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S| Materials and Methods

Notations and Model. RNA-Seq reads are mapped to both the
genome and splice junctions. For a skipped exon, the exon
inclusion level (denoted as percent spliced in or ) is calcu-
lated by the number of reads uniquely mapped to the exon
inclusion isoform or the exon skipping isoform. The number
of reads mapped to the exon inclusion isoform is denoted by I.
The number of reads mapped to the exon skipping isoform is
denoted by S. The total number of reads mapped to the exon
inclusion or exon skipping isoform is denoted by n, asn =1 +S.
In Fig. S1, the reads of the exon inclusion isoform and the
exon skipping isoform are illustrated for a skipped exon.
Similarly, we can count the isoform-specific reads corresponding
to other types of alternative splicing events (Fig. S1). For the
rest of ST Materials and Methods, we use skipped exon events to
illustrate the rMATS model, although the same statistical
framework can be applied to any other type of alternative
splicing event. Our rMATS software also provides the option
of using only the splice junction reads in the alternative
splicing analysis or both the splice junction reads and exon
body reads.

As the lengths of isoform-specific segments may differ be-
tween alternative isoforms (e.g., for exon inclusion vs. exon
skipping isoforms), we need to normalize the isoform-specific
read counts by the effective lengths of isoform-specific segments
in the calculation of the exon inclusion levels. For a segment
whose length is /, and the length of the read is r, the effective
length of the segment is defined by the number of unique read
intervals in this region, which is / —r + 1. Fig. S1 illustrates the
calculation of effective lengths for different types of alternative
splicing events.

For a skipped exon, we denote the effective length of the exon
inclusion isoform as /; and the effective length of the exon
skipping isoform as /5. Adjusted by the effective lengths of the
isoform-specific segments, the exon inclusion level y can be es-
timated by = (I/lr)/(I/l; + S/Is). The proportion of reads from
the exon inclusion isoform should be p=ly/(liy +Is(1 —w)).
Assuming the reads from the exon inclusion isoform follow a
binomial distribution, the total count of reads n=1+S, and
the proportion of reads from the exon inclusion isoform is

p=ly/(liy +Is(1—y)); then

Ty~ Binomial(n =1+ p= )
1 AT

This binomial model defines the relationship among the exon in-
clusion reads, the exon skipping reads, and the exon inclusion
level in each individual sample, adjusted by the effective length
of the exon inclusion or exon skipping isoform.

Statistical Model of rMATS for Unpaired Replicate Analysis.

Notations. When we compare exon inclusion levels between two
sample groups, where the replicates are unpaired, multiple replicates
within each sample group may have different exon inclusion levels,
due to biological variation among replicates and/or technical vari-
ation in the RNA-Seq experiments. We can model the variation
in the exon inclusion levels among replicates with a model where
the logit of the individual exon inclusion levels within each sample
group follows a normal distribution. Below we describe the
notations and statistical models for the unpaired replicate anal-
ysis. Assuming we have a total of N alternatively spliced exons,
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for each exoni=1, ..., N, there are M; replicates in sample
group 1 and M, replicates in sample group 2, we denote
Witl, - - Wilk» - - - » Wiy, » €xon inclusion levels of exon i in
sample group 15 w1, . . -, Wing, - - - » Wian,» €X0n inclusion levels
of exon i in sample group 2; ;;, y;, mean of the exon inclusion
levels of exon i in sample groups 1 and 2; 6%, 0%, variance of
the exon inclusion levels of exon i in sample groups 1 and
2; Lty - - -, Lk, . . ., Ty, read counts of the exon inclusion
isoform of exon i in sample group 1; Ipp1, . . ., Lok, - - ., Low,,
read counts of the exon inclusion isoform of exon i in sample
group 2; Sitt, - .-, Sitk, - - - » Sitm,, read counts of the exon
skipping isoform of exon i in sample group 1; Spi, ...,
Siok, - - -, Siam,, read counts of the exon skipping isoform of
exon i in sample group 2; and [y, /;s, effective lengths of the

exon inclusion and exon skipping isoforms of exon i.
Statistical model.

