BMJ Open

Effectiveness of introduction of new legislation of partial sickness benefit on work participation: A quasi-experiment in Finland

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006685
Article Type:	Research
Date Submitted by the Author:	19-Sep-2014
Complete List of Authors:	Kausto, Johanna; Finnish Institute of Occupational Health, Viikari-Juntura, Eira; Finnish Institute of Occupational Health, Virta, Lauri; Social Insurance Institution, Gould, Raija; Finnish Centre for Pensions, Koskinen, Aki; Finnish Institute of Occupational Health, Solovieva, Svetlana; Finnish Institute of Occupational Health, Center of Expertice for Health and workability
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	partial sick leave, sick leave, work disability, population registers

EFFECTIVENESS OF INTRODUCTION OF NEW LEGISLATION OF PARTIAL SICKNESS BENEFIT ON WORK PARTICIPATION: A QUASI-**EXPERIMENT IN FINLAND**

Johanna Kausto¹, Eira Viikari-Juntura¹, Lauri J Virta², Raija Gould³, Aki Koskinen¹, Svetlana Solovieva¹

¹ Finnish Institute of Occupational Health, Helsinki, Finland

(SII), and ² The Social Insurance Institution of Finland (SII), Turku, Finland

³ Finnish Centre for Pensions, Helsinki, Finland

johanna.kausto@ttl.fi eira.viikari-juntura@ttl.fi lauri.virta@kela.fi raija.gould@etk.fi aki.koskinen@ttl.fi svetlana.solovieva@ttl.fi

Corresponding author: Johanna Kausto, Topeliuksenkatu 41 aA,

00250 Helsinki, Finland Tel.: +358 30 474 2509 E-mail: johanna.kausto@ttl.fi

Word count: 4125 Number of tables: 3 Number of figures: 1

Key words: partial sick leave, sick leave, work disability, population registers

Abstract

Objectives The objective of the study was to examine the effect of new legislation on partial sickness benefit on subsequent work participation of Finns with long term sickness absence. Additionally, we investigated whether the effect differed by sex, age, or diagnostic category. **Design** A register based quasi-experimental study. We compared the intervention (partial sick leave) group with the comparison (full sick leave) group regarding their pre-post differences in the outcome. The pre-intervention and post-intervention study period each consisted of 365 days.

Setting Nationwide, individual level data on the beneficiaries of partial or full sickness benefit in 2008 were obtained from national sickness insurance, pension and earnings registers. Participants 1 738 persons in the intervention and 56 754 persons in the comparison group. Outcome Work participation, measured as the proportion (%) of time within 365 days when participants were in gainful employment and did not receive either partial or full ill-healthrelated or unemployment benefits.

Results Although the overall work participation declined in both groups during the study period, the decline was 5% (absolute difference-in-differences) smaller in the intervention group thanin the comparison group, with a minor sex difference. The beneficial effect of partial sick leave was seen especially among those aged from 45 to 54 (5%) and 55 to 65 (6%) and in mental disorders (13%). When the groups were rendered more exchangeable (propensity score-matching), the effects on work participation were doubled and seen in all age groups and in other diagnostic categories than traumas.

Conclusions The results suggest that the new legislation has potential to increase work participation of the population with long term sickness absence in Finland. If applied in a larger

scale, partial sick leave may turn out to be a useful tool in reducing the withdrawal of workers
from the labor market due to health reasons.

<text>

Article Summary

Strengths and limitations of the study:

- Applying nationally representative population register based data with valid information • on the payment of health- and unemployment-related allowances in Finland.
- <text> Applying a quasi-experimental study-design with difference-in differences and propensity score analysis to control for selection on both observed and unobserved factors.
- Registers provided only a limited number of background characteristics.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Introduction

The need to increase work participation of working age people is currently a matter of concern in many Western countries. In Finland, delayed or lacking labor market attachment of young people, absence from work during later years and early exit from labor market have all raised alarm. To counteract these trends, an active labor market policy has been adopted, including the introduction of partial social security benefits and other tools to increase the so called flexicurity of the labor market [1]. In Finland, legislation on partial sickness benefit was introduced in 2007. The new benefit allowed for the first time to combine part-time sick-leave with part-time work.

The Finnish social insurance is based on the Nordic Model. Everyone who is aged from 16 to 67, non-retired and living permanently in the country (employees, self-employed, students, unemployed job seekers and those on sabbatical or alternation leave) and also nonresidents working for at least four months in Finland are covered by statutory sickness insurance. The sickness allowances are financed by employers, employees and the state and they are administrated by the Social Insurance Institution of Finland (SII). Statutory benefits can rest on previous earnings or benefits or the minimum allowance can be granted. For the earnings-related occupational sickness benefits, a minimum of three months of employment is required.

At present, the Finnish national sickness benefit scheme includes a full and a partial sickness benefit. A medical certificate is an absolute requirement for the two sickness benefits to be granted. In order to be eligible for the partial benefit an employee has to be eligible for a full benefit as well, but according to medical judgment partial return to work is safe enough. Partial sick leave is thus alternative to full sick leave and it is always medically certified. During the first years after introducing the partial sickness benefit in Finland, a partial sick leave had to be directly preceded by a period of full sick leave of at least 60 days and the partial sickness benefit could be granted from a minimum of 12 to a maximum of 72 working days. During partial sick leave, work time and salary are reduced by 40 – 60% of the regular work hours and work tasks can be modified if necessary. The employee and the employer sign a fixed term

work contract for the part-time work. In Finland, the use of partial sick leave is voluntary for the individual. The employer, as well, is entitled to decline the use of the benefit in case the work arrangements needed at the work place are not feasible.

