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SI Materials and Methods
Whole Genome, Whole Exome, RNA Sequencing, and Analysis.
Library construction. Libraries are constructed using the protocol
described previously, with several modifications: first, initial
genomic DNA input into shearing has been reduced from 3 μg
to 100 ng in 50 μL of solution (1). Second, for adapter ligation,
Illumina paired-end adapters have been replaced with palin-
dromic forked adapters with unique eight-base index sequences
embedded within the adapter. These index sequences enable
pooling of libraries before sequencing. Third, custom sample
preparation kits from Kapa Biosciences are now used for all en-
zymatic steps of the library construction process.
In-solution hybrid selection (for whole-exome libraries). In-solution
hybrid selection was performed as described by Fisher et al. (1).
Size selection (for whole-genome shotgun libraries). For a subset of
samples, size selection was performed using gel electrophoresis,
with a target insert size of either 340 bp or 370 bp ± 10%. Multiple
gel cuts were taken for libraries that required high sequencing
coverage. For another subset of samples, size selection was
performed using Sage’s Pippin Prep.
Preparation of libraries for cluster amplification and sequencing. Following
sample preparation, libraries were quantified using PicoGreen.
Based on PicoGreen quantification, libraries were normalized to
equal concentration and pooled by equal volume. Library pools
were then quantified using a Sybr Green-based quantitative
PCR (qPCR) assay, with PCR primers complementary to the
ends of the adapters (kit purchased from Kapa Biosciences).
After qPCR quantification, library pools were normalized to
2 nM, denatured using 0.2 N NaOH, and diluted to 20 pM, the
working concentration for downstream cluster amplification
and sequencing.
Cluster amplification and sequencing. Cluster amplification and se-
quencing of denatured templates was performed according to the
manufacturer’s protocol (Illumina) using v3 cluster amplification
kits, v3 flowcells, v3 Sequencing-by-Synthesis kits, Multiplexing
Sequencing Primer kits, and the latest version of Illumina’s RTA
software.
Exome analysis. Pair-ended reads were aligned to the hg19/
GRCh37 build of the reference human genome using BWA 0.5.9.
WES data were generated for 59 pairs using in-solution hybrid
capture followed by Illumina sequencing. Reads were aligned to
build hg19/GRCh37 of the human reference genome sequence
BWA. PCR-duplicated reads were flagged using Picard (2).
Alignments near putative indel sites were refined using GATK,
using both the tumor and the normal samples. The degree of
contamination by other samples was estimated using ContEst
(3). Somatic point mutations were detected using MuTect (4).
Somatic short insertions and deletions were identified using
indelocator (www.broadinstitute.org/cancer/cga/indelocator).
Artifactual mutations caused by the oxidative DNA damage
during library preparation were removed using D-ToxoG (www.
broadinstitute.org/cancer/cga/dtoxog). Somatic mutations were
annotated using Oncotator (www.broadinstitute.org/oncotator).
Total copy number ratios were computed as the ratio of tumor
fraction read depth to the average fractional read depth in the
normal samples in the region, followed by Circular Binary Seg-
mentation (5, 6). Copy number profiles were analyzed using
GISTIC2 (7). Absolute copy number, purity/ploidy, and clonality
analysis was done using ABSOLUTE (8).
RNA sequencing and analysis.RNA Reads were aligned to the hg19/
GRCh37 build of the reference human genome using an im-
proved algorithm described previously, followed by PCR dupli-

cate-read removal and base quality score recalibration using
GATK (9). Quality of RNASeq was assessed using RNASeqQC
(10). PathSeq was used to discover pathogen sequences. Somatic
mutations were discovered using MuTect and annotated using
Oncotator. Expression levels were estimated by computing the
reads per kilobase of exon model per million mapped reads (11).
Detection of fusions was done using a previously described