logit(w;1), - - -, logit(w;i), - - -, logit (w;i, )

~ Normal (,u =logit(i;), 6% = 5,‘21) ,

logit(yiay), - - -, logit(yi), - - - , logit(wia,)
~ Normal (,u =logit(yy), 6% = 01-22) ,

o lityiny
Ii11|w;11 ~ Binomial (n'n =l + S, pin = T
i1lwinn i i i1, pi Ly +lis(L—w11))’

. . Ly,
ik |y ~ Binomial (nilk =TIk +Sitk, Ditk =l _'_llsl(lf )
ik +lis(1 =i

L, Wiy, ~ Binomial <'1i1M1 =TI, + S, Pitm,

_ lulI/an
Lwiong, +lis(M=wing,) )

. . l']l//‘
Iizl|l//i21NBIHOmlal(nm=1i21+5i21,Pi21= Iy +l l.Sl(zll vor))’
i1 +lis(1 =i

. . Liny;
Loy o ~ Binomial (nizk =Ipi + Siok; Piok = v _'_ZIIVS/‘(Z{‘ ” )) ,
iWink +lis (L = Wine

Tioa, [Wiopr, ~ Binomial (ni2M2 =Iiom, +Siom, , piom,

_ lilV/iZMz
Lrwiong, +lis (1= wing,)
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The numbers of replicates (M; and M;) can differ between the
two sample groups, when the replicates in the two groups are
unpaired.

Conceptually, if some features are removed, our model is

equivalent to the generalized linear mixed model (GLMM)
where y;,y;;, model the fixed effect of mean exon inclusion
levels in the two sample groups and 61, 6;, model the random
effect of exon inclusion level variation among individual
replicates. However, there are two key distinctions between
the rMATS model and a standard GLMM with a logit link
function. First, to allow flexible definition and hypothesis
testing of differential alternative splicing patterns, rMATS
tests whether the difference in mean exon inclusion levels
between the two sample groups exceeds a user-defined cutoff
(i.e., lwy —wi| >c¢), instead of testing whether the sample
group effect is nonzero (i.e., |w;; —yip| >0). Second, the length
normalization (p=Ipy/(Ipy +1s(1 —y))) in the binomial distri-
bution leads to a noncanonical link function. Because of these
issues, we need to modify the standard GLMM Laplace ap-
proximations to fit our model. The modifications are de-
scribed below.
Likelihood function. Before we describe the model fitting, we first
describe the full-likelihood function of our model. The joint-
likelihood function of our model is a combination of (i) the
normal distribution modeling the variation of the replicate
exon inclusion levels within sample group and (ii) the bi-
nomial distribution modeling the relationship of the exon
inclusion reads, exon skipping reads, and the exon inclusion
level in each individual replicate. Thus, the joint-likelihood
function is composed of two components:

For each exoni=1,..., N,

L=LL,

M, M,
Ly = [ [ PUilwive nie) T [ Pk by mie)
k=1 k=1 [S1]

M, M,
L= HP(II/nkhl/mGn) HP(y/ika,mgiz).
=1 Py

The L; part of Eq. S1 is from the binomial distribution:

& T ( Lk + Sin
[Pk lyives nirw) = H( L l )

k=1 k=1 Tink

M, I
iIYilk
Xe E Ty lOg( ! )
*P ( = ' Ly +lis(1—wig)

Lis(1 = wing) )
+ Sk lo ,
e g(liIWilk +his(L—wi1)

Uk 2 T+ Siok
T P(tadwinon) = T )

k=1 k=1 Lok

o Liny;
X exp Z I log (lz iW¥iok )
k=1

Wik +lis(1=wi)

| lis(1 = win)
+ Siax log (liIWiZk +his(I-wyi) /)

[S2]

The L, part of Eq. S1 is from the normal distribution:
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M, M,
HP(y/ﬂk lwi1,011)= exp(Z —0.5 log(27)—log 6y
k=1 =1

B (logit(ll/ilk)— logit('l’il))2 +log (ll/ﬂk (- y/ilk)))