Sickness absence rates are in many countries higher among women compared with men [2]. Also partial sick leave has been more frequently used by women [3]. It is known that sickness absence increases with age [2]. It is also recognized that challenges of return to work are different for example in musculoskeletal diseases and mental disorders. In the latter category, the outflow from disability benefits due to recovery has been lower [4].

The current evidence on the effects of partial sick leave on return to work or work participation is partly inconsistent. In the other Nordic countries, partial sick leave has been found to increase the likelihood of return to regular working hours [5, 6] and to be associated with higher subsequent employment rate [7]. No effect of active sick leave (return to work to modified duties) on the average number of sick leave days or long term disability was detected in a Norwegian cluster randomized controlled trial [8]. There is some discrepancy in the findings on the effectiveness of partial sick leave in mental disorders. A Danish study [9] found no effect, whereas a Swedish study [10] reported a weak effect of partial sick leave on full recovery in the beginning of work disability due to mental disorders and a stronger effect when partial sick leave was assigned after 60 days of full sick leave.

In a randomized controlled trial among persons with musculoskeletal disorders we found that early part-time sick leave predicted faster sustained return to work than full sick leave [11]. The beneficial effect of partial sick leave on work retention was also observed at population level [12, 13]. Partial sick leave was associated in the short term with decreased work retention, in terms of increased subsequent sickness absence. In the long term it was associated with increased work retention, in terms of increased subsequent use of partial disability pension and decreased use of full disability pension. These findings imply the necessity to use an outcome that simultaneously accounts for different indicators of work

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

participation. Some of these previous observational studies have suffered from limited data samples and narrow generalizability of findings [5, 9], self-reported data [9], and incomprehensive operationalization and measurement of work participation [5, 6, 10, 12, 13].

In order for policy makers to be able to make well informed decisions in the area of social and health policies, scientific evaluation of the effectiveness of population level interventions, e.g. introducing new legislation or policy change is needed [14]. Natural or quasi-experiments have successfully been used in connection with various population level interventions in the field of public health when planned experimentation, i.e. manipulation of exposure, has not been possible [15]. In the field of work disability research, this approach has, however been rare [2].

This study examined the effects of the new Finnish legislation on partial sickness benefit on subsequent work participation. For this we compared beneficiaries of partial sickness benefit with those receiving full sickness benefit a year after the law on partial sick leave was enacted. We utilized a quasi-experimental design with an integrated measure of work participation. Analyses were carried out in an individual level register based data representative of the Finnish working population with long-term sickness absence. We examined whether the effects of partial sick leave on subsequent work participation differed by sex, age, or diagnostic category of the benefit receivers.

Methods

Study design and setting

The population level intervention of interest in this study was the introduction of partial sick leave in Finland in 2007. We conducted a quasi-experimental study following recent guidelines on evaluating population health interventions [15]. This design was chosen to minimize the effect of both measured and unmeasured confounding. We compared the intervention (partial sick leave) group with the comparison (full sick leave) group regarding their pre-post

differences in work participation. The pre-intervention (T1) and post-intervention (T2) study period each consisted of 365 days. A wash-out-period of one year was set between the sick leave period and T1 and T2 periods in order to obtain a robust effect of the intervention on work participation (Figure 1). These time-windows were allowed to move according to the timing of the individual's sick leave period.

<Figure 1>

Individual level data were derived from the national sickness insurance register of the SII and the pension and earnings registers of the Finnish Centre for Pensions. Data from these three registers were linked on the basis of social security numbers of the participants. The social insurance register provided information on all medically certified and compensated sickness absence spells, temporary and permanent national disability pensions, and old age pensions in Finland. The registers of the Finnish Centre for Pensions contained information on employment periods, earnings-related pensions and unsalaried periods due to disability, rehabilitation or unemployment. Written consent from the individuals was not needed as only encrypted register data were obtained by the researchers carrying out the analyses in the Finnish Institute of Occupational Health.

Participants

Participants that were granted a partial sickness benefit (intervention group) were compared with those who received a full sickness benefit (comparison group). A total sample of individuals who had received either partial sickness benefit (n = 1 838) or full sickness benefit (n = 67 086) in 2007 - 2008 and whose compensated sickness absence period had ended between 1 January and 31 December 2008 was drawn from the national sickness insurance register. Since a full time sickness absence of 60 working days had to precede partial sick leave, only those with full sick leave ending with an uninterrupted period of at least 60 days of payment of the benefit were included in the total sample. Thus, in our sample, receivers of full sickness benefit, but they would have been entitled to it as for the length of the preceding full time sickness absence.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Since eligibility for a partial sickness benefit required a prior work contract, we excluded from the analyses those who did not have any employment periods (n=2 and n=4 923) during the entire study period. We additionally excluded those who had died (n=24 in the partial sick leave group and n=2 600 in the full sick leave group) or moved to old age pension (n=1 and n=354, respectively), had not turned 16 at the time of the first data collection period (T1) (n=3) or whose sickness absence periods (ending in 2008) extended beyond the time-frame of data collection (n=66 and n=1 024). The final sample included 1 738 participants in the partial sick leave group and 56 754 participants in the full sick leave group. We focused our analyses in the four main diagnostic groups in which partial sickness benefit has most frequently been used, i.e. musculoskeletal diseases, mental disorders, traumas and tumors (M, F, S and T, and C and D-categories in ICD-10, respectively). All other diagnoses were merged in one group.

