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Estimation of Generalizability
For each antibody, a classifier was trained by using regions from
one normal image and regions from one cancer image, with the
number of regions determined independently for each tissue
(Methods). One held-out normal image and one held-out cancer
image were then classified. A second classifier was trained with
two normal images and two cancer images. The third normal
image and a third cancer image were then classified. These steps
were repeated for 35 samplings of training and testing images for
each antibody, and the mean accuracy for each level of cross-
validation was calculated (i.e., the average accuracy when
training with one image of each class and the average accuracy
when training with two images of each class).
We then calculated the correlation between the two accuracies

for each tissue (Fig. S3), and found them to range from 0.90 to
0.91, indicating that our estimates of classification accuracies are
likely good estimates of future performance.
We performed a similar test of the generalizability of P value

estimates from the FR test. In this case, the first estimate was
made by sampling 2 normal and 17 cancer images, a second
estimate was made by sampling a subset from the 2 and 17 im-
ages (1 image and 16 images, respectively), and the average of 35
samplings are reported for each estimate (Fig. S3). We found the
correlations between the two P values to be greater than 0.94 for
all tissues, indicating that our reported P values are likely good
estimates of performance on new images.

Robustness to JPEG Compression
The images in the HPA database are ∼3,000 × 3,000 pixels and
are stored as JPEG compressed files. JPEG compression is
a lossy format that aims to preserve visually distinguishable
characteristics of an image while downsampling parts of the
image that are not visually distinguishable. Our texture features
quantify changes at varying levels of resolution. To investigate
the dependence of the performance of our system upon potential
JPEG compression artifacts, we compressed the original images
from the HPA at varying JPEG compression levels using the
imwrite function in Matlab. We then assessed how well the
known location biomarkers were found by constructing ROC
curves (as in Fig. S2) for varying extents of additional com-
pression. As shown in Fig. S7, the AUCs were not extensively
reduced in three tissues, suggesting that the JPEG compressed
images in the Atlas may not have had much effect on our de-
tection pipeline. Further studies using uncompressed images will
be needed to fully assess the impact of compression.

Displaying Regions
For each antibody, we performed hierarchical clustering using the
features for each region and applied optimal leaf ordering to the
leaves. For visualization purposes, we cut the tree to give 10
clusters. For each of these, we found the region closest to the
mean feature value for the leaves in that cluster. We selected one
representative antibody for breast and liver.
To illustrate how the features reflect the patterns for the full set

of regions, the full hierarchical clustering tree and the ordered
regions are shown in Fig. S8 for one antibody in bladder
(HPA034715 against ARHGEF3). For this antibody, pathologist
annotations indicated a subcellular location in every cancer
sample from nuclear/cytoplasmic/membranous to nuclear (it was
thus one of the true positives used in measuring performance of
our system). The clustering shows a progressive change in the
location pattern, and most normal and cancer regions cluster with

each other, as expected. Upon close inspection, it can be seen
that, although annotations indicate that normal and cancer
images have distinct nonoverlapping location distributions, our
method organizes the regions to show a progression of location
change, highlighting the visually overlapping distributions for the
two disease states.

Familywise Error Calculation
We calculated expression and location P values for each path-
way, and we ranked the pathways by the extent of expression and
location changes (Dataset S3). To determine whether any of
the pathways had statistically significant changes we calculated
a Bonferroni–Holm correction, which controls the familywise
error rate when making multiple comparisons. The correction
keeps the effective familywise error rate at α when there is more
than one comparison. Given a set of hypotheses of size m, the
corrected significance threshold for all hypothesis (H; i.e.,
pathways) is a function of its rank position (k) and the naive
significance level (α), in our case 0.05. Null hypotheses H1 to Hk
can be rejected by finding the smallest k that satisfies the in-
equality P(k) > α/(m + 1 − k).