207
M, M,
HP(wiZk [win,0i2) = exp(Z —0.5log(27)—logoi,
k=t =1

logit (v )~logit(w;,)?
_ losit 2k2)02 Eitya) +10g(Wi2k(1_Wi2k))>'
2

[S3]

In Eq. S3, log(w;i(1—yin)) and log(wx (1 —yiy)) are intro-
duced by the logit transformation of the exon inclusion levels.
The joint-likelihood function (Eq. S1) is a combination of the
two components in Eqs. S2 and S3.
Laplace approximation of the marginal distribution of the mean and
variance of exon inclusion levels. Because our goal is to test the dif-
ference of mean exon inclusion levels of exon i between two sample
groups (i.e., w;; —y;y), we treat the individual exon inclusion levels
Wints - s Witks - - - Wi, a0d Wi o Wik, - Way,) @S
latent variables and derive the marginal distribution of the mean
and variance of exon inclusion levels:

Fwi, 011, w10, 012)
=C/f(ll/iuﬂil,l//izﬁizﬂ//nl, e WM Wity - - ll/iZMz)

X dyiiy - Ay g - - - dwioy,

M, e
=c < H /f(Wih oit, Wink) Witk H /f(V/i27 612, ‘/’iZk)dlI/iZk) '
k=1

k=1
[S4]

In Eq. S4, ¢ is a constant that is not changed by parameters;
fWins o, wik) and f(yi, 0. W) are defined by the combina-
tion of normal and binomial distributions in Egs. S2 and S3:

fwir, 61, wink)

_exp <_10g gy - 03008y = logit(yi)

Oi1

Liry;
+log(yin) +log(1 —wiy) + Lk log <l<[y/-1k +Il-sl(lf— l//'lk))
i i i

L
Lis(1 =wi)
+Six log (liﬂ//ilk"'liS(l —vik)) )’

fwin, i, wink)

S(logit(w ) — logit(w))?
=cXp (—lOg oip — 0 5( Oglt(WIZk)z Oglt(l//zZ))

Oip

Ly,
+10g(y0) +log(1 =yie) + I log ()

ik +lis (1= wing)
Lis(1 —wriy)
+ Sielog (lill//izk +his(I=wir)) |

[S5]

Because of the lack of closed-form expressions, we use Laplace’s
method to approximate the integrals of Eq. S5:
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/ Fwir, 6, Wi )dwink

f1=logf
= /exp(f1 (wit, it Witk ) )dwink

A azfl (i1, 011, Wik NV
= / exXp <f1 (wir, 001, W) +0.5 —'awzl Wik — Witk
ilk

+o ((Wilk - lf’ilk)z) > Ak

~ \/ﬂ(’azfl(ll/ih i1, Witk)

05
FW) exp(fi (Wi, i1, Wik )
Wilk

/ (Wi, iz, Wik )dwik

fi=losf (‘52f 1(Wi2s oi2, Yiok)

~05
v, ) exp(f1(wizs 612, Wiok))-

[S6]

In Eq. S6, Laplace’s method approximates the distribution of
and y;,;, by a normal distribution, using the second-level derivative
function in the Taylor series. The first-level derivative function
of the Taylor series is equal to zero because y;;;, and y;y, are the
maximum-likelihood estimates based on the full-likelihood func-
tions of Eq. S1, with fixed values of y;;, 6;1, w5, i2. The fixed values
(denoted as vy, 611, ¥ip, 62 below) are estimated in Optimization
procedure for the MLE:

llA/ilk = arg max
Vitk

") +log (lI/ilk)
Oi1

(—O.S(IOgit(wil o) — logit ()

liry ik )
i +lis(1 =)

lis(1 —yin)
Sie | ,
o 108 (lill//ilk +lis(1=wii)

(—0.5(logit(wl~2k) —logit(jip))’

+log(1—wiy) + L log (l

W = arg max
Wiok

)
Oip

+log(wix) +1log(1 — )

Livy i )
+1; lo :
%108 (liIV’iZk +lis(L =)

lis(1 =)
Sior 1 .
o o8 (lillllizk +his(1 =)

In Eq. S6, the second-level derivative function is

[S7]