Outcome measure

Work participation was operationalized as the time the individuals were likely to have actually participated in gainful employment. It was approximated as the proportion (%) of time within 365 days when participants had an employment contract and did not receive either partial or full ill-health-related benefits (sickness benefits, rehabilitation allowances, disability pensions) or unemployment benefits. Work participation was calculated for T1 and T2. It was assumed that when receiving partial benefits, the participants worked half of the work time (which is typically the case in Finland).

Covariates

Data on sex, dates of birth and death, insurance district (region), annual gross income in 2007, diagnostic codes (ICD-10), and occupational branch were obtained from the sickness insurance register. Information on occupation was available for all participants in the intervention group and for a random sample of 7.7% of the participants in the comparison group.

Data analyses

The distributions of all variables were compared between the total full sickness benefit group $(n = 67\ 086)$ and the subsample of those participants in the full sickness benefit group for whom the registers provided information on occupational branch $(n = 4\ 347)$. Since no differences in the distributions were detected, we assumed that information on occupational branch was missing at random. Multiple imputation was used to compensate for the missing data on occupational branch in the comparison group. For this, we generated multiple imputed data sets (n=10) using the *proc mi* of SAS. The imputation model included all covariates.

Propensity score with 1:1 matching was used to match individuals on the probability that they would belong to the intervention (partial sick leave) group. Individuals that were matched to each other had equal or nearly equal (close enough) estimated propensity scores.

Difference-in differences- (DID-) and propensity score- (PS-) analyses are methods that are complementary to each other and can be applied in causal inference to counter selection bias and confounding [16]. We applied the DID method alone and in combination with PSmatching. Combining methods to counter bias and confounding from different sources and comparing the results has been encouraged [15]. The DID-method can be applied to control for fixed unobserved individual differences and common trends.

The DID-method allows one to estimate the difference in pre-post, within subject, differences between the intervention and the comparison group. The effect of partial sick leave on work participation was consequently estimated as the difference in pre-post-differences (differences between T2 and T1) between partial and full sick leave groups. The effect was estimated using general linear model with repeated measures design. F-statistic for the interaction term between the group assignment and change of work participation in time was applied as the difference-in-differences statistic.

Propensity score is defined as conditional probability of being exposed to a certain intervention given observed covariates [15, 17, 18]. It is applied to balance the covariates in two groups For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

and thus to reduce bias. We computed PS (i.e. probability of being exposed to partial sick leave) by logistic regression for all participants. The following set of variables and their interaction terms were included in the logistic regression model: age, sex, diagnostic category, income, occupation, insurance district, and work participation, sickness absence, rehabilitation periods and unemployment at T1. The model that balanced the covariates and work participation at T1 between the intervention and comparison group best and had the best model fit was chosen.

Thereafter we matched the partial sick leave and full sick leave groups on the estimated propensity score using local optimal (greedy) algorithm [19]. The matching was performed within (sex x diagnostic category)-strata. Subsequently DID-analysis was also carried out in the matched subsample.

Several sensitivity analyses were carried out. The analyses were run separately for participants for whom the registers provided information on occupational branch and for the total sample in which imputed data on occupational branch were utilized for the comparison group. To examine the group difference in work participation at T1 (due to unemployment or sick leave) as source of reduced group comparability, the analyses were carried out separately among participants who did not receive unemployment benefits at T1 and among participants with 100% of work participation at T1.

Results

Descriptive characteristics of the study population

Information on the background characteristics of the intervention and comparison group in the total analysed sample is shown in Table 1. Women constituted 71% of the partial sick leave group and 53% of the full sick leave group. The partial benefit was most common among those who were aged between 35 and 54, whereas the full benefit among those aged from 45 to 65. The income level of those in the partial sick leave group was higher than of those in the full

sick leave group. The partial sickness benefit was most often used in connection with mental disorders and musculoskeletal diseases, while the full benefit was most often used in musculoskeletal diseases. The use of the partial benefit was most frequent in social and healthcare services and administrative and office work, whereas the full benefit was most commonly used in industrial and service work. No large regional differences in the use of the benefits were detected.

<Table 1>

Difference-in-differences in work participation between partial and full sick leave group

In both groups the level of work participation decreased during the follow up, the absolute reduction being larger in the full sick leave group (-26.5%) compared with the partial sick leave group (-21.2%) (Table 2). The absolute overall difference-in-differences in work participation was 5.3% (95% CI 3.1% to 7.5%).

The difference-in-differences in work participation tended to be larger in men than in women. In all age categories, work participation declined more in the full than in the partial sick leave group. The difference in the decline was significant in age-categories 45-54 and 55-65. There was no effect in those aged 35-44. In the youngest age category (16-34 years) the differencein-differences was large but statistically non-significant.

A statistically significantly larger effect was found in mental disorders compared with the other diagnostic categories.

