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1. Description of Supplementary Tables

Supplementary Table S1, related to experimental procedures. Suppressive drug interactions learned
from literature.

Supplementary Table S2, related to Figures 1, 2, 3, 4. Raw cell growth measurements for 245 drug-drug
interaction assays analyzed during this study. Each file contains a matrix of 64 columns with ODsgs
readings for one drug-drug interaction. Rows correspond to different time points with 15 minutes
intervals that span 20-24 hours. Columns correspond to the 8 X 8 matrix of drug concentration
combinations.

Supplementary Table S3, related to Figures 2, 3, 4. Growth level and suppressive drug interaction region
tables for each drug interaction experiment.

Supplementary Table S4, related to Figure 5. Sensitivity scores for 5696 strains obtained for Bro,c;,
Stacz0and Com, ez conditions.

Supplementary Table S5, related to Figure 6. Raw cell growth measurements for data represented in
Figure 6d.



2. Literature curation result experimental verification
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Figure S1, related to Table 1. Drug interaction experiment for SFK-1 and Tacrolimus.

SFK-1 suppresses Tacrolimus under 0.2M NaCl. The suppression can be seen by comparing the bottom
two rows of the drug combination matrix. With increasing levels of Tacrolimus, presence of low doses of
SFK-1 has a protective effect on Tacrolimus growth inhibition. The concentration combinations where
SFK-1 suppresses Staurosporine are shown with blue growth curves.



2. Identification of suppressive drug interactions

2.1. Concentration and growth normalization

Each drug interaction experiment consists of an 8 x 8 collection of growth curves. The areas under each
growth curve are computed to give an 8 x 8 “summarized growth” matrix. Drug titrations were all
performed uniformly between zero drug and that drug’s MIC, thus we will represent the concentrations

of each drug A in such an experiment as one of eight values: gMICA, %MICA, %MICA.

For each summarized growth matrix involving drug-pair A and B, growth rates (i.e. matrix values) are
normalized to values ranging between 0 (MIC drug/no growth) and 1 (no-drug/full growth)*. Normalized
(observed) growth rates for an experiment involving drug-pair A and B will be represented like so: ga s(is,

js) where i and j are integers between 0 and 7 (inclusive) corresponding to éMICA and %MICB,

respectively.
2.2. Self-experiments’ theoretical repeats

In Cokol et al (Cokol et al, 2011), 25 drugs were tested against themselves, in a series of “self-
experiments”. Our uniform titration of drug concentrations allowed for multiple cells in each such self-
experiment’s summarized growth matrix to hold observed growths at the same drug concentration.
These cells thus serve as repeat measurements, from which we can model the (combined technical and
biological) noise in our experimental system.

. ) . . . 6
As an example, consider a single self-experiment for drug A. For a combined concentration of ;MICA

there are 7 growth measurements:
94,a(04.64), gA,A(lAISA): gA,A(2A14A)’ 9aa(3434), gA,A(4A;2A): gA,A(SAf 1,), and gA,A(GA,OA)-

We can then take the average and the standard deviation of growth of these 7 measurements, allowing
us to observe the experimental variance as a function of the mean growth.
Each self-experiment (for arbitrary drug A) provides 13 different combined concentrations for which

. 1 13 . 0
repeated measurements are made, ranging between ;MICA and 7MICA. (Concentrations of ;MICA, and

14 I .
7MICA only have one combination each, preventing repeat measurements.) Thus we have 325 such

repeated average-vs-SD values (13 concentrations for each of 25 drugs), all of which are shown in
Supplementary Figure 1.

2.3. Heteroskedasticity, LOESS fit, and calling significant deviations

The SD-vs-average growth repeat values in Supplementary Figure 1 show higher variance for growth
values near 0.5 and lower variance near the boundary growth values of 0 and 1. This results in part* due
to the calculation for average growth itself: since each individual growth measurement contributing to
the average is bounded between 0 and (approximately) 1, averages near the boundary necessarily
involve values close to the average result. We modeled this heteroskedastic relationship using a LOESS

' Due to experimental biological variance, it is possible to observe summarized growth rates slightly greater than 1
using this scheme; we observe these cases only a few times in our data, with values quite close to 1.