1y, 001, Wik
Wiy
_ -1 (logit yin —logit iy — (2 — 1) n 1)
i (L =)’ o}
o Gl lis i+ lis (L= )
— JilkhiS 75 N N 2
Wi (G +lis (1 = yringe))
(lir + 2is) (1 = Yrange) +linrine
(1= virg) G+ Lis (1= rng))

= Sidir

[S8]
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Similarly,

/ Wi, 02, Wik )i

-0.5

aZ Vi2, Oi al/A/i P

z@(‘W' exXp(fi (yins o2, i),
2k

Pfi(win, 0i2, Wioke)
Wiy,

_ =1 <logit Wi — logit iy — (g — 1) + 1>

Wi (1 =iy o

Iyl (20 +lis )riow + lis (1 = Wrioge)
e (i +lis (1= i) )

(lir +2Lis) (1 — Yriog) + Lok

(1 =g Uity +lis (1 = o))

= Siklir 5

[S9]
Likelihood-ratio test of splicing difference. In the previous section, we
describe the approximation for the marginal distribution of the
mean and variance of exon inclusion levels. Based on the marginal
distribution, we can calculate the P value of splicing difference
for each exon by the likelihood-ratio test. Recall that rMATS
tests whether the difference in mean exon inclusion levels be-
tween the two sample groups exceeds a user-defined cutoff (i.e.,
|wii —wis| >c). For each exon i, the null hypothesis is that the
difference of the mean exon inclusion levels is smaller than or
equal to the user-defined cutoff ¢ (i.e., |Ay| = |w;; — win| <c),
whereas the alternative hypothesis is |y;; — w;| >c.

If the maximum-likelihood estimations (MLEs) of w;;, w;s
have a difference smaller than or equal to the user-defined cutoff
(i.e., lwj1 — win| <c), we set the P value to be 1. Otherwise, we
compare the likelihood under the constraint of the null hy-
pothesis and the likelihood from the unconstrained MLE. The
constraint of the null hypothesis leads to a likelihood ratio
whose probability distribution does not have a closed-form ex-
pression. However, note that when the MLEs of y;;, w;, have
a difference greater than the user-defined cutoff ¢, the MLEs
of w;1, w;, under the constraint of |y;; — y;,| <c¢ always fall on the
boundary of |y;; — w;;| =c. We can instead calculate a more con-
servative P value by comparing the null hypothesis on the bound-
ary Hy : |y;; —w;| =c, vs. the alternative hypothesis Hy : |y;; —
wip| >c. With such a null hypothesis, the likelihood-ratio test
statistic asymptotically follows a 2 distribution with 1 df,

-2 (logL\Wi1—llfi2\=C - IOgL) N)(%7 [SIO]

in which log L}, . |- is the log likelihood under the constraint
that |w; — w;;| =c and log L is the log likelihood from the
unconstrained MLE. We calculate the MLEs of y;;, y;, and
oi1, opp based on the marginal distribution of Egs. S6, S8, and
S9. The optimization procedure to calculate the MLE is described
in the next section.
Optimization procedure for the MLE. In this section, we describe the
optimization procedure to calculate the MLE of the mean exon
inclusion levels y;;, y;, and the variance o1, o1, based on the
marginal distribution of y;;, y;, and o1, op.

In the marginal distribution (Eq. S4), the function has a closed
form if all of the latent variables y;; and y,y, are fixed. How-
ever, the estimated values of the latent variables ;1 and v, are
the MLEs of the full-likelihood function with fixed values of
mean inclusion levels y;;, y;, and variance oy, o;2. Therefore,
in the Laplace approximation, we use an iterative optimization
procedure for the MLE calculation.
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The initial estimated values of the latent variables y;;;, and ;5
are derived from the individual binomial distributions of each
replicate (Eq. S2):

S liwds
L —
Lilis + Sindir
and
N 2

Vike= Tiniclis + Sioilir’

In each round (¢) of the iterative optimization procedure, we
first estimate the MLE of the marginal distribution (Eq. S4)
based on the estimated values of the latent variables l//l(l « and 1//123c
and the Laplace approximation of the integrals of the full likelihood

(Egs. S6, S8, and S9):

@ @) ) )
(th’l//127 Oi1» 12)

M, ofi l//ilagil’li/(i}c
= arg max Z fi (wll,all,yxllk) 0510g¥
Vil Wi2:0i1,0i2 \ =1 l//ilk
Fi(wias 02, i
+Z f1<ll’1270127l//,2k) 0510g(82)
Widk

[S11]

n [S11], the function f; is the log of the function f in Eq. S5.
The second-level derivative function is described in Eqs. S8 and S9.