<Table 2>

The results found in the subsample of participants for whom the registers provided information on occupational branch were very similar to those in the total sample (data not shown). The exclusion of the participants who received unemployment benefits at T1 led to an absolute

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

increase in the difference-in-differences in work participation (DID 7.6%, 95% CI 5.4% to 9.7%). The difference-in- differences in work participation increased further (DID 9.5%, 95% CI 6.8% to 12.1%) when participants with reduced work participation (for any reason) at T1 were excluded from the analyses. Difference-in-differences in work participation in the propensity score-matched subsample The matching procedure resulted in a total of 1 660 matched pairs of participants. The propensity score matched partial sickness benefit receivers did not differ from full sickness benefit receivers with regard to age, gross income, number of unemployment days, sickness absence days, rehabilitation days or work participation at T1. There were some differences between the groups in the distribution of occupational branches and insurance districts

(Appendix Table 1).

The results from the DID-analysis in the PS-matched subsample are presented in Table 3. The absolute overall difference-in-differences was increased to 9.8% (95% CI 5.9 to 13.7). A tendency for a larger DID in men than in women was also found in this subsample. The DID was still largest in those participants aged over 45 years, but in contrast to the total sample an effect was seen in the younger age categories as well. Differences between the diagnostic categories were reduced as compared to the total sample. The largest effect was still found in mental disorders. In addition, a statistically significant DID was also found in musculoskeletal diseases and tumours. Further adjustment for the differences in the distribution of occupation and insurance district between the intervention and comparison group, had no effect on the results of the DID-analysis.

< Table 3>

Discussion

Principal findings

We applied a quasi-experimental design to study the population level effects of the introduction of partial sickness benefit in Finland among a working population with long term sickness absence. It was found that partial sick leave had a positive effect on work participation. Although the overall work participation declined from T1 to T2, at the population level the decline was 5% (absolute difference) smaller among the receivers of partial sickness benefit (intervention group) than among the receivers of full sickness benefit (comparison group). The beneficial effect of partial sick leave was seen especially among those aged from 45 to 54 and 55 to 65 and in mental disorders. No major sex difference was detected. When the groups were rendered more exchangeable, the effect on work participation was doubled, and effects were seen in other diagnostic categories than traumas and all age groups.

Validity of the study

An observational quasi-experimental study design can be applied to assess the effects of a planned event or intervention, when randomized controlled trials are not ethical or feasible. Observational studies can also better simulate real-world settings and offer more relevant information in view of policy-making [20]. The internal validity of observational studies is lower than that of randomized controlled trials due to possible selection according to exposure. For this reason, an analytical approach called potential outcomes or counterfactual framework was chosen. The term refers to the fact that in an ideal situation the exposed would be compared to themselves when unexposed. Since this comparison is impossible, we need a comparable or exchangeable comparison group. We utilized two methods (DID and PS) that have been previously recommended and applied to control for selection on both observed factors and unobserved fixed factors [15, 20, 21].

BMJ Open

In the DID- method, it is assumed that the unobserved characteristics in the studied groups are stable and that the outcomes would change identically in these groups in the absence of intervention. Consequently, the intervention and comparison groups should be identical, except for the intervention status. However, it is sufficient that the groups are closely, though not exactly, similar [15]. We included in the comparison group only participants who would have been entitled to partial sickness benefit as for the length of the preceding sickness absence. We also applied a short wash-out period, to minimize the intragroup differences between the two time points. However, as full information on the eligibility of the participants for partial sickness benefit was not available in the registers (e.g. severity of the health problem and degree of remaining workability), we utilized matching on PS to further increase the exchangeability of the groups.

We utilized nationwide population data with comprehensive individual level register based information on ill-health- and unemployment-related absences from work. Personal identification (social security) numbers enabled linking information from three separate source registers. These registers have originally been established for administrative purposes, but the data can also be used for research [22]. Among the advantages of register based studies is a low likelihood of selection and attrition bias. The source registers of this study provided valid information on the receivers and payment days of the benefits. A weakness of the registers is that they typically provide only a limited number of background characteristics of the participants and other covariates. The process of assignment to partial sick leave is complex and it is affected by many actors (the patient, physician, employer, and workplace) for which information cannot be found in the national registers. Nevertheless, the factors that were included in the analyses have earlier been found to be important predictors of the use of health-related social security benefits and also associated with work disability and return to work.

Information on diagnoses for sickness benefits was as well retrieved from registers and was based on medical assessment. In case of a long term sickness absence (lasting more than 60 days) in Finland, the sickness benefit is paid in shorter periods, each being covered with a

separate medical certificate. Diagnostic codes are transferred from these certificates to the administrative registers. We used the latest (and presumably the most accurate) diagnostic code provided for each long term sickness absence in 2007-2008. Data on occupational branch had to be imputed for the majority of participants in the comparison group. Nevertheless, the sensitivity analyses suggested that using imputed data on occupation did not affect the results. In contrast to earlier studies on the topic, work participation was approximated in the current study by taking simultaneously into account the rate of different ill-health- and unemployment-related benefits. We operationalized work participation as proportion of time within a year not receiving ill-health related or unemployment benefits. Hence we had a relatively comprehensive indicator of the availability of the participants for the labour market.

Results in relation to earlier findings

 The overall results of this study are congruent with earlier findings, indicating positive effects of partial sick leave on return to work and work retention [5-7, 12]. We found that partial sick leave had a positive effect on future work participation especially in mental disorders, but the results of the analyses in the subgroup suggested that the overall effect in the total sample might be underestimated.

