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SI Materials and Methods
Notations and Model. RNA-Seq reads are mapped to both the
genome and splice junctions. For a skipped exon, the exon
inclusion level (denoted as percent spliced in or ψ) is calcu-
lated by the number of reads uniquely mapped to the exon
inclusion isoform or the exon skipping isoform. The number
of reads mapped to the exon inclusion isoform is denoted by I.
The number of reads mapped to the exon skipping isoform is
denoted by S. The total number of reads mapped to the exon
inclusion or exon skipping isoform is denoted by n, as n= I + S.
In Fig. S1, the reads of the exon inclusion isoform and the
exon skipping isoform are illustrated for a skipped exon.
Similarly, we can count the isoform-specific reads corresponding
to other types of alternative splicing events (Fig. S1). For the
rest of SI Materials and Methods, we use skipped exon events to
illustrate the rMATS model, although the same statistical
framework can be applied to any other type of alternative
splicing event. Our rMATS software also provides the option
of using only the splice junction reads in the alternative
splicing analysis or both the splice junction reads and exon
body reads.
As the lengths of isoform-specific segments may differ be-

tween alternative isoforms (e.g., for exon inclusion vs. exon
skipping isoforms), we need to normalize the isoform-specific
read counts by the effective lengths of isoform-specific segments
in the calculation of the exon inclusion levels. For a segment
whose length is l, and the length of the read is r, the effective
length of the segment is defined by the number of unique read
intervals in this region, which is l− r+ 1. Fig. S1 illustrates the
calculation of effective lengths for different types of alternative
splicing events.
For a skipped exon, we denote the effective length of the exon

inclusion isoform as lI and the effective length of the exon
skipping isoform as lS. Adjusted by the effective lengths of the
isoform-specific segments, the exon inclusion level ψ can be es-
timated by ψ̂ = ðI=lIÞ=ðI=lI + S=lSÞ. The proportion of reads from
the exon inclusion isoform should be p= lIψ=ðlIψ + lSð1−ψÞÞ.
Assuming the reads from the exon inclusion isoform follow a
binomial distribution, the total count of reads n= I + S, and
the proportion of reads from the exon inclusion isoform is
p= lIψ=ðlIψ + lSð1−ψÞÞ; then

Ijψ ∼Binomial
�
n= I + S; p=

lIψ
lIψ + lSð1−ψÞ

�
:

This binomial model defines the relationship among the exon in-
clusion reads, the exon skipping reads, and the exon inclusion
level in each individual sample, adjusted by the effective length
of the exon inclusion or exon skipping isoform.

Statistical Model of rMATS for Unpaired Replicate Analysis.
Notations. When we compare exon inclusion levels between two
sample groups, where the replicates are unpaired, multiple replicates
within each sample group may have different exon inclusion levels,
due to biological variation among replicates and/or technical vari-
ation in the RNA-Seq experiments. We can model the variation
in the exon inclusion levels among replicates with a model where
the logit of the individual exon inclusion levels within each sample
group follows a normal distribution. Below we describe the
notations and statistical models for the unpaired replicate anal-
ysis. Assuming we have a total of N alternatively spliced exons,

for each exon i= 1;  :  :  :  ; N, there are M1 replicates in sample
group 1 and M2 replicates in sample group 2, we denote
ψ i11;  :  :  :  ;  ψ i1k;  :  :  :  ;  ψ i1M1

, exon inclusion levels of exon i in
sample group 1; ψ i21;  :  :  :  ;  ψ i2k;  :  :  :  ;  ψ i2M2

, exon inclusion levels
of exon i in sample group 2; ψ i1;ψ i2, mean of the exon inclusion
levels of exon i in sample groups 1 and 2; σ2i1; σ

2
i2, variance of

the exon inclusion levels of exon i in sample groups 1 and
2; Ii11;  :  :  :  ;  Ii1k;  :  :  :  ;   Ii1M1 , read counts of the exon inclusion
isoform of exon i in sample group 1; Ii21;  :  :  :  ;  Ii2k;  :  :  :  ;  Ii2M2 ,
read counts of the exon inclusion isoform of exon i in sample
group 2; Si11;  :  :  :  ;  Si1k;  :  :  :  ;  Si1M1 , read counts of the exon
skipping isoform of exon i in sample group 1; Si21;  :  :  :  ; 
Si2k;  :  :  :  ;  Si2M2 , read counts of the exon skipping isoform of
exon i in sample group 2; and liI ; liS, effective lengths of the
exon inclusion and exon skipping isoforms of exon i.
Statistical model.

logitðψ i11Þ;  :  :  :  ;  logitðψ i1kÞ;  :  :  :  ;  logit
�
ψ i1M1

�
∼Normal

�
μ= logitðψ i1Þ; σ2 = σ2i1

�
;

logitðψ i21Þ;  :  :  :  ;  logitðψ i2kÞ;  :  :  :  ;  logit
�
ψ i2M2

�
∼Normal

�
μ= logitðψ i2Þ; σ2 = σ2i2

�
;

Ii11jψ i11 ∼Binomial
�
ni11 = Ii11 + Si11; pi11 =

liIψ i11

liIψ i11 + liSð1−ψ i11Þ
�
;

...

