstrate the
use of function geostas() on data obtained from ensemble NMA, an ensemble of PDB structures,
and a 5 ns long MD simulation. See help(geostas) for more details and further examples.

GeoStaS on a PDB ensemble: Below we input the pdbs object to function geostas() to identify
dynamic domains. Here, we attempt to divide the structure into 2 sub-domains using argument k=2.
Function geostas() will return a grps attribute which corresponds to the domain assignment for
each C-alpha atom in the structure. Note that we use argument £it=FALSE to avoid re-fitting the
coordinates since. Recall that the coordinates of the pdbs object has already been superimposed
to the identified invariant core (see above). To visualize the domain assignment we write a PDB
trajectory of the first principal component (of the Cartesian coordinates of the pdbs object), and
add argument chain=gs.xray$grps to replace the chain identifiers with the domain assignment:

Identify dynamic domains
gs.xray <- geostas(pdbs, k=2, fit=FALSE)

Visualize PCs with colored domains (chain ID)
mktrj(pc.xray, pc=1, chain=gs.xray$grps)

GoeStaS on ensemble NMA: We can also identify dynamic domains from the normal modes of
the ensemble of 82 protein structures stored in the modes object. By using function mktrj.enma()
we generate a trajectory from the first five modes for all 82 structures. We then input this trajectory
to function geostas().

Build conformational ensemble
trj.nma <- mktrj.enma(modes, pdbs, m.inds=1:5, s.inds=NULL, mag=10, step=2, rock=FALSE)

trj.nma

##

Total Frames#: 4510

it Total XYZs#: 477, (Atoms#: 159)

##

#it [1] 25.125 59.135 5.302 <...> 33.181 46.72 7.348 [2151270]
##

+ attr: Matrix DIM = 4510 x 477

Fit to invariant core

trj.mma <- fit.xyz(trj.mma[1,], trj.nma,
fixed.inds=core$c0.5A.xyz,

14

mobile.inds=core$c0.5A.xyz)

Run geostas to find domains
gs.nma <- geostas(trj.nma, k=2, fit=FALSE)

Write NMA generated trajectory with domain assignment
write.pdb(xyz=trj.nma, chain=gs.nma$grps)

GeoStaS on a MD trajectory: The domain analysis can also be performed on the trajectory
data obtained from the MD simulation (see above). Recall that the MD trajectory has already been
superimposed to the invariant core. We therefore use argument £it=FALSE below. We then perform
a new PCA of the MD trajectory, and visualize the domain assingments with function mktrj():

gs.md <- geostas(trj, k=2, fit=FALSE)
pc.md <- pca(trj, fit=FALSE)
mktrj(pc.md, pc=1, chain=gs.md$grps)

Figure 10: Visualization of domain assignment using function geostas() on the first five normal
modes of the entire ensemble of 82 DHFR structures.

1.8 Measures for modes comparison

Bio3D now includes multiple measures for the assessment of similarity between two normal mode
objects. This enables clustering of related proteins based on the predicted modes of motion. Below

15

we demonstrate the use of root mean squared inner product (RMSIP), squared inner product (SIP),
covariance overlap, bhattacharyya coefficient, and PCA of the corresponding covariance matrices.

Similarity of atomic fluctuations

sip <- sip(modes)

hc.sip <- hclust(as.dist(1-sip), method="ward.D2")
grps.sip <- cutree(hc.sip, k=3)

hclustplot(hc.sip, k=3, colors=grps.rd, labels=ids, cex=0.7, main="SIP", fillbox=FALSE)

par(fig=c(.65, 1, .45, 1), new = TRUE)
plot(pc.xray$z[,1:2], col="grey50", pch=16, cex=1.1,

ylab="", xlab="", axes=FALSE, bg="red")
points(pc.xray$z[,1:2], col=grps.sip, pch=16, cex=0.7)
box ()