Our findings on the usefulness of partial sick leave in mental disorders, though not directly comparable, are congruent with a study showing beneficial effects of partial sick leave on RTW in mental disorders after 60 days of full sick leave [10], but differ from an earlier study reporting no effect [9]. The literature suggests that returning and continuing at work may be more challenging for those with mental disorders than with somatic problems (e.g. musculoskeletal diseases) [23-25]. In addition, the outflow from disability benefits due to recovery has been lower among those with mental disorders than with musculoskeletal diseases [4]. However, in our previous study we found an effect of partial sick leave on work disability pension in both diagnostic categories, the effect tending to be larger in mental disorders than in musculoskeletal diseases [12]. The diagnostic groups of musculoskeletal

BMJ Open

diseases and mental disorders may differ in the degree of comparability of the partial and full sick leave groups with regard to the background characteristics, severity of the health problem and remaining work ability, number of sickness absences as well as in transition to rehabilitation and unemployment. When the exchangeability of the groups was increased with propensity score matching, a beneficial effect on work participation was detected also in persons with musculoskeletal diseases and those with tumours.

Sickness absence is known to increase with age [26]. In addition, it has been found that return to work after long term sickness absence is less likely at higher ages [27, 28]. Partial sick leave was found to be most frequently used and also most effective among middle-aged and older workers. It may well be that work arrangements associated with partial sick leave are more easily implemented by employees in a more established or stable work situation.

Conclusions

The overall results of the effectiveness of partial sick leave on work participation suggest that the new legislation on partial sickness benefit introduced in 2007 has potential to increase work participation of the working population with long term sickness absence in Finland. A positive effect was seen especially in mental disorders. In the future – if applied in a larger scale – partial sick leave may turn out to be an effective tool in reducing temporary and permanent withdrawal of workers from the labour market due to health reasons.

Figure legend

Figure. Schematic presentation of the study design and difference-in-differences method. (T1 corresponds to pre-intervention period, T2 corresponds to post-intervention period).

CONTRIBUTORSHIP STATEMENT

JK, SS, EVJ, LJV and AK designed the study. All authors were involved in data collection. JK,

SS and AK conducted the analyses, all contributed to the interpretation of the results and JK,

SS and EVJ drafted the manuscript. All authors accepted the final version of the manuscript.

COMPETING INTERESTS

None

DATA SHARING STATEMENT

No additional data available

References

- 1. Philips , E.R., Alloja J, Krillo K, Lauringson A, *Approaches to flexicurity: EU-models*. 2007, European foundation for the improvement of living and working conditions.
- 2. OECD, Sickness, Disability and Work: Breaking the Barriers: A Synthesis of Findings across OECD countries, OECD Publishing. 2010.
- 3. Kausto, J., et al., *Partial sick leave--review of its use, effects and feasibility in the Nordic countries.* Scand J Work Environ Health, 2008. **34**(4): p. 239-49.
- 4. OECD, Sick on the job? Myths and Realities about Mental Health and Work, in Mental health and Work, 2012, OECD Publishing.
- 5. Andren, D. and M. Svensson, *Part-time sick leave as a treatment method for individuals with musculoskeletal disorders.* Journal of occupational rehabilitation, 2012. **22**(3): p. 418-26.
- 6. Hogelund, J., A. Holm, and J. McIntosh, *Does graded return-to-work improve sick-listed workers' chance of returning to regular working hours*? Journal of health economics, 2010. **29**(1): p. 158-69.
- 7. Markussen, S., A. Mykletun, and K. Roed, *The case for presenteeism Evidence from Norway's sickness insurance program.* Journal of Public Economics, 2012. **96**(11-12): p. 959-972.
- 8. Scheel, I.B., et al., *Blind faith? The effects of promoting active sick leave for back pain patients: a cluster-randomized controlled trial.* Spine (Phila Pa 1976), 2002. **27**(23): p. 2734-40.
- 9. Hogelund, J., A. Holm, and L.F. Eplov, *The effect of part-time sick leave for employees with mental disorders.* The journal of mental health policy and economics, 2012. **15**(4): p. 157-70.
- 10. Andren, D., *Does part-time sick leave help individuals with mental disorders recover lost work capacity*? J Occup Rehabil, 2014. **24**(2): p. 344-60.
- 11. Viikari-Juntura, E., et al., *Return to work after early part-time sick leave due to musculoskeletal disorders: a randomized controlled trial.* Scandinavian journal of work, environment & health, 2012. **38**(2): p. 134-43.
- 12. Kausto, J., et al., Partial sick leave associated with disability pension: propensity score approach in a register-based cohort study. BMJ open, 2012. **2**(6).
- 13. Kausto, J., et al., *Associations between partial sickness benefit and disability pensions: initial findings of a Finnish nationwide register study.* BMC Public Health, 2010. **10**: p. 361.
- 14. Grimshaw, J., et al., *Experimental and quasi-experimental designs for evaluating guideline implementation strategies.* Family practice, 2000. **17 Suppl 1**: p. S11-6.
- Craig, P., et al., Using natural experiments to evaluate population health interventions: new Medical Research Council guidance. Journal of Epidemiology and Community Health, 2012.
 66(12): p. 1182-1186.
- 16. Ding, Y.Y., *Risk adjustment: towards achieving meaningful comparison of health outcomes in the real world.* Ann Acad Med Singapore, 2009. **38**(6): p. 552-7.
- 17. D'Agostino, R.B., Jr., *Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group.* Stat Med, 1998. **17**(19): p. 2265-81.
- 18. Pattanayak, C.W., D.B. Rubin, and E.R. Zell, *Propensity score methods for creating covariate balance in observational studies.* Rev Esp Cardiol (Engl Ed), 2011. **64**(10): p. 897-903.
- 19. Coca-Perraillon, M., *Local and global optimal propensity score matching.* . SAS Global Forum 2007(185).
- 20. Remler, D.K. and G.G. Van Ryzin, *Research Methods in Practice. Strategies for Description and Causation.* 2011: SAGE Publications, Inc. 616.