Ii1kjψ i1k ∼Binomial
�
ni1k = Ii1k + Si1k; pi1k =

liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�
;

...

Ii1M1 jψ i1M1
∼Binomial

 
ni1M1 = Ii1M1 + Si1M1 ; pi1M1

=
liIψ i1M1

liIψ i1M1
+ liS

�
1−ψ i1M1

�
!
;

Ii21jψ i21 ∼Binomial
�
ni21 = Ii21 + Si21; pi21 =

liIψ i21

liIψ i21 + liSð1−ψ i21Þ
�
;

...

Ii2kjψ i2k ∼Binomial
�
ni2k = Ii2k + Si2k; pi2k =

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�
;

...

Ii2M2 jψ i2M2
∼Binomial

 
ni2M2 = Ii2M2 + Si2M2 ; pi2M2

=
liIψ i2M2

liIψ i2M2
+ liS

�
1−ψ i2M2

�
!
:
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The numbers of replicates (M1 and M2) can differ between the
two sample groups, when the replicates in the two groups are
unpaired.
Conceptually, if some features are removed, our model is

equivalent to the generalized linear mixed model (GLMM)
where ψ i1;ψ i2 model the fixed effect of mean exon inclusion
levels in the two sample groups and σi1; σi2 model the random
effect of exon inclusion level variation among individual
replicates. However, there are two key distinctions between
the rMATS model and a standard GLMM with a logit link
function. First, to allow flexible definition and hypothesis
testing of differential alternative splicing patterns, rMATS
tests whether the difference in mean exon inclusion levels
between the two sample groups exceeds a user-defined cutoff
(i.e., jψ i1 −ψ i2j  > c), instead of testing whether the sample
group effect is nonzero (i.e., jψ i1 −ψ i2j  > 0). Second, the length
normalization ðp= lIψ=ðlIψ + lSð1−ψÞÞÞ in the binomial distri-
bution leads to a noncanonical link function. Because of these
issues, we need to modify the standard GLMM Laplace ap-
proximations to fit our model. The modifications are de-
scribed below.
Likelihood function. Before we describe the model fitting, we first
describe the full-likelihood function of our model. The joint-
likelihood function of our model is a combination of (i) the
normal distribution modeling the variation of the replicate
exon inclusion levels within sample group and (ii) the bi-
nomial distribution modeling the relationship of the exon
inclusion reads, exon skipping reads, and the exon inclusion
level in each individual replicate. Thus, the joint-likelihood
function is composed of two components:
For each exon i= 1;  :  :  :  ;  N,

L=L1L2

L1 =
YM1

k=1

PðIi1kjψ i1k; ni1kÞ
YM2

k=1

PðIi2kjψ i2k; ni2kÞ

L2 =
YM1

k=1

Pðψ i1kjψ i1; σi1Þ
YM2

k=1

Pðψ i2kjψ i2; σi2Þ:

[S1]

The L1 part of Eq. S1 is from the binomial distribution:

YM1

k=1

PðIi1kjψ i1k; ni1kÞ=
YM1

k=1

�
Ii1k + Si1k

Ii1k

�

× exp

 XM1

k=1

Ii1k log
�

liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�

+ Si1k log
�

liSð1−ψ i1kÞ
liIψ i1k + liSð1−ψ i1kÞ

�!
;

YM2

k=1

PðIi2kjψ i2k; ni2kÞ=
YM2

k=1

�
Ii2k + Si2k

Ii2k

�

× exp

 XM2

k=1

Ii2k log
�

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�

+ Si2k log
�

liSð1−ψ i2kÞ
liIψ i2k + liSð1−ψ i2kÞ

�!
:

[S2]

The L2 part of Eq. S1 is from the normal distribution:

YM1

k=1

Pðψ i1kjψ i1;σi1Þ= exp

 XM1

k=1

−0:5  log
�
2π
�
− log σi1

−
�
logitðψ i1kÞ− logitðψ i1Þ

�
2

2σ2i1
+ log

�
ψ i1kð1−ψ i1kÞ

�!
;