algorithm (9). Briefly, the approach first identifies recurrent (i.e.,
two or more) chimeric pairs with both ends aligned and mapping
in two different genes, on different chromosomes, or at least 1
Mb apart if on the same chromosome. It is also required that the
pair end aligned in their respective genes in the direction con-
sistent with coding→coding 5′-3′ direction of the (putative) fu-
sion mRNA transcript. Next, all unaligned reads are extracted,
with the constraint that their mates were originally aligned and
map into one of the genes in the gene pairs obtained as described
above. An attempt is then made to align all such originally un-
aligned reads to the special “reference” built of all possible exon–
exon junctions (full length, boundary-to-boundary, in coding 5′-3′
direction) between the discovered gene pairs. If such originally
unaligned read maps onto a junctions between an exon of gene X
and an exon of gene Y, and its mate was indeed mapped to one of
the genes X, Y, then such read (“junction split-read”) is counted
toward evidence for X–Y fusion (the consistency of the orienta-
tion of this read and its mate is also checked).
Detection of germline variants. Germline variants were detected
using the UnifiedGenotyper in the Genome Analysis Toolkit
(www.broadinstitute.org/gatk), using default options, followed by
filtering SNPs using Variant Quality Score Recalibration, and hard-
filtering of indels (12, 13). Germline variants were annotated using
SeattleSeq137 (snp.gs.washington.edu/SeattleSeqAnnotation137).
Nonsilent variants were identified as those in classes: frameshift,
frameshift-near-splice, missense, missense-near-splice, splice-3,
splice-5, stop-gained, stop-gained-near-splice, stop-lost. Germline
de novo variants were discovered using xBrowse (atgu.mgh.
harvard.edu/xbrowse). Germline variants were defined as rare
if they were present in <0.5% of the National Heart, Lung, and
Blood Institute Exome Variant Server, or EVS. Fisher’s exact
test was used to determine whether germline variants were
significantly associated with osteosarcoma compared with EVS
samples.
Integrated analysis of somatic variants.Mutation significance (MutSigCV)
algorithm was used to identify significantly somatically mutated
genes by using somatic mutations detected in WGS and WES
(14). MutSigCV identified genes with higher mutation frequen-
cies than expected by chance given multiple covariates: the
gene’s base composition, length, background mutation rate, and
sequencing coverage.
Mutation validation using RNAseq, WGS, and targeted resequencing.
Whenever possible, we validated mutations detected in WES
in RNASeq and WSG using a previously described method (15).
Briefly the method examines the variant allele fraction of reads
in the validation BAM file and compares to the expectation from
the discovery BAM file, corrected for the sequencing noise.
When using only well-powered sites (with at least 90% power to
detect mutations, after taking into account the estimated allelic
fraction of the mutation and the depth of coverage), this ap-
proach validated of 359 of 364 (96.8%) of mutations.
Additionally, 20 genes were selected for targeted resequencing

and validation: AHDC1, AKT1, ALK, AVIL, CEP164, CHEK2,
CREBBP, ESR1, NF1, NF2, PDPK1, PLCZ1, PPAT, PRKDC,
PTEN, ROBO2, SFI1, SQSTM1, TP53, and TSC2. Targeted
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resequencing was performed by PCR using a microfluidic device
(Fluidigm), following the manufacturer’s instructions. PCR pri-
mers were designed with 200-bp flanking tails around mutations of
interest. All amplicons for a given sample were given the same
barcode. Constructed libraries were loaded onto an Illumina
MiSeq and sequenced using paired-end 150-bp reads, followed by
the standard alignment pipeline. The resulting BAM files were
used for validation in the sense of the method described above.
Identification of samples with kataegis. C > T and C > G mutations
were plotted according to intermutation distance (WES), along
with copy number calculated by SegSeq (WGS) and genomic
rearrangements analyzed with dRanger (WGS) and ChainFinder
(WES) (9, 16–18). Regions of characteristic co-occurrence of
local hypermutation and genomic rearrangement were identified
as “kataegis” (19).
Detection of viral sequences. WGS, WES, and RNASeq data were
examined for the presence of viral nucleic acid sequences using
PathSeq (20). Viral sequences were downloaded from National
Center for Biotechnology Information Nucleotide (www.ncbi.
nlm.nih.gov/nucleotide) using search term “Viruses[Organism]
AND srcdb_refseq[PROP] NOT cellular organisms[ORGN]”
and “Viruses[Organism] NOT srcdb_refseq[PROP] NOT cel-
lular organisms[ORGN] AND nuccore genome samespecies
[Filter] NOT nuccore genome[filter] NOT gbdiv syn[prop]” on
June 2012.
Analysis of copy number, genomic breakpoints, and rearrangements.
Somatic copy number alterations were assessed in WGS using
SegSeq (17). Integrative analysis of genomic breakpoints and
copy number in WES samples was performed using the Chain-
Finder algorithm (16). Somatic rearrangements were identified
in WGS samples with dRanger (18). Rearrangements in 13 OS
WGS samples were compared with those found in a pan-cancer
dataset consisting of 275 tumor/normal WSG pairs from The
Cancer Genome Atlas (TCGA). The distribution of tumor types
across samples was as follows: 49 THCA (papillary thyroid car-
cinoma), 40 LUAD (lung adenocarcinoma), 31 LUSC (lung
squamous cell carcinoma), 31 GBM (glioblastoma multiforme),
25 SKCM (skin cutaneous melanoma), 24 STAD (stomach ad-
enocarcinoma), 20 PRAD (prostate adenocarcinoma), 18 BLCA
(bladder urothelial carcinoma), 17 HNSC (head and heck
squamous cell carcinoma), 16 LGG (brain lower grade glioma)
and 4 KIRC (kidney renal clear cell carcinoma). All TCGA
datasets are available through The Cancer Genome Atlas Data
Portal (tcga-data.nci.nih.gov/tcga) and GCHub (cghub.ucsc.edu).
Identification of significantly altered pathways. Gene sets from the
Molecular Signatures Database (MSigDB) Canonical Pathway set
(GSEA) were treated analogously as single genes for the purpose of
calculation of the footprint and the background mutation rate (i.e.,
gene territory and composition was combined in each gene set).
MutSig2.0 was then used to identify significantly mutated gene sets.
Heuristic algorithm for analysis of clinically relevant somatic mutations
(PHIAL). All exome-derived alterations (somatic point mutations,
short insertions and deletions, and copy number alterations) were
analyzed using a heuristic algorithm that interprets the clinical
and biological significance of each alteration in the exome (21).
Clinical significance was defined by whether a specific alteration
may predict sensitivity or resistance to a treatment, or has prog-
nostic or diagnostic ramifications. All alterations scored as being
potentially clinically actionable were manually reviewed.