BMJ Open

- 21. Gebel, M. and J. Vossemer, *The impact of employment transitions on health in Germany. A difference-in-differences propensity score matching approach.* Soc Sci Med, 2014. **108**: p. 128-36.
 - 22. Gissler, M. and J. Haukka, *Finnish health and social welfare registers in epidemiological research.* Norsk Epidemiologi, 2004. **14**(1): p. 113-120.
- 23. Briand, C., et al., *Work and mental health: learning from return-to-work rehabilitation programs designed for workers with musculoskeletal disorders.* International journal of law and psychiatry, 2007. **30**(4-5): p. 444-57.
- 24. Thornicroft, G., et al., *Reducing stigma and discrimination: Candidate interventions.* International journal of mental health systems, 2008. **2**(1): p. 3.
- 25. van Oostrom, S.H., et al., *Development of a workplace intervention for sick-listed employees with stress-related mental disorders: Intervention Mapping as a useful tool.* BMC health services research, 2007. **7**: p. 127.
- 26. Allebeck, P. and A. Mastekaasa, *Swedish Council on Technology Assessment in Health Care* (*SBU*). Chapter 5. Risk factors for sick leave general studies. Scandinavian journal of public health. Supplement, 2004. **63**: p. 49-108.
- Steenstra, I.A., Prognostic factors for duration of sick leave in patients sick listed with acute low back pain: a systematic review of the literature. Occupational and Environmental Medicine, 2005.
 62(12): p. 851-860.
- 28. Cornelius, L.R., et al., Prognostic Factors of Long Term Disability Due to Mental Disorders: A Systematic Review. Journal of Occupational Rehabilitation, 2010. 21(2): p. 259-274.

	Partial sick leave n =1738	Full sick leave n = 56 754
Sex (%) Female	1 236 (71.1)	30 058 (53.0)
Age (years) (%)		
16-34	217 (12.5)	10 901 (19.2)
35-44	430 (24.7)	11 231 (19.8)
45-54	/53 (43.3) 338 (19 5)	18 /40 (33.0) 15 882 (28 0)
Mean (SD)	46.2 (9.0)	45.7 (11.3)
Annual gross income (€)		
(%)	1 227 (71 2)	46 110 (91 2)
	1 237 (71.2) 209 (73 5)	40 119 (81.3) 9 593 (16 9)
50 001 -	39 (2.2)	732 (1.3)
Missing	53 (3.1)	310 (0.5
Median	24 618	20 668
Diagnostic categories (%)		
Mental disorders	663 (38.2)	14 255 (25.1)
Tumours	112 (6 4)	20 013 (30.3) 3 031 (5 4)
Traumas	136 (7.8)	8 416 (14.8)
Other	203 (11.7)	10 439 (18.4)
Insurance district (%)	210 (12 ()	7 7 4 (1 7 7)
Northern Nestern	219 (12.0) 259 (14.9)	7 /04 (13.7) 7 824 (13.8)
Fastern	194 (11.2)	8 525 (15.0)
South-Western	410 (23.6)	13 254 (23.3)
Southern	656 (37.7)	19 349 (34.1)
Missing	0 (0.0)	38 (0.1)
Occupational branch (%)	((non-imputed subsample $n = 4 347$)
Technical and scientific work	193 (11.1)	409 (9.4)
etc. Social and healthcare services	516 (20 7)	710 (16 5)
Administration and office work	29.7) 293 (16 9)	/ 19 (10.5) 413 (0 5)
Commercial work	113 (6.5)	288 (6.6)
Agriculture and forestry	50 (2.9)	214 (4.9)
Transport	60 (3.4)	269 (6.2)
Industrial and construction	309 (17.8)	1 146 (26.4)
Service work	204 (11.7)	889 (20.5)

Table 1. Characteristics of participants in partial and full sick leave group at the time of intervention (n, %).