YM2

k=1

Pðψ i2kjψ i2;σi2Þ= exp

 XM2

k=1

−0:5 log
�
2π
�
− log σi2

−
�
logitðψ i2kÞ−logitðψ i2Þ

�
2

2σ2i2
+ logðψ i2k

�
1−ψ i2kÞ

�!
:

[S3]

In Eq. S3, logðψ i1kð1−ψ i1kÞÞ and logðψ i2kð1−ψ i2kÞÞ are intro-
duced by the logit transformation of the exon inclusion levels.
The joint-likelihood function (Eq. S1) is a combination of the

two components in Eqs. S2 and S3.
Laplace approximation of the marginal distribution of the mean and
variance of exon inclusion levels. Because our goal is to test the dif-
ference of mean exon inclusion levels of exon i between two sample
groups (i.e., ψ i1 −ψ i2), we treat the individual exon inclusion levels
(ψ i11;  :  :  :  ;   ψ i1k;  :  :  :  ;   ψ i1M1

and ψ i21;  :  :  :  ;   ψ i2k;  :  :  :  ;   ψ i2M2
) as

latent variables and derive the marginal distribution of the mean
and variance of exon inclusion levels:

f ðψ i1; σi1;ψ i2; σi2Þ
= c
Z

f
�
ψ i1; σi1;ψ i2; σi2;ψ i11;  :  :  :  ;   ψ i1M1

;ψ i21;  :  :  :  ;   ψ i2M2

�
×   dψ i11   :  :  :  dψ i1M1

dψ i21   :  :  :  dψ i2M2

= c

 YM1

k=1

Z
f ðψ i1; σi1;ψ i1kÞdψ i1k

YM2

k=1

Z
f ðψ i2; σi2;ψ i2kÞdψ i2k

!
:

[S4]

In Eq. S4, c is a constant that is not changed by parameters;
f ðψ i1; σi1;ψ i1kÞ and f ðψ i2; σi2;ψ i2kÞ are defined by the combina-
tion of normal and binomial distributions in Eqs. S2 and S3:

f ðψ i1; σi1;ψ i1kÞ

= exp

 
−log σi1 −

0:5ðlogitðψ i1kÞ− logitðψ i1ÞÞ2
σ2i1

+ logðψ i1kÞ+ logð1−ψ i1kÞ+ Ii1k log
�

liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�

+ Si1k log
�

liSð1−ψ i1kÞ
liIψ i1k + liSð1−ψ i1kÞ

�!
;

f ðψ i2; σi2;ψ i2kÞ

= exp

 
−log σi2 −

0:5ðlogitðψ i2kÞ− logitðψ i2ÞÞ2
σ2i2

+ logðψ i2kÞ+ logð1−ψ i2kÞ+ Ii2k log
�

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�

+ Si2k log
�

liSð1−ψ i2kÞ
liIψ i2k + liSð1−ψ i2kÞ

�!
:

[S5]

Because of the lack of closed-form expressions, we use Laplace’s
method to approximate the integrals of Eq. S5:
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Z
f ðψ i1; σi1;ψ i1kÞdψ i1k

=
f 1 = log f

Z
expðf1ðψ i1; σi1;ψ i1kÞÞdψ i1k

=
Z

exp

 
f1ðψ i1; σi1; ψ̂ i1kÞ+ 0:5

∂2f1ðψ i1; σi1; ψ̂ i1kÞ
∂ψ2

i1k
ðψ i1k − ψ̂ i1kÞ2

+  o
�
ðψ i1k − ψ̂ i1kÞ2

�!
dψ i1k

≈
ffiffiffiffiffi
2π

p
 				∂2f1ðψ i1; σi1; ψ̂ i1kÞ

∂ψ2
i1k

				
!−0:5

expðf1ðψ i1; σi1; ψ̂ i1kÞÞ;
Z

f ðψ i2; σi2;ψ i2kÞdψ i2k

≈
f 1 = log f ffiffiffiffiffi

2π
p

 				∂2f1ðψ i2; σi2; ψ̂ i2kÞ
∂ψ2

i2k

				
!−0:5

expðf1ðψ i2; σi2; ψ̂ i2kÞÞ:

[S6]

In Eq. S6, Laplace’s method approximates the distribution of ψ i1k
and ψ i2k by a normal distribution, using the second-level derivative
function in the Taylor series. The first-level derivative function
of the Taylor series is equal to zero because ψ̂ i1k and ψ̂ i2k are the
maximum-likelihood estimates based on the full-likelihood func-
tions of Eq. S1, with fixed values of ψ i1; σi1;ψ i2; σi2. The fixed values
(denoted as ψ̂ i1; σ̂i1; ψ̂ i2; σ̂i2 below) are estimated in Optimization
procedure for the MLE:

ψ̂ i1k = arg max
ψ i1k

 
−0:5ðlogitðψ i1kÞ− logitðψ̂ i1ÞÞ2

σ̂2i1
+ log

�
ψ i1k

�

+ log
�
1−ψ i1k

�
+   Ii1k log

�
liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�

+ Si1k log
�

liSð1−ψ i1kÞ
liIψ i1k + liSð1−ψ i1kÞ

�!
;

ψ̂ i2k = arg max
ψ i2k

 
−0:5ðlogitðψ i2kÞ− logitðψ̂ i2ÞÞ2

σ̂2i2

+ logðψ i2kÞ+ logð1−ψ i2kÞ

+ Ii2k log
�

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�

+ Si2k log
�

liSð1−ψ i2kÞ
liIψ i2k + liSð1−ψ i2kÞ

�!
:

[S7]
In Eq. S6, the second-level derivative function is

∂2f1ðψ i1; σi1; ψ̂ i1kÞ
∂ψ2

i1k

=
2ψ̂ i1k − 1

ψ̂2
i1kð1− ψ̂ i1kÞ2

 
logit ψ i1 − logit ψ̂ i1k − ð2ψ̂ i1k − 1Þ−1

σ2i1
+ 1

!

−   Ii1kliS
ð2liI + liSÞψ̂ i1k + liSð1− ψ̂ i1kÞ
ψ̂2
i1kðliI ψ̂ i1k + liSð1− ψ̂ i1kÞÞ2

− Si1kliI
ðliI + 2liSÞð1− ψ̂ i1kÞ+ liI ψ̂ i1k

ð1− ψ̂ i1kÞ2ðliI ψ̂ i1k + liSð1− ψ̂ i1kÞÞ2
:

[S8]

Similarly,Z
f ðψ i2; σi2;ψ i2kÞdψ i2k

≈
ffiffiffiffiffi
2π

p  				∂2f1ðψ i2; σi2; ψ̂ i2kÞ
∂ψ2

i2k

				
!−0:5

expðf1ðψ i2; σi2; ψ̂ i2kÞÞ;

∂2f1ðψ i2; σi2; ψ̂ i2kÞ
∂ψ2

i2k

=
2ψ̂ i2k − 1

ψ̂2
i2kð1− ψ̂ i2kÞ2

 
logit ψ i2 − logit ψ̂ i2k − ð2ψ̂ i2k − 1Þ−1

σ2i2
+ 1

!

−   Ii2kliS
ð2liI + liSÞψ̂ i2k + liSð1− ψ̂ i2kÞ
ψ̂2
i2kðliI ψ̂ i2k + liSð1− ψ̂ i2kÞÞ2

− Si2kliI
ðliI + 2liSÞð1− ψ̂ i2kÞ+ liI ψ̂ i2k

ð1− ψ̂ i2kÞ2ðliI ψ̂ i2k + liSð1− ψ̂ i2kÞÞ2
:

[S9]
Likelihood-ratio test of splicing difference. In the previous section, we
describe the approximation for the marginal distribution of the
mean and variance of exon inclusion levels. Based on themarginal
distribution, we can calculate the P value of splicing difference
for each exon by the likelihood-ratio test. Recall that rMATS
tests whether the difference in mean exon inclusion levels be-
tween the two sample groups exceeds a user-defined cutoff (i.e.,
jψ i1 −ψ i2j  > c). For each exon i, the null hypothesis is that the
difference of the mean exon inclusion levels is smaller than or
equal to the user-defined cutoff c (i.e., jΔψ j  =  jψ i1 − ψ i2j  ≤ c),
whereas the alternative hypothesis is jψ i1 − ψ i2j > c.
If the maximum-likelihood estimations (MLEs) of ψ i1; ψ i2

have a difference smaller than or equal to the user-defined cutoff
(i.e., jψ i1 − ψ i2j ≤ c), we set the P value to be 1. Otherwise, we
compare the likelihood under the constraint of the null hy-
pothesis and the likelihood from the unconstrained MLE. The
constraint of the null hypothesis leads to a likelihood ratio
whose probability distribution does not have a closed-form ex-
pression. However, note that when the MLEs of ψ i1; ψ i2 have
a difference greater than the user-defined cutoff c, the MLEs
of ψ i1; ψ i2 under the constraint of jψ i1 − ψ i2j  ≤ c always fall on the
boundary of jψ i1 − ψ i2j= c. We can instead calculate a more con-
servative P value by comparing the null hypothesis on the bound-
ary H0 : jψ i1 −ψ i2j= c, vs. the alternative hypothesis H1 : jψ i1 −
ψ i2j> c. With such a null hypothesis, the likelihood-ratio test
statistic asymptotically follows a χ2 distribution with 1 df,

