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SI Text

Error and Uncertainty Analysis. The uncertainties in measured quan-
tities, &, are

5x1073 N 1000 g—F transducer
transmitted force 5p=¢ 5x10™ N 100 g—F transducer ,
510 N 10 g—F transducer

specimen diameter §p =2 pm,
specimen cross-sectional area 64, = \/ (6p)*(zD)?,

specimen length §;, =2 pm,

specimen change in length 6, =10% 1074 x 1,

unfilled capillary mass &, =2 Hg,

filled capillary mass &, =2 pg,

micropillar length in capillary §; =10 pm.

We assume an uncorrelated propagation of error. The uncer-
tainties in the reported quantities (¢), 6mar, and Ejyq are given by

(mﬁlled - mempty) / Pps

@)= 7(D/2)’L

with €:/a1 = €clasiic + €plasiic- By construction, # =%’ SO rearrang-
ing yields

Eloaa =1Eunioad-

Assuming n=50%, we underestimate the elastic component of
stiffness (E,u0qq) by a factor of 2, i.e., 2E 00 = Eynioad- Because
the transformation strain magnitude, €, is inversely proportional
to E (v « 1/E; Eq. 4), we overestimate the transformation strain
by a factor of 2 by using Ej,,4 in the energy analysis. Therefore,
our reported value for y. should be considered an upper bound.

In previous experiments, we quantified the dissipation in a
specimen when compressed to small strains as a function of RH.
Briefly, we found a strong dependence of 7 on RH with a signifi-
cant decrease in n—equivalently, an increase in dissipation—for
RH above ~40%. An example of an experimental compression
cycle at RH =50% is shown in Fig. S3.

Gibbs Free Energy of an Inclusion in an Elastic Matrix. For com-
pleteness, we reproduce the derivation by Mura (2) of the change
in the Gibbs free energy, G, of an inclusion in an elastic matrix
with an applied traction. Define
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For the linear fit of 6, = PE,,,4, We report the 95% CI for the
regression analysis.

Effects of Dissipation in Stiffness Determination. Prior work (1) has
shown that the micropillars are quite dissipative even at small
strains. We define an efficiency, 5, which is the ratio of work
done by the pillar on loading to the work done on the pillar
during loading

2
n= Wunioad _ Eunload €elastic
Wiowa — Eloaa€y,

total
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L (o | o =total strain
=5+ = )
) o o

e;;- =eigenstrain or transformation strain,
e;; = elastic strain,

oij = Cyjier = stress.
The elastic strain energy of a body subjected to an applied traction
o and an internal stress due to an inclusion oy is given by
.1 .
wr=3 / (68 +05) (e +e—€;)dV  with o = Cyel.
4

Equilibrium ensures that 6 ; =0 and o;n; =0 at the surface S. In-
tegration by parts gives

/0‘,‘j(€3°+6ij)dV= /a,j(uﬁ'} +L£iyj)dV,

4 4
=o,-j(u};°+u,~j)|V:s— /Gif’f(”i‘;'o"'”ij)dV:O'
4

Similarly, 67, =0. Because € =¢; and ¢;; = €;; — €;; and using the
symmetry Cijy = Cyj
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/0';-" (El‘j—e;})dV: /C,-jklu,‘z’,(u,gj—e;‘j)de /u,‘;f’,Cklijeij dV,
Vv 14 v

= /u,‘:f’lakldV = U[|OF]
4

- /u,‘:}’a;d,[ dV =0.
V=s

So

* 1 * 1 00 00

/4 ==3 oijeijdV+§ ojerdV.
4 v
The total potential energy is given by
G=W"- /F;° (i +u)ds,
s

where the second term is the work done at the boundary by the

applied traction, and F{° = ¢{°n;. Without any inclusions (e; =0),
G=G,

1 o0 00 00, ,00
Go:i /a,-j e dV — /Ft- u;ds.
14 s
Without any applied tractions (¢f° =0), G=G
G = L v
1=— E o‘,‘jeij .
v

The interaction between the strain field generated by the inclu-
sions and the applied traction is
AG=G—G0 —G1 =- /GSPuinde:— /oi‘;-°u,-7jdV

N 14

=— /O'i“}’-°(u,~,j—efj)dV— /G;oéng=—/6;°€?jdV.
v v v

by Gauss’s theorem and the fact that fa;;" (uij —€;)dV =0 (see

above). Therefore, with spatially hgmogeneous stress and
strain fields

_ o0 _* 00 %
AG= /O’ij el-jdV— o} €

4

For the case where the body is under an applied traction and
inclusions are introduced, the change in free energy is given by

— | P
AG=G-Go=AG+G1=—70j€;— 0j€j,

which is Eq. 1.