The next step of the iterative optlmlzatlon procedure updates
the estimation of the latent variables l//ti-;(—l nd y/l;l based on
the full likelihood (Eq. $1) and the latest MLE of g vl
&f?, . Given the mean and variance of exon inclusion levels

1]/5?7 y/l(é)7 Ag% 12 , the exon inclusion level y/f,gl) or y/lgzl) can
be estimated separately for each individual sample. As described

in Eq. 87, for each replicate k=1 ... M; in the sample group 1,

2
- ~0.5 (logit (yye) ~ logit (i) )
Y, = arg max

Vin (;,g))z
+log (i) +log(1 —wiy)

+Ii1k 10g<

Liryik )
Ly +lis(1 —winge)

Lis(1 =wiyg) )
+ S lo L !
1108 (lilll/nk +his(1 =)

And for each replicate k=1 . .. M, in the sample group 2,

2
" ~0.5 (logit(y;a0) ~Togit (4
Wiy = arg max

Wink (65;))2

+log (i) +log(1 —wix)

livy i
I 1 nr
haog (liI‘l/iZk +lis(L =)

lis(1—yi) )

Lty +lis (1 —wing)

+ Sk lOg (
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This optimization procedure iterates for multiple rounds until the
difference in log likelihood between two consecutive iterations is
smaller than 10~*. On average, the iterative procedure takes 6.4
iterations to converge on the RNA-Seq data from the prostate
cancer cell lines described in this article. The maximum number
of iterations is 37.

The optimization procedure uses the L-BFGS-B algorithm (1)
to optimize the likelihood function with the parameter y con-
strained within 0-1 and the parameter ¢ within 0 to infinite.

The constrained MLE under the null hypothesis is estimated with
the same procedure, except for an additional constraint |y;; —
w;| =c. Specifically, we replace the parameter y;, with either
Wi — ¢ or yr;; +c and select the best MLE under the two scenarios.

Statistical Model of rMATS for Paired Replicate Analysis. In certain
studies, replicates are paired between sample groups. One example is
the comparison of matched cancer-normal tissue pairs across mul-
tiple cancer patients. We have extended the rMATS model to handle
paired replicates. Although the notations for the paired model and
the unpaired model are almost identical, in the paired model we use
a bivariate normal distribution with the correlation parameter p; to
model the correlation within matched pairs for exon i.

Statistical model. Assuming we have a total of N alternatively
spliced exons, and for each exon i=1 , N, there are M
matched replicates in sample groups 1 and 2, we have

logit (1) logit(y;14) logit(w;1ar)
logit () logit (i) logit(wion)

~Normal | u= logit(ya) s = o) pioinon
logit(‘//iZ) T Pi0i10i2 51.22 ’

Iin |1y ~ Binomial (nm =L+ Sat.pini =

Liryin )
Ly +lis(L—wiy) )’

. . l‘]l//A
itk |wi1x ~ Binomial (nilk =Tk + Sitk, Pitk =llll/ ;lsl(lk vid))’
iY¥ilk T4 ilk

Tiim|winy ~ Binomial (”ilM =1y + Sitm, Pitmt

_ Liryi )
Ly +lis(1—winpr)

] ) liryin
In1|win ~Binomial (n'zl =l +Si1,pio1 = l ’
1V i i i21,Pi Lirying +lis(1—winq)

. . lill//‘zk
Lok |lw;, ~Binomial (n ik =ik + Sioge, Pinke = i ’
i |l//12k i i i2k Pi li]l//sz +le'( ’l/sz)