shRNA Screening.
In vitro shRNA screening. Primary mouse OS cells were seeded into
12-well dishes at a density of 1 × 106 cells per well, with a total of

3 × 107 cells infected per replicate (four replicates total). Cells
were infected with a pool of lentivirally delivered shRNAs,
composed of 40,021 shRNAs targeting ∼8,400 mouse genes with
a multiplicity of infection of 0.3–0.5. Cells were incubated overnight
with virus and 5 μg/mL polybrene. The next day, cells from each
replicate were pooled and cultured in 0.5 μg/mL puromycin for
18 population doublings. During propagation, 1 × 107 cells were
passaged every 3–4 d to maintain initial representation, and re-
maining cells at each passage were stored in PBS at −80 °C.
Genomic DNA was extracted from the final cell pellets, and
60 μg of gDNA was used as template for PCR amplification in
eight parallel bar-coded reactions for each experimental repli-
cate. PCR reactions were prepared for massively parallel se-
quencing (Illumina), as previously described (22, 23). All
samples were sequenced to obtain at least 8e6 raw reads. The
number of reads per individual shRNA was normalized between
samples using the following calculation: Log2[([raw read count
for hairpin/ sum of raw reads for entire sample] × 1e6)+1].
shRNAs were rank ordered by their log-twofold change value,
which was calculated as the average normalized log2 of the fold-
change in the abundance of each shRNA in the average of
endpoint samples compared with the initial pDNA reference
pool. Next, the RNAi gene enrichment (RIGER) algorithm in
the GENE-E program (www.broadinstitute.org/cancer/software/
GENE-E) was used to collapse the normalized shRNA ranked
list to gene rankings by two comp methods: (i) the weighted
second best score (ranked top shRNA 25% weight + second best
shRNA 75% weight) and (ii) a KS statistic, which is a Kolmo-
gorov–Smirnov nonparametric rank statistic representing the
positional distribution of a set of shRNAs within an ordered list
of shRNAs (22, 24). Lists were generated from the top 500 genes
from each ranking method. The lists were trimmed by P value
(P ≤ 0.05) and common essential genes, including ribosomal
proteins proteosomal proteins, and splicing factors (22). A union
of the remaining 348 genes (weighted second best) (Dataset S11)
and 313 genes (KS) (Dataset S12) was taken (Dataset S13).
In vivo shRNA screening. Plasmids encoding shRNAs targeting
Pic3ca, Mtor, and control genes listed in Dataset S15 were used
to generate lentivirus-containing supernatants, as previously
described (22). Equivalent amounts of supernatants were pooled
and primary mouse OS cells were infected as described for the
genomic screen. Cells were selected for 2 d with 0.5 μg·mL−1