Derivation of the Stress Field for a Prescribed Transformation Strain.
The tensorial infinitesimal strain, ¢, is given by

712 Y13
7 2
€ € €
o Lo o\ _ (0 2 P |2, s
i=5 o o 12 €2 €3 2 2
€13 €23 €33 Vi3 723
= €
5 5 33
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Define the stiffness tensor, Cy, for an isotropic homogeneous
solid as

Ev

(1+v)(1-20) (G + Sudye)

Cij = 0yj6i +

E
2(1+v)
and the constitutive relation

oij = Ciji€n,

where € is now the elastic component of the strain. Argon and

Shi (3) use Eshelby’s tensor for a spherical inclusion, given by

Sv-1 4-5v
0ii0

1501 -0) " 150 -0)

N (81 + Sudjkc)-

To relate the confined strain, eg, to the transformation strain, ei]T- s
of the inclusion

c T
eij = S,‘ijle.

The authors assume two components of €/,

(100 /0 10
=210 1 0|+%2(10 0],
3% 01/ %2\oo0 o

where the first term accounts for dilatation and the second for
a pure shear. The stress inside the inclusion, 0{,-, is given by
7= Cijt (Skamn € = €11)-

The elastic energy in both the inclusion and matrix is given as

1
Eojasiic =— i / 6{]€ng
Q

For the case of a spherical inclusion, in which ag and eg are
constants, this expression becomes

1
Eelastic =- E UIIIEZ'Qf

Considering only the dilatational component of €/; and using the
relationship E=2u(1+v)

BT 1 0 0 E
_ € F= T2
O{j _—9([/ — 1) 010 and Eglastlc 9(1 _ l/) (60)
0 0 1
_2u(1+v)

2
—m(ef) ’

which is the same as the second term of equation 7 in ref. 3. Now,
considering only the shear component of €/, yields

E/T(7—50) 010
_LEr,\r—ov
i = 30(2=1) 1 0 0 and
000
E(7-5v) 2 pu(7-5v), 7

= T = 2
Eetastic _60(1 _Vz)(y(,) 30(1-0) (Eo) ’

which is the same as the first term of equation 7 in ref. 3. In the
presence of an applied far-field stress, the change in Gibb’s free
energy becomes (see previous section)
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AG= -3 ofe @ — 07 €Qy.

1
2
For uniaxial compression and our assumed orientation of the in-
clusion, the applied stress is

L T

- -1 1 0
Oijj = E 1 -1 0
0 0 0

/

1\

=y

Therefore, the change in free energy is

E [v+1 2
e )

750,y _o(2€) -375)

AG= RL 6

Argon and Shi define the transformation dilatancy as

g0 —v)’el
s 201 +v)(4=5)rd
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2. Mura T (1987) Micromechanics of Defects in Solids (Springer, Berlin), Vol 3.

From measurements on an amorphous bubble raft, the authors
estimate f~ 1 (3). Therefore

e 2(1+v)(4-5v)
T 451 -w)?

I

with this relationship

2
_QF Ju+1|2(1+v)(4-5v) 7
AG—UZ_I{ 5 { i
QayZ_Qa}/Z 2(1+v)(4-5v)
2 3 45(1-v)*

T—=5v, 1\2
760 (“T)}

+

Setting AG =0 and rearranging yields

77 [5,6750°-33,36504+70,9341° ~74,57817+39,96 718,761
B 270(v —1)* (15503 — 11122 — 1470 + 119)

mlQ

=yT0v).

3. Argon AS, Shi L (1983) Development of visco-plastic deformation in metallic glasses.
Acta Metall 31(4):499-507.

Fig. S1. Laser-scanning confocal micrographs of deformed micropillar specimens. (A) A specimen with ¢ =0.559 compressed at RH=60%. Failure results from
the development of a shear band that propagates from the specimen/punch interface to the specimen surface. (B) A specimen with ¢ =0.687 compressed at
RH=50%. The darker region outlined by the dashed red line has been sheared out of plane.

Strickland et al. www.pnas.org/cgi/content/short/1413900111

30f5


www.pnas.org/cgi/content/short/1413900111

T

F/A,

PNAS

L | Eplasic | Eelasic X

0 0.01 0.02 0.03 0.04
Al/l
o

Fig. S2. Idealized compressive response showing loading and unloading moduli.
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Fig. S3. Experimental compressive response of a colloidal micropillar at 50% RH. The stiffness on unloading is larger than the measured stiffness on loading.
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Fig. S4. A comparison of the shear component of the transformation strain, y[, for colloidal micropillars, glassy polymers, and metallic glasses (see Table S1 for
values and references). Atlhough the elastic moduli of the materials span five orders of magnitude, the kinematics of the proposed plastic event remain
remarkably similar.
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