Iiom|winy ~ Binomial (”izM =Ipm + Som, piom

_ Lir Yiom )
Livwiops +lis(1 = winn)
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Likelihood-ratio test of splicing difference. In the paired analysis, the
marginal distribution of mean exon inclusion levels can also be
approximated by Laplace’s method, by treating the individual
exon inclusion levels (w1, - - -y Wik, - - - » Wiy and ying, - . .,
Wik, - - - » Wiy as latent variables. However, the mean exon in-
clusion levels y;;, y;, cannot be separated in the marginal distri-
bution because of the bivariate normal distribution. Therefore, we
take the integral of the pair of variables y;;, w,y together to de-
rive the marginal distribution:

f(‘//n:ll/iz, Oil, 0'1‘2,/71‘)

=C/f(l/’ilvl//i255[175i2:pi:Wi117 Ce s Vs Wats - s Wiom)
X dyiy - - dyaydyig - - - dyioy
M
=c H /f(Wil: Wiz, 01, 012, Pis Witk Wink ) AW i1k dW i
k=1
[S12]

/ Fwin, Wiz, 6it, 612, Pis Witk Wink ) AW 1Ay i
fi=logf
T= / exp(fi(wir, Wiz, 6it, 612, Pis Witk Wink ) ) AW i1 QW iy
= /exp(fl(l//i17Wi2>0'i176i27pi7l//i1k7l//izk)

405 |:l//i1k_l/7i1k:|/ 1 |:'//i1k_‘i/i1k:|

Wik — Wink L ik = Wik
L\2 L\2
+o (('//ilk = Witk) ) +o ((V/izk — W) ))dll/ilkdl//izk
1 -0.5 . R
r 2”(’2;‘1(‘) exp(fi1(Wir, Wiz, Git, 012, iy Winkes Winke)) -
[S14]

In Eq. S14, Z}k is the Hessian matrix of the log-likelihood function f;:

Pfi(Wir Wi, 011, 002, i Wirk Wik) - 01 (Wit Wi, 0, G, i, Wi Wink)

2
21 _ Wik
ik

W10 i

Pfi(wi wa, 011, 002, i Wik Wik) - 01 (Win, Wi, 0, 612, i, Wik Wink)

oW1k O ok

Compared with the marginal distribution of the unpaired analysis
(Eq. S4), the integral of variables y;;;, y;y cannot be separated
in the paired marginal distribution.

In Eq. S12,

Fwir, Wi, 61, 612, P Witk Wink)
logit(y;1) —logit(y;;) |’
=exp<—0.510g‘zi —0.5{ g.( ) g_( 1)]
logit (i) —logit(y;)

-1 | logit(y;y) — logit(y;;) }
X . .
Zi { logit(y;5) — logit(w;,)

liry;
+log(w;yx) +1log(1 —wi) + ik log(l Witk )

i +lis (1=
lis(1 =) )
+S;1klo ! d
1108 (lilll/ilk +lis(L =)

ll' i
+log(win) +1og(1 —wip) + ik log(l Wik )

Wik +lis(1—wi)
Lis(1 =)
o | . 1
+ S log <liIWi2k +his(1 =) (5131

2

— 0i1 Pi0i10i2
In [S13). 2, |:/’i5i15i2 o
Because of the integral of two variables w;, ;o in Eq.
S12, Laplace’s method approximates the joint posterior dis-
tribution of w;y;, wiyx With a bivariate normal in the paired
analysis, instead of using the univariate normal distributions
as in the unpaired analysis:

] is the covariance matrix.