SIP

o
N —
o "‘t
Lo
—
o (]
o
—
o
o
o
o
g_%ﬁmfﬂ?&;%—mm L
o LT LTI TLLLILLL

<<<<<d3<<<<<<<<< <<<(<E<CD<E<(CD<E<E<E<E<TE‘<E<E|<(<I<
- l l A <

<L NINMMMNNONNNINMMNMTNTG
I||II|IIIIIIIII||I||II|II]

Figure 11: Dendrogram shows the results of hierarchical clustering of structures based on the similar-
ity of atomic fluctuations calculated from NMA. Colors of the labels depict associated conformatial
state: green (occluded), black (open), and red (closed). The inset shows the conformerplot (see
Figure 2), with colors according to clustering based on pairwise SIP values.

RMSIP

rmsip <- rmsip(modes)

hc.rmsip <- hclust(dist(l-rmsip), method="ward.D2")
grps.rmsip <- cutree(hc.rmsip, k=3)

16

hclustplot(hc.rmsip, k=3, colors=grps.rd, labels=ids, cex=0.7, main="RMSIP", fillbox=FALSE)

par(fig=c(.65, 1, .45, 1), new = TRUE)
plot(pc.xray$z[,1:2], col="grey50", pch=16, cex=1.1,

ylab="", xlab="", axes=FALSE)
points(pc.xray$z[,1:2], col=grps.rmsip, pch=16, cex=0.7)
box ()
RMSIP
(J
— =,F‘.

N_
—

g
@ _]
o
<N
CD
o JhLanhan brelbimh e e L L
O <l

I<\II\I<<\<I<<I<I<<I<I<\<I<<<IIIIIIIIIIIIIIIIIIIIIIIIII<\<<<<<I<<I<\<I<I<\<<<<
Y'TD M OO

2 <(
v%‘q E %N_k_ﬁrv?v q jwo -

Figure 12: Dendrogram shows the results of hierarchical clustering of structures based on their
pairwise RMSIP values (calculated from NMA). Colors of the labels depict associated conformatial
state: green (occluded), black (open), and red (closed). The inset shows theconformerplot (see
Figure 2), with colors according to clustering based on the pairwise RMSIP values.

| I}IGI\IIII

Covariance overlap

co <- covsoverlap(modes, subset=200)

hc.co <- hclust(as.dist(1-co), method="ward.D2")
grps.co <- cutree(hc.co, k=3)

hclustplot(hc.co, k=3, colors=grps.rd, labels=ids, cex=0.7, main="Covariance overlap", fillbox

par(fig=c(.65, 1, .45, 1), new = TRUE)
plot(pc.xray$z[,1:2], col="grey50", pch=16, cex=1.1,

ylab="", xlab="", axes=FALSE)
points(pc.xray$z[,1:2], col=grps.co, pch=16, cex=0.7)
box ()

17

Covariance overlap

0.4

0.2

[

<I:T(TI:I<I:T(I<I:I<I:T(I<I:I<I:I<(I<I:T(I<(I<I:T(I<(TI:T(I<I<I:I NN NV NEENN RN <<< <<I | I | I I I ?:I< <I:<I:<I:<I:<I:<I:I<I:I<I:I<I:I<I:
Ol
V]

3
i
%}

Figure 13: Dendrogram shows the results of hierarchical clustering of structures based on their pair-
wise covariance overlap (calculated from NMA). Colors of the labels depict associated conformatial
state: green (occluded), black (open), and red (closed). The inset shows the conformerplot (see
Figure 2), with colors according to clustering of the Covariance overlap measure.

