
Table 1. ACT clinical trial tumor responses and toxicities.a 

Target antigen Cancer(s) Receptor 
type 

Tumor responses 
(patients responding/ 
patients treated) 

Immune-mediated toxicities 
(patients experiencing toxicity/ 
patients treated) 

gp100 Melanoma TCR 3/161 Skin rash (15/16) 
Uveitis (4/16) 
Hearing impairment (5/16) 

MART1 Melanoma TCR 6/201 Skin rash (14/20) 
Uveitis (11/20) 
Hearing impairment (10/20)  

CEA Colon cancer TCR 1/32 Colitis (3/3) 
CAIX Renal cell carcinoma CAR 0/83,4 Hepatotoxicity (4/8)b 

HER2/Neu Colon cancer CAR 0/15 Cytokine release syndrome (1/1) 
MAGE-A3/A9/A12c Melanoma, synovial 

cell sarcoma, 
esophageal cancer 

TCR 5/96 Central nervous system toxicities (4/9) 

MAGE-A3/titind Multiple myeloma, 
melanoma 

TCR 0/27 Cardiac toxicity (2/2) 

CD19 B-cell malignancies CAR 6/88 Prolonged B cell deficiency (4/8) 
Cytokine release syndrome (4/8) 

3/39,10 Prolonged B cell deficiency  (3/3) 
2/211 Prolonged B cell deficiency  (2/2) 

Cytokine release syndrome (2/2) 
2/212 Cytokine release syndrome (2/2) 

GD2 Neuroblastoma CAR 1/713 None 
NY-ESO-1 Synovial cell 

sarcoma, melanoma 
TCR 9/1714 None 

a Antigen receptor gene therapy trials in which regression of bulky tumors or autoimmune toxicities occurred. 
b All patients had at least grade 1 and four patients had grade 3 or 4 liver enzyme elevations.  
c The MAGE-A3-specific TCR targeted an epitope shared by MAGE-A3 and MAGE-A9 and had cross-reactivity against an epitope 
of MAGE-A12. 
d The MAGE-A3-specific TCR was cross-reactive against an epitope of titin. 
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Table 2. Rationally selected candidate target antigens for ACT. 
Antigen Tumor type Expression 

frequency (%) 
Healthy 
tissue 
expression 

Advantages Disadvantages 

Cancer testis antigens (testis-restricted or tissue-restricted)a 

CTAG1B Myeloma 7-36 Germ cells15 Multiple tumor types, 
many potential 
epitopes 

MHC restricted, tissue 
restriction uncertain, 
frequency and intensity 
of positive cells varies  

Adult T-cell leukemia 61 
Transitional cell 35-45 
Medulloblastoma 20 
Esophageal 
squamous cell  

41 

Oral squamous cell 28 
Hepatocellular 1-44 
Non-small cell lung 2-33 
Melanoma  0-71 
Ovarian 10-30 

MAGEA1 Myeloma 20-52 
Transitional cell 57 
Glioblastoma 0-40 
Head and neck 10-30 
Hepatocellular 46-80 
Non-small cell lung 10-70 
Melanoma 16-90 
Neuroblastoma 36 
Serous ovarian  42 

MAGE-C1 Myeloma 30-77 
Medulloblastoma 28 
Hepatocellular 48 
Non-small cell lung 16-37 
Melanoma 52 

SSX2 Myeloma 12-23 
Glioblastoma 29 
Hepatocellular 9-47 
Non-small cell lung  12-17 
Melanoma 0-35 
Sarcoma 50 

MAGE-A2B Ependymoma 57 
Medulloblastoma 18-60 
Hepatocellular 35 
Non-small cell lung 0-33 
Melanoma 41-70 
Serous ovarian 21 
Osteosarcoma 82 

Brachyury Lung 41 16 Thyroid, B-
cells, 
testis16,17 

Functionally important, 
many potential 
epitopes 

MHC restricted, tissue 
restriction uncertain, 
frequency and intensity 
of positive cells varies 

NY-BR-1 Breast 84 18 Breast, 
testis18 

Many potential 
epitopes, cell surface 

Tissue restriction 
uncertain 
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expression 
Other tissue restricted antigens 
CD19 B-cell malignancies 100 B cells No MHC restriction  Normal tissue targeted, 

escape variants 11 
BCMA Multiple myeloma 100 B cells, 

plasma 
cells19 

No MHC restriction 
 

Normal tissue targeted 

Mutated proteinsb 

KRAS G13D Colon 5 None Functionally important MHC restricted, few 
epitopes, generally low 
frequency of mutation 

KRAS G12V Colon 7 
Pancreas 18 

KRAS G12R Pancreas 7 
KRAS G12D Colon 11 

Pancreas 29 
KRAS G12C Lung 7 
EGFRviii Glioblastoma 24-6720,21 None No MHC restriction, 

functionally important 
Frequency and intensity 
of positive cells varies Head and neck 4222 

Viral antigens 
HPV 16 E6 
HPV 16 E7 

Oropharynx 6123 None Functionally important, 
constitutively 
expressed, many 
potential epitopes 

MHC restricted 

Cervix 5324 
Vagina 5025 
Vulva 3025 
Anus 7025 
Penis 2826 

HPV18 E6 
HPV18 E7 

Cervix 1324 

a Expression frequencies were extracted from the CTpedia database 27. All studies had ≥ 10 specimens tested. Tissues with ≥ 
20% positive samples in at least one study are included.   
b Mutation frequencies are as reported by Warren and Holt 28. 
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