1. Zhu C, Byrd RH, Lu P, Nocedal J (1997) ACM Trans Math Softw 23:550-560.
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a‘//izzk

The first-level derivative function of the Taylor series is equal to zero
because i, and y;;, are the maximum-likelihood estimates based
on the full-likelihood functions of Eq. S13, with fixed values of
Vi1, Wiz Oil; 02, Pi-

(Witks Win) = arg max
YilkWizk

(_0 S [logit(ll’ilk) —logit(y;)
logit(w;5 ) — logit(y;,)

! [ogit(y;,) — logit (i) }
>< . t . /\l
Zi |:10g1t(1/’i2k) — logit(yr)

Ly,
+log (i) +log(1 =) + Lk log (1,1,/‘1,( +lll‘sl(11k— lle))
i i L

lis(1 =)
Sitx 1 L
*oulog (lilll/ilk +lis(1T =)

livyink )
+10g(win) +10g(1 —wix) + Lok o
8(win) +10g(1 = yin) + Lok g(l”y/,-Zk+lis(1—Wi2k)
lis(1 =) )
+ S lo :
2k g(liIWiZk +liS(1 - l//iZk)

The likelihood-ratio test of the paired analysis is based on the
same hypotheses as in the unpaired analysis. For each exon i,
the null hypothesis is that the difference of the mean exon in-
clusion levels is smaller than or equal to a user-defined cutoff
¢ (ie., |yi1— wip| <c), whereas the alternative hypothesis is
|wii —win| >c. The MLE and likelihood-ratio test statistics are
estimated based on the same iterative optimization procedure
on the Laplace approximation of the marginal distribution func-
tion of the mean exon inclusion levels w;,y;, the variance
oi1,012, and the correlation parameter p; (Eq. S14).
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splice site

Alternative 3"
splice site

Mutually

exclusive exon

Retained intron

1 : reads of the inclusion isoform
J: junction length

Junction Length

0:2(j=r+1)

loij—r+1 Iy j-r+1
[:2(j-r+]) 1,
ey ly:j-r+1
1120 —r+1) i

I j-r+l e vf=r+l
L :2(j-r+1) 1

Iy 22(j—r+1) !

L :2(j—-r+1) I,
loij—r+l

Iij-r+l

e, e;: exon length 72 read length

1,: effective length of the inclusion isoform

Ig: effective length of the skipping isoform

S': reads of the skipping isoform

Junction & Exon Length
Lieo—r+142(j-r+1)

e —r+1+2(j-r+l1)

e —r+1+2(j-r+1)

e —r+14+2(j-r+1)
gre—r+1+2(j-r+1)

e —r+1+2(j-r+1)

Fig. S1. The schematic diagrams illustrating the read counts and effective lengths of different categories of alternative splicing events. The alternative splicing
events of skipped exons, alternative 5’ splice sites, alternative 3’ splice sites, and retained introns have two splice junctions for the inclusion isoform and one
splice junction for the skipping isoform. The mutually exclusive exons have two splice junctions for the inclusion isoform of the first exon and two splice
junctions for the skipping isoform of the first exon (i.e., the inclusion isoform of the second exon). The exon body reads are RNA-Seq reads mapped to the
genomic regions of the target exons. The rMATS model allows users to use either the splice junction counts plus the exon body counts or the splice junction
counts alone as the input.
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Fig. S7. Histograms of the logit exon inclusion levels of 25 randomly selected alternative exons in TCGA ccRCC tumor samples.
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Table S1.

Samples

Total no. RNA-Seq
reads, million*

No. uniquely mapped

reads, million (%)

Reads mapped to genomic
regions, million (%)

Summary and mapping statistics of RNA-Seq data on the PC3E and GS689 cell lines

Reads mapped to splice
junctions, million (%)

PC3E-1
PC3E-2
PC3E-3
GS689-1
GS689-2
GS689-3

126
129
126
132
114
119

101 (80)
104 (81)
101 (80)
104 (79)
90 (79)
93 (78)

62 (49)
65 (50)
63 (50)
68 (52)
58 (51)
60 (50)

39 31)
39 (31)
38 (30)
36 (27)
32 (28)
33 (28)

*RNA-Seq reads are 2 x 101-bp paired-end reads.

Table S2. rMATS analysis of PC3E and GS689 cell lines

Total no. alternative
splicing events

Alternative splicing events

No. significant alternative
splicing events*

Skipped exon
Alternative 5’ splice site
Alternative 3’ splice site
Mutually exclusive exon
Retained intron

91,856
3,664
5,138

24,168
3,315

467
24
21

159
50

*Significant events are based on FDR < 1% and |Ay| > 5%.
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