2 i, . . . . ) . 1
In addition to any increased experimental variance at the concentrations where a drug's efficacy is near 3 MIC,

which in dose response curves is often a region of greatest variance (i.e. steepest slope).



algorithm (Cleveland & Devlin, 1988), with the results of the fit seen in Supplementary Figure 1. The 95%
confidence interval (Cl) of the fit was also computed, and we elected to (proceed conservatively and)
take the upper boundary of this 95% fit-Cl to be our modeled experimental SD as a function of some
theoretical (or expected) growth g: o(g).

We use this value as a parameter for calling observed growth rates as being “significantly” greater
than a theoretical (or expected) value, while controlling for the type-I error rate of these calls. Given a
theoretical growth § for which observed growth rates will be compared against, we find the 95%
qguantile of the Gaussian N(g,o(§)) distribution, corresponding to a 5% type-| error rate (controlling for P
< 0.05). A threshold function g*(§) is then defined as:

g*(4)= G + Qo.ss(N(g,0(4)))

where Q(:) is the quantile function. If any observed growth rate g°b‘°‘>g*(§), then we deem g to be
significantly greater than §. This empirically-derived threshold can be seen as the shaded region in
Supplementary Figure 2.
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Figure S2, related to Figure 1. LOESS fit for self-experiment repeat measurement data.
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Each data point represents a set of “theoretical” repeated measurements (i.e. identical concentration

combinations) from the same self-experiment. Dotted lines indicate the 95% CI of the model fit.



single-drug growth vs double-drug growth
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Figure S3, related to Figure 1. Suppression region shown graphically.

The x-axis represents the theoretical (or expected) growth rate and the observed (double-drug) growth
rate is plotted against the y-axis. If the double-drug growth falls into the shaded region for its
corresponding x-axis value, then that growth in double drug is significantly larger than the single drug
growth.

2.4. Significant suppression

For any double-drug experiment with drugs A and B, we say that A suppresses B at concentration-
combination (i, jg) if:

* gaslia ja) > 9*(9as(04 js)) and
* gaslin ja) > 9*(94,8(04 js) 9aslia 0s)) and
* gaslia js) >0.1.

(We alternatively may say that B is suppressed by A (at that concentration-combination).) Such points
will fall into the shaded region of Supplementary Figure 2, which we call the “significant suppression
region.”

For each drug-pair, we tested for all ‘A suppressing B’ and ‘B suppressing A’ cases, at all
concentration-combinations (i4, jz). As an example, results of tests for 2 drug-pairs for all concentration-
combinations can be seen (plotted against the significant suppression region) in the Supplementary
Figure 3. Plots for all 240 experiments are available upon request.
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Figure S4, related to Figure 2. Results of suppression tests for two drug pairs.

Each blue and yellow dot represents the observed growth levels for one drug concentration combination. The y-
values of dots correspond to the growth level in drug combination. The x-values of dots correspond to the
maximum of growth level in a single drug concentration and the expected growth level in drug combination. When
the y-value is significantly higher than the x-value (falling to the shaded region), suppression of the drug shown in
the marginal is concluded. According to the top plot, there is no suppression relationship between 5FU and 5FU, as
expected. According to the bottom plot, Ben significantly suppresses 5FU in three concentration combinations.



3. Identification of suppression hubs

For both the “initial 200" (drug interaction data reported in (Cokol et al., 2011)) and the “all 240" (drug
interaction data reported in (Cokol et al.,, 2011) united by drug interaction data produced within this
study) experiments, we handled the issue of testing multiple hypotheses using an empirical false
discovery rate method. Briefly, the false discovery rate (FDR) for a set of hypotheses (usually the
rejected nulls) is the proportion of those hypotheses that we expect to actually come from the null
distribution (i.e. false rejections).

(Benjamini & Hochberg, 1995) and (Storey, 2002) give the reader a good background to the topic, and
provide fast methods for FDR estimation when the hypotheses are independent and the null distribution
for each hypothesis tested is U(0; 1), i.e. uniform over the range of p-values. Fisher's exact test for
contingency tables -a permutation method- does not provide such a uniform null, however, and we used
a simulation-based method to estimate FDRs.