puromycin. Next, 1 × 106 cells were injected in 100 μL PBS
subcutaneously into the flanks of NCRNU-M mice (Taconic).
Tumors were harvested 5 wk after implantation. Genomic DNA
was isolated from tumors and all available genomic DNA from
each tumor was prepared for massively parallel sequencing as
described above. The log-twofold change values reported are the
average log base 2 of the fold-change in the abundance of each
shRNA in the tumors compared with the preinjection cells, n = 5
tumors. All experiments involving mice were carried out with
approval from the Boston Children’s Hospital Animal Use and
Care Committee.
Primers for amplifying shRNAs encoded in genomic DNA. Barcoded
forward primer (N indicates location of sample-specific barcode
sequence): AATGATACGGCGACCACCGAGAAAGTATTT-
CGATTTCTTGGCTTTATATATCTTGTGGAANNGACGAA-
AC. Common reverse primer: CAAGCAGAAGACGGCATA-
CGAGCTCTTCCGA TCTTGTGGATGAATACTGCCATTT-
GTCTCGAGGTC. Illumina sequencing primer: AGTATTTCG-
ATTT CTTGGCTTTATATATCTTGTGGAA.
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Fig. S1. (A) Overall survival (Left) and overall survival by disease status at time of diagnosis (Right) for 59 osteosarcoma patients in the study population. (B)
Genomic positions of significant focal amplifications and deletions. Amplifications are depicted on the left (red) and deletions are depicted on the right (blue).
Chromosomes are listed on the y axis. The x axis represents the normalized amplification signal (Top x axis) and the significance by q value (Bottom x axis). The
green line represents the significance cutoff at q value = 0.25. (C) Schematic of the TP53 protein showing the distribution and type of somatic TP53 mutations
(numbers indicate amino acid position). TP53 mutations were detected in 22% of samples by MutSigCV. Twelve of 13 TP53 mutations were in the DNA binding
domain with 9 missence, 2 frameshift, and 1 splice site mutation. An additional missense mutation was found outside the DNA binding domain.
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Fig. S2. (A) Outline of experimental design of targeted shRNA screen in osteosarcoma xenograft development. (B) Knockdown of PIK3CA in mOS cells. mOS
cells were lentivirally transduced with shRNAs against luciferase (L), Pik3ca (α) or Pik3cb (β). Cell lysates were analyzed by Western blot 4 d postinfection and
selection with puromycin. (C) mOS cells were exposed to BEZ235, PIK75, and GSK2126458 at the indicated concentrations for 72 h. Survival was measured by
WST-1 assay using DMSO as the control. (D) mOS cells were exposed to 5 and 10 μM TGX-221, a Pik3cb-selective inhibitor, for 72 h and proliferation was
measured as a percentage of control-treated (DMSO) cells. (E) Caspase 3/7 activation was measured in mOS cells after 16 h of exposure to indicated con-
centrations of PIK75, BEZ235, and GSK212645. (F) mOS cells were treated with BEZ235, GSK2126458, or PIK75 at the indicated drug concentrations. Cell extracts
were analyzed by Western blotting with antibodies against phosphorylated AKT (Ser473), AKT, phosphorylated S6 (Ser235/236), S6, and GAPDH (loading
control). Error bars are SEM, n = 3.
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Table S1. Rare nonsilent deleterious mutations in candidate genes associated with OS

Candidate gene Rationale Mutation Sample LOH

RB1 Hereditary retinoblastoma p.Q436K MX04 Yes
TP53 Li Fraumeni Syndrome p.T256P SJ01 Yes

p.C275Y BZ22 Unk
p.R290C BZ36 Unk
p.R337H BZ39 Yes
p.R337H BZ34 Unk
p.R337H BZ15 Unk
p.R342* BZ24 Yes

WRN Werner’s syndrome p.R1406* SJD08 Unk
p.S1292Y BZ20 No

BLM Bloom’s syndrome — — —

RECQL4 Rothmund-Thomson syndrome — — —

SQSTM1 Paget’s disease p.A426V BZ18 No
p.K238E SJD09 Unk
p.K238E MX02 No
p.K238E MX01 No

TNFRSF11A Paget’s disease — — —

TNFRSF11B Paget’s disease p.V281M BZ29 No
VCP Paget’s disease — — —

CSF1 Paget’s disease susceptibility — — —

OPTN Paget’s disease susceptibility p.V161M BZ07 No
TM7SF4 Paget’s disease susceptibility — — —

DCSTAMP Paget’s disease susceptibility — — —

PML Paget’s disease susceptibility p.R755H SJ07 No
RIN3 Paget’s disease susceptibility p.R465Q BZ03 Unk

p.E241K BZ10 No
GRM4 Osteosarcoma susceptibility p.T303I BZ11 No

Sixteen candidate genes were analyzed and 20 rare nonsilent variants were present after excluding missense
variants classified as “benign” by PolyPhen2. For each germline mutated gene, the rationale, the specific
mutation, and sample ID are listed. Genes with germline mutations were analyzed for somatic loss of hetero-
zygosity (LOH) in tumor samples. Unk, unknown because of inability to determine LOH with data available.
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