−2
�
logLjψ i1−ψ i2 j=c − logL

�
∼ χ21; [S10]

in which logLjψ i1−ψ i2j=c is the log likelihood under the constraint
that jψ i1 − ψ i2j  = c and log L is the log likelihood from the
unconstrained MLE. We calculate the MLEs of ψ i1; ψ i2 and
σi1; σi2 based on the marginal distribution of Eqs. S6, S8, and
S9. The optimization procedure to calculate the MLE is described
in the next section.
Optimization procedure for the MLE. In this section, we describe the
optimization procedure to calculate the MLE of the mean exon
inclusion levels ψ i1; ψ i2 and the variance σi1; σi2, based on the
marginal distribution of ψ i1; ψ i2 and σi1; σi2.
In the marginal distribution (Eq. S4), the function has a closed

form if all of the latent variables ψ i1k and ψ i2k are fixed. How-
ever, the estimated values of the latent variables ψ̂ i1k and ψ̂ i2k are
the MLEs of the full-likelihood function with fixed values of
mean inclusion levels ψ i1; ψ i2 and variance σi1; σi2. Therefore,
in the Laplace approximation, we use an iterative optimization
procedure for the MLE calculation.
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The initial estimated values of the latent variables ψ i1k and ψ i2k
are derived from the individual binomial distributions of each
replicate (Eq. S2):

ψ̂ ð1Þ
i1k =

Ii1kliS
Ii1kliS + Si1kliI

and

ψ̂ ð1Þ
i2k =

Ii2kliS
Ii2kliS + Si2kliI

:

In each round (t) of the iterative optimization procedure, we
first estimate the MLE of the marginal distribution (Eq. S4),
based on the estimated values of the latent variables ψ̂ ðtÞ

i1k and ψ̂ ðtÞ
i2k

and the Laplace approximation of the integrals of the full likelihood
(Eqs. S6, S8, and S9):�
ψ̂ ðtÞ
i1 ; ψ̂

ðtÞ
i2 ; σ̂

ðtÞ
i1 ; σ̂

ðtÞ
i2

�

= arg max
ψ i1;ψ i2;σi1 ;σi2

0
@XM1

k=1

0
@f1

�
ψ i1; σi1; ψ̂

ðtÞ
i1k

�
− 0:5 log

					∂
2f1
�
ψ i1; σi1; ψ̂

ðtÞ
i1k

�
∂ψ2

i1k

					
1
A

+
XM2

k=1

0
@f1

�
ψ i2; σi2; ψ̂

ðtÞ
i2k

�
− 0:5 log

					∂
2f1
�
ψ i2; σi2; ψ̂

ðtÞ
i2k

�
∂ψ2

i2k

					
1
A
1
A:

[S11]

In [S11], the function f1 is the log of the function f in Eq. S5.
The second-level derivative function is described in Eqs. S8 and S9.
The next step of the iterative optimization procedure updates

the estimation of the latent variables ψ̂ ðt+1Þ
i1k and ψ̂ ðt+1Þ

i2k based on
the full likelihood (Eq. S1) and the latest MLE of ψ̂ ðtÞ

i1 ; ψ̂
ðtÞ
i2 ;

σ̂ðtÞi1 ; σ̂
ðtÞ
i2 . Given the mean and variance of exon inclusion levels

ψ̂ ðtÞ
i1 ; ψ̂

ðtÞ
i2 ; σ̂

ðtÞ
i1 ; σ̂

ðtÞ
i2 , the exon inclusion level ψ̂ ðt+1Þ

i1k or ψ̂ ðt+1Þ
i2k can

be estimated separately for each individual sample. As described
in Eq. S7, for each replicate k= 1  :  :  : M1 in the sample group 1,

ψ̂ ðt+1Þ
i1k = arg max

ψ i1k

0
B@−0:5

�
logitðψ i1kÞ− logit

�
ψ̂ ðtÞ
i1

��2
�
σ̂ðtÞi1
�2

+ logðψ i1kÞ+ logð1−ψ i1kÞ

+ Ii1k log
�

liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�

+ Si1k log
�

liSð1−ψ i1kÞ
liIψ i1k + liSð1−ψ i1kÞ

�1CA:

And for each replicate k= 1  :  :  : M2 in the sample group 2,

ψ̂ ðt+1Þ
i2k = arg max

ψ i2k

0
B@−0:5

�
logitðψ i2kÞ− logit

�
ψ̂ ðtÞ
i2

��2
�
σ̂ðtÞi2
�2

+ logðψ i2kÞ+ logð1−ψ i2kÞ

+ Ii2k log
�

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�

+ Si2k log
�

liSð1−ψ i2kÞ
liIψ i2k + liSð1−ψ i2kÞ

�1CA:

This optimization procedure iterates for multiple rounds until the
difference in log likelihood between two consecutive iterations is
smaller than 10−4. On average, the iterative procedure takes 6.4
iterations to converge on the RNA-Seq data from the prostate
cancer cell lines described in this article. The maximum number
of iterations is 37.
The optimization procedure uses the L-BFGS-B algorithm (1)

to optimize the likelihood function with the parameter ψ con-
strained within 0–1 and the parameter σ within 0 to infinite.
The constrained MLE under the null hypothesis is estimated with

the same procedure, except for an additional constraint jψ i1 −
ψ i2j= c. Specifically, we replace the parameter ψ i2 with either
ψ i1 − c or ψ i1 + c and select the best MLE under the two scenarios.

Statistical Model of rMATS for Paired Replicate Analysis. In certain
studies, replicates are paired between sample groups. One example is
the comparison of matched cancer-normal tissue pairs across mul-
tiple cancer patients.We have extended the rMATSmodel to handle
paired replicates. Although the notations for the paired model and
the unpaired model are almost identical, in the paired model we use
a bivariate normal distribution with the correlation parameter ρi to
model the correlation within matched pairs for exon i.
Statistical model. Assuming we have a total of N alternatively
spliced exons, and for each exon i= 1;   :  :  :  ;  N, there are M
matched replicates in sample groups 1 and 2, we have"

logitðψ i11Þ
logitðψ i21Þ

#
;   :  :  : ;  

"
logitðψ i1kÞ
logitðψ i2kÞ

#
;   :  :  : ;  

"
logitðψ i1MÞ
logitðψ i2MÞ

#

∼Normal

 
μ=

"
logitðψ i1Þ
logitðψ i2Þ

#
;   Σi =

"
σ2i1 ρiσi1σi2

ρiσi1σi2 σ2i2

#!
;

Ii11jψ i11 ∼Binomial
�
ni11 = Ii11 + Si11; pi11 =

liIψ i11

liIψ i11 + liSð1−ψ i11Þ
�
;

...

Ii1kjψ i1k ∼Binomial
�
ni1k = Ii1k + Si1k; pi1k =

liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�
;

...

Ii1M jψ i1M ∼Binomial
�
ni1M = Ii1M + Si1M ; pi1M

=
liIψ i1M

liIψ i1M + liSð1−ψ i1MÞ
�
;

Ii21jψ i21 ∼Binomial
�
ni21 = Ii21 + Si21; pi21 =

liIψ i21

liIψ i21 + liSð1−ψ i21Þ
�
;

...

Ii2kjψ i2k ∼Binomial
�
ni2k = Ii2k + Si2k; pi2k =

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�
;

...

Ii2M jψ i2M ∼Binomial
�
ni2M = Ii2M + Si2M ; pi2M

=
liIψ i2M

liIψ i2M + liSð1−ψ i2MÞ
�
:
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Likelihood-ratio test of splicing difference. In the paired analysis, the
marginal distribution of mean exon inclusion levels can also be
approximated by Laplace’s method, by treating the individual
exon inclusion levels (ψ i11;   :  :  :  ; ψ i1k;   :  :  :  ; ψ i1M and ψ i21;   :  :  :  ;
ψ i2k;   :  :  :  ; ψ i2M) as latent variables. However, the mean exon in-
clusion levels ψ i1;  ψ i2 cannot be separated in the marginal distri-
bution because of the bivariate normal distribution. Therefore, we
take the integral of the pair of variables ψ i1k; ψ i2k together to de-
rive the marginal distribution:
f ðψ i1;ψ i2; σi1; σi2; ρiÞ
= c
Z

f ðψ i1;ψ i2; σi1; σi2; ρi;ψ i11;  :  :  : ;  ψ i1M ;ψ i21;  :  :  : ;  ψ i2MÞ
×   dψ i11   :  :  :  dψ i1Mdψ i21   :  :  :  dψ i2M

= c
YM
k=1

Z
f ðψ i1;ψ i2; σi1; σi2; ρi;ψ i1k;ψ i2kÞdψ i1kdψ i2k:

[S12]

Compared with the marginal distribution of the unpaired analysis
(Eq. S4), the integral of variables ψ i1k; ψ i2k cannot be separated
in the paired marginal distribution.
In Eq. S12,

f ðψ i1;ψ i2; σi1; σi2; ρi;ψ i1k;ψ i2kÞ

= exp

 
−0:5 log

			Pi

			− 0:5

"
logitðψ i1kÞ− logitðψ i1Þ
logitðψ i2kÞ− logitðψ i2Þ

#′

3
X−1

i



logitðψ i1kÞ− logitðψ i1Þ
logitðψ i2kÞ− logitðψ i2Þ

�

+ logðψ i1kÞ+ logð1−ψ i1kÞ+ Ii1k log
�

liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�

+ Si1k log
�

liSð1−ψ i1kÞ
liIψ i1k + liSð1−ψ i1kÞ

�

+ logðψ i2kÞ+ logð1−ψ i2kÞ+ Ii2k log
�

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�

+ Si2k log
�

liSð1−ψ i2kÞ
liIψ i2k + liSð1−ψ i2kÞ

�!
: [S13]

In [S13],
P

i =



σ2i1 ρiσi1σi2
ρiσi1σi2 σ2i2

�
is the covariance matrix.

Because of the integral of two variables ψ i1k;  ψ i2k in Eq.
S12, Laplace’s method approximates the joint posterior dis-
tribution of ψ i1k; ψ i2k with a bivariate normal in the paired
analysis, instead of using the univariate normal distributions
as in the unpaired analysis:

Z
f ðψ i1;ψ i2; σi1; σi2; ρi;ψ i1k;ψ i2kÞdψ i1kdψ i2k

=
f 1 = log f

Z
expðf1ðψ i1;ψ i2; σi1; σi2; ρi;ψ i1k;ψ i2kÞÞdψ i1kdψ i2k

=
Z

exp
�
f1ðψ i1;ψ i2; σi1; σi2; ρi;ψ i1k;ψ i2kÞ

+ 0:5


ψ i1k − ψ̂ i1k

ψ i2k − ψ̂ i2k

�′X1

ik



ψ i1k − ψ̂ i1k

ψ i2k − ψ̂ i2k

�

+ o
�
ðψ i1k − ψ̂ i1kÞ2

�
+ o
�
ðψ i2k − ψ̂ i2kÞ2

��
dψ i1kdψ i2k

≈ 2π
�			X1

ik

			�−0:5 expðf1ðψ i1;ψ i2; σi1; σi2; ρi; ψ̂ i1k; ψ̂ i2kÞÞ:
[S14]

In Eq. S14,
P1

ik is the Hessianmatrix of the log-likelihood function f1:

The first-level derivative function of the Taylor series is equal to zero
because ψ̂ i1k and ψ̂ i2k are the maximum-likelihood estimates based
on the full-likelihood functions of Eq. S13, with fixed values of
ψ i1;ψ i2; σi1; σi2; ρi:

ðψ̂ i1k; ψ̂ i2kÞ= argmax
ψ i1k;ψ i2k

 
−0:5

"
logitðψ i1kÞ− logitðψ̂ i1Þ
logitðψ i2kÞ− logitðψ̂ i2Þ

#′

3
X̂−1

i



logitðψ i1kÞ− logitðψ̂ i1Þ
logitðψ i2kÞ− logitðψ̂ i2Þ

�

+ logðψ i1kÞ+ logð1−ψ i1kÞ+ Ii1k log
�

liIψ i1k

liIψ i1k + liSð1−ψ i1kÞ
�

+ Si1k log
�

liSð1−ψ i1kÞ
liIψ i1k + liSð1−ψ i1kÞ

�

+ logðψ i2kÞ+ logð1−ψ i2kÞ+ Ii2k log
�

liIψ i2k

liIψ i2k + liSð1−ψ i2kÞ
�

+ Si2k log
�

liSð1−ψ i2kÞ
liIψ i2k + liSð1−ψ i2kÞ

�!
:

The likelihood-ratio test of the paired analysis is based on the
same hypotheses as in the unpaired analysis. For each exon i,
the null hypothesis is that the difference of the mean exon in-
clusion levels is smaller than or equal to a user-defined cutoff
c (i.e., jψ i1 − ψ i2j≤ c), whereas the alternative hypothesis is
jψ i1 −ψ i2j> c. The MLE and likelihood-ratio test statistics are
estimated based on the same iterative optimization procedure
on the Laplace approximation of the marginal distribution func-
tion of the mean exon inclusion levels ψ i1;ψ i2, the variance
σi1; σi2, and the correlation parameter ρi (Eq. S14).