3.1 Null distribution simulations

For each set of drug-drug tests, we tested two hypotheses per drug X: that drug X is a frequent
suppressor, and that drug X is frequently suppressed. Each test was made using a contingency table, and
to simulate the null distribution, for each such test we sampled 100,000 random contingency tables
using the same marginals as the observed case. Contingency table sampling was performed using the
hypergeometric distribution, and each random table was then subjected to the identical one-sided
Fisher's exact test as the observed case, giving 100,000 null p-values. The null p-values were then pooled
for each hypothesis in the experiment, giving 6.6x10™ and 8.6x10™ null p-values per experiment
(respectively, for the “initial 200” and “full 240” experiments). The distributions of these simulated null
p-values, layered with the distribution of observed p-values, can be seen in Supplementary Figures 4 and
5.
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Figure S5, related to Figure 3. FDR estimate analysis for the "first 200" experiment batch.

Top plot shows the p-value vs FDR estimate (g-value); dotted lines show various canonical p-value and
g-value cutoffs; both axes are on log scale. Bottom plot shows two overlapping histograms; blue
histogram shows the distribution of observed p-values from the "first 200" experiments; red histogram
shows results of 10° null hypothesis simulations per observed p-value. Violet is where red and blue
histograms overlap.
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Figure S6, related to Figure 4. FDR estimate analysis for the "all 240" experiment batch.

Top plot shows the p-value vs FDR estimate (g-value); dotted lines show various canonical p-value and
g-value cutoffs; both axes are on log scale. Bottom plot shows two overlapping histograms; blue
histogram shows the distribution of observed p-values from the "all 240" experiments; red histogram
shows results of 10° null hypothesis simulations per observed p-value. Violet is where red and blue
histograms overlap.
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3.2 FDR estimation

Given a distribution of null p-values, we estimate the FDR for the set of hypotheses with p-value smaller
than p as:

#.(N, < p)/|N|
#.(0, < p)/|0| '

where N is the set of null p-values, O is the set of observed p-values, and #(X; < p) is the number of
values in X that are less than p. In many formulations of FDR estimates, the numerator of the above
equation is reduced by a value 0 < A < 1, reflecting an estimate of the number of true nulls in the full
observed distribution, but traditional methods for estimating A rely on a uniform null distribution, and
thus we exclude it here (thus keeping our estimate on the conservative side).

11



4. Dynamic Light Scattering Experiments

To compare compound co-aggregation and suppressive drug interactions, we analyzed a set of 9 drugs
(Bro, Dyc, Fen, Hal, Rap, Sta, Tac, Ter and Tun), both alone and in pairwise combinations in which drug
suppression was observed (10 pairs: Bro+Hal, Bro+Sta, Bro+Rap, Bro+Tac, Dyc+Fen, Dyc+Tun, Fen+Ter,
Fen+Tun, Hal+Tun, Rap+Tac). Single and combined drugs were prepared at the reported MIC
concentrations for each drug, in exactly the same media conditions that were used for drug interaction
experiments, excepting the addition of cells. We estimated the mean radius of the aggregates in each
condition by using Dynamic Light Scattering (DLS) (Coan & Shoichet, 2008). Two independent replicate
estimates for aggregate radius measurements had a very high correlation (r = 0.95, p < 2.2x10™),
indicating the reproducibility of our measurements. As a measure of compound precipitation at given
concentration levels for each drug alone and in combination, we used the mean of these replicates. The
results of this experiment are shown in Supplementary Table S6.

Drug-pair [Drugl |R(nm) [Drug2 |R (nm) |Drugl+Drug2 [R(nm) |Suppression

1 Bro 7 Rap 6 Bro+Rap 6 Bro suppresses Rap
2 Bro 7 Sta 6 Bro+Sta 6 Bro suppresses Sta
3 Fen 6 Ter 20 Fen+Ter 20 Ter suppresses Fen
4 Fen 6 Tun 9 Fen+Tun 7 Fen suppresses Tun
5 Bro 7 Hal 52 Bro+Hal 52 Bro suppresses Hal
6 Bro 7 Tac 335 Bro+Tac 343 Bro suppresses Tac
7 Dyc 40 Fen 6 Dyc+Fen 52 Dyc suppresses Fen
8 Dyc 40 Tun 9 Dyc+Tun 64 Dyc suppresses Tun
9 Hal 52 Tun 7 Hal+Tun 70 Hal suppresses Tun
10 Rap 6 Tac 335 Rap+Tac 314 Tac suppresses Rap

Table S6, related to Experimental Procedures. Mean aggregate radius of 10 drug pairs individually or in
combination.