Bhattacharyya coefficient

covs <- cov.enma(modes)

bc <- bhattacharyya(modes, covs=covs)

hc.bc <- hclust(dist(1-bc), method="ward.D2")
grps.bc <- cutree(hc.bc, k=3)

hclustplot(hc.bc, k=3, colors=grps.rd, labels=ids, cex=0.7, main="Bhattacharyya coefficient",

par(fig=c(.65, 1, .45, 1), new = TRUE)
plot(pc.xray$z[,1:2], col="grey50", pch=16, cex=1.1,

ylab="", xlab="", axes=FALSE)
points(pc.xray$z[,1:2], col=grps.bc, pch=16, cex=0.7)
box ()

PCA of cowvariance matrices

pc.covs <- pca.array(covs)

hc.covs <- hclust(dist(pc.covs$z[,1:2]), method="ward.D2")
grps.covs <- cutree(hc.covs, k=3)

hclustplot(hc.covs, k=3, colors=grps.rd, labels=ids, cex=0.7, main="PCA of covariance matrices

18

Bhattacharyya coefficient

0.4

0.2

Figure 14: Dendrogram shows the results of hierarchical clustering of structures based on their
pairwise Bhattacharyya coefficient (calculated from NMA). Colors of the labels depict associated con-
formatial state: green (occluded), black (open), and red (closed). The inset shows the conformerplot
(see Figure 2), with colors according to clustering of the pairwise Bhattacharyya coefficients.

par(fig=c(.65, 1, .45, 1), new = TRUE)
plot(pc.xray$z[,1:2], col="grey50", pch=16, cex=1.1,

ylab="", xlab="", axes=FALSE)
points(pc.xray$z[,1:2], col=grps.covs, pch=16, cex=0.7)
box ()

Document Details

This document is shipped with the Bio3D package in both R and PDF formats. All code can
be extracted and automatically executed to generate Figures and/or the PDF with the following
commands:

library(rmarkdown)
render ("Bio3D_nma-dhfr-partI.Rmd", "all")

Information About the Current Bio3D Session

19

100 150 200

50

PCA of covariance matrices

O<CAM<CANNNON<TANMMMMMN<TNMNIAMNTON<T<LANMT
||||||||||||||||||||||||||||||||\|H
o0 00

_J:,—EEWLP;?EEE;#:E#‘H&:&‘

<Em<(<<<(<£<(<(< |<(<E<(<(<E<(<E<E <(<(<(<(

I<I T(I | I<I

Figure 15: Dendrogram shows the results of hierarchical clustering of structures based on the PCA
of covariance matrices (calculated from NMA). Colors of the labels depict associated conformatial
state: green (occluded), black (open), and red (closed). The inset shows the conformerplot (see
Figure 2), with colors according to clustering based on PCA of covariance matrices.

print (sessionInfo(), FALSE)

R version 3.1.1 (2014-07-10)

Platform: x86_64-redhat-linux-gnu (64-bit)

##

attached base packages:

[1] stats graphics grDevices utils datasets methods
##

other attached packages:

[1] ncdf _1.6.6 bio3d_2.1-0 rmarkdown_0.3.3

##

loaded via a namespace (and not attached):

[1] digest_0.6.4 evaluate_0.5.5 formatR_0.10
[4] htmltools_0.2.6 KernSmooth_2.23-12 knitr_1.6

[7] stringr_0.6.2 tools_3.1.1 yaml_2.1.13
References

base

Grant, B.J., A.P.D.C Rodrigues, K.M. Elsawy, A.J. Mccammon, and L.S.D. Caves. 2006. “Bio3d:
An R Package for the Comparative Analysis of Protein Structures.” Bioinformatics 22: 2695-96.
doi:10.1093 /bioinformatics/bt1461.

20

http://dx.doi.org/10.1093/bioinformatics/btl461

Romanowska, Julia, Krzysztof S. Nowinski, and Joanna Trylska. 2012. “Determining geometrically
stable domains in molecular conformation sets.” Journal of Chemical Theory and Computation 8
(8): 2588-99. doi:10.1021/ct3002065.

21

http://dx.doi.org/10.1021/ct300206j

	Background
	Requirements
	About this document

	Part I: Ensemble NMA of E.coli DHFR structures
	Search and retrieve DHFR structures
	Annotate collected PDB structures
	Principal component analysis
	Normal modes analysis
	Fluctuation analysis
	Compare with MD simulation
	Domain analysis with GeoStaS
	Measures for modes comparison

	Document Details
	Information About the Current Bio3D Session
	References