 BMJ Open

			Work	participation (%)				
	n	Pre-intervention period (T1) Mean (95%CI)	Post-intervention period (T2) Mean (95%CI)	Post-Pre difference (T2-T1) Mean (95%CI)	р	Difference in differences Mean (95%CI)	F- statistic	
All ¹								
Partial sick leave Full sick leave	1 685 56 406	86.6 (85.2 to 88.1) 79.4 (79.1 to 79.6)	65.4 (63.4 to 67.4) 52.9 (52.5 to 53.2)	-21.2 (-23.4 to -19.1) -26.5 (-26.9 to -26.2)	0.001 0.001	5.3 (3.1 to 7.5)	22.8	0.0
Males ²								
Partial sick leave Full sick leave	490 26 507	86.6 (84.0 to 89.1) 80.3 (80.0 to 80.7)	62.7 (59.0 to 66.5) 50.2 (49.7 to50.7)	-23.9 (-27.9 to -19.9) -30.1 (-30.7 to -29.6)	0.001 0.001	6.3 (2.3 to 10.3)	9.3	0.0
emales ²								
Partial sick leave Full sick leave	1 195 29 889	85.4 (83.7 to 87.0) 78.6 (78.2 to 78.9)	66.9 (64.6 to 69.3) 55.2 (54.7 to 55.7)	-18.4 (-21.0 to -15.9) -23.4 (-23.9 to -22.9)	0.001 0.001	4.9 (2.4 to 7.5)	14.2	0.0
6-34 vears ¹								
Partial sick leave Full sick leave	210 10 759	89.3 (85.8 to 92.8) 84.6 (84.1 to 85.1)	75.5 (70.2 to 80.9) 66.1 (65.3 to 66.8)	-13.8 (-19.6 to -8.0) -16.6 (-20.8 to -12.5)	0.001 0.001	2.8 (-1.1 to 10.6)	2.5	0.1
85-44 vears ¹								
Partial sick leave Full sick leave	424 11 177	84.7 (81.9 to 87.5) 78.4 (77.9 to 79.0)	68.1 (64.2 to 72.0) 59.8 (59.1 to 60.5)	-16.6 (-20.8 to -12.5) -18.6 (-19.4 to -17.8)	0.001 0.001	2.0 (-2.2 to 6.2)	0.9	0.3
45-54 vears ¹								
Partial sick leave Full sick leave	725 18 659	86.9 (84.7 to 89.0) 77.6 (77.2 to 78.1)	65.7 (62.6 to 68.8) 51.8 (51.2 to 52.4)	-21.1 (-24.4 to -17.9) -25.9 (-26.5 to -25.2)	0.001 0.001	4.7 (1.4 to 8.0)	7.9	0.0
55-65 vears ¹								
Partial sick leave Full sick leave	326 15 811	89.6 (86.3 to 92.9) 78.5 (78.0 to 78.9)	57.0 (52.3 to 61.7) 40.2 (39.5 to 40.8)	-32.6 (-37.7 to -27.5) -38.3 (-39.0 to -37.6)	0.001 0.001	5.7 (0.5 to 10.8)	4.7	0
Musculoskeletal dise	ases ³							
Partial sick leave	598	87.0 (84.8 to 89.3)	60.3 (57.0 to 63.6)	-26.7 (-30.3 to -23.2)	0.001	0.7 (-2.9 to 4.3)	0.14	0.
Full sick leave	20 537	79.7 (79.4 to 80.1)	52.3 (51.7 to 52.9)	-27.4 (-28.0 to -26.8)	0.001			
Mental disorders ³								
Partial sick leave	645	84.6 (82.2 to 87.1)	67.0 (63.8 to 70.3)	-17.6 (-21.3 to -13.9)	0.001	12.8 (9.0 to 16.5)	43.8	0.
full sick leave	14 136	74.6 (74.0 to 75.1)	44.2 (43.5 to 44.9)	-30.4 (-31.1 to -29.6)	0.001			

Table 2. Continued.

		$\mathbf{\wedge}$	Work	participation (%)				
	n	Pre-intervention period (T1) Mean (95%CI)	Post-intervention period (T2) Mean (95%CI)	Post-Pre difference (T2-T1) Mean (95%CI)	р	Difference in differences Mean (95%CI)	F- statistic	p
Traumas ³								
Partial sick leave	132	86.7 (82.0 to 91.3)	68.1 (61.5 to 74.6)	-18.6 (-25.3 to -11.8)	0.001	-3.2 (-10.0 to 3.5)	0.89	0.348
Full sick leave	8 312	82.9 (82.3 to 91.3)	67.6 (66.7 to 68.4)	-15.3 (-16.2 to -14.5)	0.001			
Tumours ³								
Partial sick leave	109	90.6 (85.9 to 95.4)	75.0 (67.4 to 82.5)	-15.7 (-23.5 to -7.9)	0.001	5.3 (-2.6 to 13.2)	1.7	0.190
Full sick leave	3 021	87.2 (86.3 to 88.1)	66.2 (64.8 to 67.6)	-21.0 (-22.4 to -19.5)	0.001	,		
Other diagnostic catego	Other diagnostic categories ³							
Partial sick leave	201	87.4 (83.4 to 91.4)	63.6 (57.8 to 69.4)	-23.8 (-30.0 to -17.6)	0.001	6.2 (-0.05 to 12.5)	3.8	0.052
Full sick leave	10 400	80.2 (79.6 to 80.7)	50.1 (49.3 to 50.9)	-30.0 (-30.9 to -29.2)	0.001		510	0.001

Adjusted for ¹ age, sex, income, diagnosis, occupational group, insurance district, ² age, income, diagnosis, occupational group, insurance district, ³ age, sex, income, occupational group, insurance district.

	Work particip	Dation (%)		
	n (pairs)	Difference in differences Mean (95% CI)	F- statistic	р
All ¹	1 660	9.8 (5.9 to 13.7)	60.8	0.0001
Males ²	489	12.4 (6.9 to 17.9)	28.1	0.002
Females ²	1 171	7.2 (3.1 to 11.4)	34.0	0.0001
16-34 years	209	8.5 (0.5 to 16.6)	9.5	0.002
35-44 years	422	6.7 (0.7 to 12.6)	9.8	0.002
45-54 years	708	11.1 (6.3 to 15.9)	30.3	0.0001
55-65 years	321	12.9 (6.5 to 19.4)	12.2	0.001
Musculoskeletal diseases ³	598	6.3 (1.5 to 11.2)	6.0	0.015
Mental disorders ³	621	18.9 (14.2 to 23.5)	59.9	0.0001
Traumas ³	131	0.3 (-9.3 to 9.9)	0.0	0.99
Tumours ³	109	12.5 (1.8 to 23.2)	5.9	0.016
Other diagnostic categories ³	201	11.1 (3.3 to 18.9)	7.6	0.006

Table 3. Comparison of work participation (%) between partial and full sick leave group (GLM repeated measures design) in the PS-matched subsample.