The negative control (solvent) showed an R score of 7nm. Shown in pink are individual drugs or
combinations that do not aggregate (scores smaller than 40).

12



According to these results, 4 drug pairs (Bro+Rap, Bro+Sta, Fen-Ter, Fen-Tun) do not show aggregates

neither individually nor in combination, therefore ruling out a co-aggregation based mechanism for the

observed drug suppression. In each case of the remaining pairs, one drug does not show aggregation

individually, but the other drug does, as well as the combination. In order to test if the non-aggregating

compound in these cases increases the aggregation of the aggregating compound, we checked

aggregation in lower dose combinations in the 6 pairs. The results of these experiments are shown in

Supplementary Table S7. A comparison of the individual and combined drug aggregation in each of these

cases reveals no strong indication that the non-aggregating compound is effecting the aggregation of the

aggregating compound.

Hal (ug/ml)| 0.1 1 8 16 24 32 40 48 56
R(nm)| 4.75 | 4.25 | 6.5 | 14.8 | 25.65 | 39.45 | 53.75 | 62.6 | 70.75
Tac (ug/ml)| 1 2 4 8 16 31 47 63 79 94
R(nm)| 42 | 4.85 | 3.85 | 4.45 | 12.55 | 96.8 | 229.4 |317.55|253.95| 296.1
Dyc (ug/ml)| 1 7 14 21 28 35 42 49
R(nm)| 4.05 | 6.8 | 83 14 |38.35 | 48.6 | 50.65 | 84.25
S Hal (ug/ml)| 0.1 1 8 16 24 32 40 48 56
Bro (ug/ml)| 1 10 70 | 140 | 210 | 280 | 350 | 420 | 490
R(nm)| 5.1 | 485 | 635 | 9.1 |26.65| 48 | 60.1 | 38.95 | 75.75
BT Tac (ug/ml)| 1 2 4 8 16 31 47 63 79 94
Bro (ug/ml)| 48 | 88 | 175 | 35 70 | 140 | 210 | 280 | 350 | 420
R(nm)| 5.15 | 43 | 3.9 | 4.2 |11.35|122.25| 231.8 |236.35|227.25(322.45
DyciFen Fen (ug/ml)] 0.1 | 0.22 | 044 | 066 | 0.88 | 1.1 | 1.32 | 1.54
Dyc (ug/ml)| 1 7 14 21 28 35 42 49
R(nm)| 4.95 | 7.9 | 8.15 | 143 | 37.7 | 54.55 | 59.3 | 86.35
Dyc+Tun Tun (ug/ml)| 001 | 005 | 0.1 | 015 | 02 | 025 | 03 | 0.35
Dyc (ug/ml)| 1 7 14 21 28 35 42 49
R(hm) 465 | 7 | 855 1525 33.7 | 57.4 | 59.4 | 89.7
ST Hal (ug/ml)| 0.1 1 8 16 24 32 40 48 56
Tun (ug/ml)| 0.001 | 0.01 | 005 | 0.1 | 0.15 | 0.2 | 0.25 | 03 | 0.35
R(hm) 525 | 5.15 | 6.6 | 9.05 |33.35| 57.9 | 59.05 | 60.4 | 95.35
Rap+Tac Tac (ug/ml)| 1 2 4 8 16 31 47 63 79 94
Rap (ng/ml){ 0.048 | 0.09 | 0.18 [ 035 | 0.7 | 1.4 | 21 | 2.8 | 35 | 42
R(nm)| 4.85 | 42 | 44 | 485 | 9.6 |5025| 37.5 |359.45| 287 [319.85

Table S7, related to Experimental Procedures. Further DLS experiment results to test co-aggregation in

aggregating drugs.
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Figure S7, related to Figure 6. Pentachlorophenol, a weak base and an oxidative phosphorylation
inhibitor, suppresses Staurosporine. The concentration combinations where Pentachlorophenol
suppresses Staurosporine are shown with blue growth curves.
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