1. Zhu C, Byrd RH, Lu P, Nocedal J (1997) ACM Trans Math Softw 23:550–560.

X1

ik
=

2
66664
∂2f1ðψ i1;ψ i2; σi1; σi2; ρi; ψ̂ i1k; ψ̂ i2kÞ

∂ψ2
i1k

∂2f1ðψ i1;ψ i2; σi1; σi2; ρi; ψ̂ i1k; ψ̂ i2kÞ
∂ψ i1k∂ψ i2k

∂2f1ðψ i1;ψ i2; σi1; σi2; ρi; ψ̂ i1k; ψ̂ i2kÞ
∂ψ i1k∂ψ i2k

∂2f1ðψ i1;ψ i2; σi1; σi2; ρi; ψ̂ i1k; ψ̂ i2kÞ
∂ψ2

i2k

3
77775:
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Fig. S1. The schematic diagrams illustrating the read counts and effective lengths of different categories of alternative splicing events. The alternative splicing
events of skipped exons, alternative 5′ splice sites, alternative 3′ splice sites, and retained introns have two splice junctions for the inclusion isoform and one
splice junction for the skipping isoform. The mutually exclusive exons have two splice junctions for the inclusion isoform of the first exon and two splice
junctions for the skipping isoform of the first exon (i.e., the inclusion isoform of the second exon). The exon body reads are RNA-Seq reads mapped to the
genomic regions of the target exons. The rMATS model allows users to use either the splice junction counts plus the exon body counts or the splice junction
counts alone as the input.

Fig. S2. (A–C) Simulation studies to assess the performance of rMATS and the importance of replicates where 10% of the exons were differentially spliced and
the rest were not differentially spliced.
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Fig. S3. (A–C) Simulation studies to assess the performance of rMATS and the importance of replicates where 20% of the exons were differentially spliced and
the rest were not differentially spliced.

Fig. S4. RNA-Seq data and RT-PCR validation of 34 exons. For each exon, the first two bars represent the mean exon inclusion levels and 95% confidence
intervals estimated by RNA-Seq, and the last two bars represent the mean exon inclusion levels and 95% confidence intervals measured by RT-PCR (PC3E, blue;
GS689, red). Based on the RT-PCR data, 32 of 34 exons (i.e., 94%) were validated to have differential alternative splicing between the PC3E and GS689 cell lines
(i.e., >5% difference in mean exon inclusion levels between the two sample groups). The two nonvalidated exons are underlined (FN1 and KRAS).
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Fig. S5. RNA-Seq estimates of exon inclusion levels are highly correlated with RT-PCR measurements. The difference of the mean exon inclusion levels be-
tween the two cell lines (PC3E – GS689) is denoted as Δψ . The scatter plot shows the Δψ values of 34 exons estimated by RNA-Seq (x axis) and by RT-PCR (y axis).

Fig. S6. Histograms of the logit exon inclusion levels of 25 randomly selected alternative exons in TCGA ccRCC normal samples.
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Fig. S7. Histograms of the logit exon inclusion levels of 25 randomly selected alternative exons in TCGA ccRCC tumor samples.

Fig. S8. The cumulative distribution of the SDs of exon inclusion levels in TCGA ccRCC normal or tumor samples. The estimate of SD was obtained by rMATS.
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Table S1. Summary and mapping statistics of RNA-Seq data on the PC3E and GS689 cell lines

Samples
Total no. RNA-Seq
reads, million*

No. uniquely mapped
reads, million (%)

Reads mapped to genomic
regions, million (%)

Reads mapped to splice
junctions, million (%)

PC3E-1 126 101 (80) 62 (49) 39 (31)
PC3E-2 129 104 (81) 65 (50) 39 (31)
PC3E-3 126 101 (80) 63 (50) 38 (30)
GS689-1 132 104 (79) 68 (52) 36 (27)
GS689-2 114 90 (79) 58 (51) 32 (28)
GS689-3 119 93 (78) 60 (50) 33 (28)

*RNA-Seq reads are 2 × 101-bp paired-end reads.

Table S2. rMATS analysis of PC3E and GS689 cell lines

Alternative splicing events
Total no. alternative

splicing events
No. significant alternative

splicing events*

Skipped exon 91,856 467
Alternative 5′ splice site 3,664 24
Alternative 3′ splice site 5,138 21
Mutually exclusive exon 24,168 159
Retained intron 3,315 50

*Significant events are based on FDR ≤ 1% and jΔψ j > 5%.
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