Rank Consistency
Proteins are ranked by their P values to find location biomarker
candidates. Each P value and accuracy is calculated by sampling
2 normal and 17 cancer images from the respective image sets
for each protein. This list would presumably be different if we
picked a different set of 2 normal and 17 cancer images. A so-
lution would be to average the P values from many random
samplings of 2 and 17 images. Therefore, we determined how
many P value estimates we would need to average to produce
a consistently ranked list.
To do this, we created ranked lists from protein P values that

had been averaged from different numbers of random samplings
(from 1 to 50). We did this 10 times for each number of sam-
plings, and calculated the Spearman correlation between all
pairwise combinations of the resulting 10 lists (the Spearman
correlation coefficient is a nonparametric measure of how well
two variables monotonically increase together).
The left panels of Fig. S9 show the P value ranking consistency

(measured by the average Spearman correlation coefficients) for
the four tissues as a function of the number of estimates. The
plots show that the rank becomes highly consistent (i.e., corre-
lation close to 1) as the number of estimates increases. This
process was repeated for classification accuracy (Fig. S9, Right)
and a similar trend was observed. Therefore, we chose to use the
average of 35 estimates for all of the P values and accuracies
reported in Datasets S1 and S2.

KEGG Pathways and Translocated Proteins
Biochemical pathway networks were downloaded from the
KEGG database (www.genome.jp/kegg/pathway.html) as KGML
files. The files were parsed to undirected graphs in which nodes
represent proteins referenced by Entrez ID numbers and edges
represent interactions. The parsing into a graph structure was
done in R with the use of the KEGGgraph package available
from Bioconductor (www.bioconductor.org). In some cases, the
original pathways in KEGG have nodes that represent metabo-
lites or gene products, or, for some metabolic pathways, the
edges represent proteins and the nodes are reactions. The de-
fault KEGGgraph package parses the graphs to a consistent
format of protein at the nodes and interactions at the edges. We
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selected the option to list all paralogs for each protein to account
for the possibility of multiple names for the same protein.
Next we mapped the Ensembl IDs for the proteins in the

analysis set to the respective Entrez IDs and labeled the nodes in
each graph with the respective location and expression scores
from our analysis. This resulted in 268 KEGG pathways, for
which each pathway i has ni nodes, and mi nodes in the network
have pipeline or annotation values assigned, where mi ≤ ni.
To determine whether a pathway significantly changed loca-

tion, we calculated a network score from the location P values of
the mi known proteins. Network scores were calculated by taking
the sum of the logarithms of the protein node P values. We
tested the hypothesis that the pathway score was drawn from
a background distribution of 100 random networks scores of size
mi. For example, a pathway with 30 known proteins was tested
against a background distribution of 100 random networks, in
which each random network had 30 known proteins, whereas
a pathway of 500 known proteins was tested against a back-
ground distribution containing random networks of 500 known
proteins. Random networks were created by sampling mi pro-

teins from all known protein P values in the 268 KEGG path-
ways. The score of pathway i was compared with its background
distribution in a t test to determine the probability that the
pathway changed location. The significance threshold on the P
values was corrected by using Bonferroni–Holm multiple hy-
pothesis correction to control for familywise error rate. We then
repeated the same analysis by using the expression P values from
the pipeline.
Pathway P values were also calculated by using the pathologist

annotations. Under the assumption that the cancer images are
independent, the annotation P value for a given protein was
calculated as IN, where I is the empirical probability of change in
that tissue and N is the number of cancer images with a different
annotation label. This was done by tissue for location and ex-
pression. In breast cancer, the empirical probability for a sub-
cellular location change was 0.27, and, for expression, it was 0.50;
in liver cancer, the respective probabilities were 0.43 and 0.56; in
prostate, 0.26 and 0.49; and in bladder, 0.30 and 0.56 for location
and expression, respectively. All results for pathway P values are
listed in Dataset S3 and presented in Fig. S6.
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Fig. S1. Example images from top-ranked potential location biomarkers. The three proteins with the lowest location P values are shown for each tissue
(without considering expression level). The two regions closest to the two centroids found from k-means clustering (k = 2) for the normal and cancer feature
distributions are displayed for each of the top hits. Note that some of the top hits may have been detected as a result of expression changes.
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Fig. S2. Ability of the system to detect known location biomarkers. ROC curves were constructed for each tissue by determining how many true positives and
false positives were found as a threshold on the P value was varied. The validation set for a given tissue consisted of those proteins from the analysis set that
were annotated as having a different location between the normal and cancer images. Note that some of the false positives may actually be positives that were
not present in the validation set.
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Fig. S3. Estimation of generalizability of identifying location biomarkers. For each protein, classification accuracies (black) and location biomarker rankings
(red) are compared for estimates by using one or two normal images. The correlation coefficients were 0.90, 0.91, 0.90, and 0.90 for the accuracies and 0.95,
0.96, 0.96, and 0.96 for the location biomarker rankings. The high correlations for the rankings suggest that highly ranked proteins would also be highly
ranked in new images.
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Fig. S4. Location biomarkers differ between high- and low-grade cancers. The prostate and bladder cancer images were partitioned into high- or low-grade
cancer as annotated in the HPA. For each cancer, location and expression P values were calculated between the grades. The correlation between location and
expression P values is weak, suggesting that proteins with different locations between the two grades will not necessarily have different expression levels. The
color of each dot indicates the accuracy of a three-class classifier trained to distinguish the normal and the two grades while using location information alone.
Some proteins (marked in orange) have high classification accuracies; further, they showed a significant location change and do not show a significant change
in expression. These proteins are potential location biomarkers for the cancer subtypes.
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Fig. S5. Example images from top location biomarker predictions for classifying normal tissue from different tumor grades. The proteins are ranked by the
three-class classification accuracy for separating normal tissue, low-grade tumors, and high-grade tumors.
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Fig. S6. Extent of expression and location change in the KEGG pathway components. The left four panels show KEGG P values by using pipeline protein
values, and the right four panels show pathway P values derived from location and expression annotations. Each point represents the expression and location
P value for a single pathway. The points are colored by the number of nodes in the pathway.
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Fig. S7. The effects of JPEG compression on the performance of the pipeline. The images were JPEG compressed at different levels and processed through the
pipeline. The performance for detecting known location biomarkers was measured and reported as AUC values, as was done for Fig. S2.
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Fig. S8. Ordering regions by location change progression. We performed a hierarchical clustering of the features from the regions used in the analysis for
antibody HPA034715 against ARHGEF3 in bladder tissue. We calculated the Euclidean distances between every pair of regions and then performed hierarchical
clustering. The leaves are ordered to maximize the sum of similarities between adjacent leaves across the tree. Regions are displayed from top to bottom and
then left to right according to the ordering in the tree. Normal tiles are outlined in blue; cancer tiles are outlined in red.
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Fig. S9. Protein rank correlations using location P values and classification accuracies when averaging different numbers of estimates. The number of esti-
mates used to calculate the location P value and accuracy was varied from 1 to 50. The Spearman correlation coefficient was used to measure the consistency of
the ranked protein lists when different numbers of estimates were used.

Dataset S1. The sets of analyzed proteins for each tissue, ranked by the combination of location change and minimal expression change

Dataset S1

Validation marker proteins (Methods) are indicated with a 1 in the Validation Marker column.

Dataset S2. Estimation of expression and location differences between prostate and bladder tumor grades

Dataset S2

The proteins are ranked by the three-class classification accuracy for separating normal tissue, low-grade tumors, and high-grade tumors.

Dataset S3. Estimates of expression and location changes for pathways

Dataset S3

P values that the KEGG pathways changed (against a background distribution) were calculated by using the image analysis pipeline or the image anno-
tations, both for expression and location (Methods). Blank entries indicate pathways in which there was an insufficient number of images for the analysis.
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