Adjusted for

¹ age, sex, income, diagnosis, occupational group, insurance district, ² age, income, diagnosis, occupational group, insurance district,

³ age, sex, income, occupational group, insurance district.

APPENDIX

Table 1. Characteristics of participants in partial and full sick leave group at the time of intervention (n, %). Propensity score-matched subsample (n=1660 pairs).

	Partial sick leave	Full sick leave
Female (%)	1 171 (70.5)	1 171 (70.5)
Age (years) Mean (95% CI)	46.1 (45.7 to 46.5)	46.0 (45.5 to 46.5)
Annual gross income (€) Mean (95% CI)	27 302 (26 754 to 27 850)	26 274 (25 637 to 26 910)
Diagnostic categories (%)		
Mental disorders	621 (37.4)	621 (37.4)
Musculoskeletal diseases	598 (36.0)	598 (36.0)
Tumours	109 (6.6)	109 (6.6)
Traumas	131 (7.9)	131 (7.9)
Other	201 (12.1)	201 (12.1)
Occupational branch (%)		
Technical and scientific work etc.	178 (10.7)	223 (13.4)
Social and healthcare services	492 (29.6)	402 (24.2)
Administration and office work	281 (16.9)	230 (13.9)
Commercial work	112 (6.7)	137 (8.3)
Agriculture and forestry	490 (3.0)	71 (4.3)
Transport	58 (3.5)	79 (4.8)
Industrial and construction work, mining	300 (18.3)	301 (18.1)
Service work	190 (11.4)	217 (13.1)
Insurance district (%)		
Northern	206 (12.4)	234 (14.1)
Western	253 (15.2)	221 (13.3)
Eastern	188 (11.3)	258 (15.5)
South-Western	392 (23.6)	347 (20.9)
Southern	621 (37.4)	600 (36.1)
Number of unemployment days. T1		
Mean (95% CI)	2.8(1.8 to 3.8)	3.6(2.5 to 4.6)
	2.0 (1.0 to 5.0)	5.0 (2.5 to 1.6)
Number of full sick leave days, T1		
Mean (95% CI)	17.0 (15.3 to 18.7)	17.9 (16.0 to 19.9)
Number of rehabilitation days T1		
Mean (95% CI)	1.7 (0.9 to 2.5)	1.6 (0.8 to 2.4)
Work participation, T1		
Mean (95% CI)	94.1 (93.6 to 94.7)	93.7 (93.0 to 94.3)
	5 (55.6 6 54.7)	

Figure. Schematic presentation of the study design and difference-in-differences method. (T1 corresponds to pre-intervention period, T2 corresponds to post-intervention period).

BMJ Open

Effectiveness of introduction of new legislation of partial sickness benefit on work participation: A quasi-experiment in Finland

Journal:	BMJ Open
Manuscript ID:	bmjopen-2014-006685.R1
Article Type:	Research
Date Submitted by the Author:	18-Nov-2014
Complete List of Authors:	Kausto, Johanna; Finnish Institute of Occupational Health, Viikari-Juntura, Eira; Finnish Institute of Occupational Health, Virta, Lauri; Social Insurance Institution, Gould, Raija; Finnish Centre for Pensions, Koskinen, Aki; Finnish Institute of Occupational Health, Solovieva, Svetlana; Finnish Institute of Occupational Health,
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology
Keywords:	partial sick leave, sick leave, work disability, population registers

1 2	1	EFFECTIVENESS OF INTRODUCTION OF NEW LEGISLATION OF
3	2	PARTIAL SICKNESS BENEFIT ON WORK PARTICIPATION: A QUASI-
5	3	EXPERIMENT IN FINLAND
6 7		
8	4	
9 10	6	
11	7	
12	8	
14	9	Johanna Kausto ¹ , Eira Viikari-Juntura ¹ , Lauri J Virta ² , Raija Gould ³ , Aki Koskinen ¹ , Svetlana
15	10	Solovieva ¹
17	11	
18	12	
19 20	13	¹ Finnish Institute of Occupational Health, Helsinki, Finland
21	14	² The Social Insurance Institution of Finland (SII), Turku, Finland
22 23	15	³ Finnish Centre for Pensions, Helsinki, Finland
24	16	
25 26	17	
27	18	johanna.kausto@ttl.fi
28	19	<u>eira.viikari-juntura@ttl.fi</u>
29 30	20	lauri.virta@kela.fi
31	21	raija.gould@etk.fi
32 33	22	aki.koskinen@ttl.fi
34	23	svetlana.solovieva@ttl.fi
35 36	24	
37	25	
38 39	26	Corresponding author:
40	27 28	Johanna Kausto, Topeliuksenkatu 41 aA.
41 42	29	00250 Helsinki, Finland
43	30 31	Tel.: +358 30 474 2509 E-mail: johanna kausto@ttl_fi
44 45	32	
45 46	33	
47	34	
48 49	35	Word count: 4165
50	36	Number of tables: 3
51 52	37	Number of figures: 1
53	38	
54 55	39	
56	40	
57 58	41	
59		
60		1

42 Abstract

Objectives To examine the effect of new legislation on partial sickness benefit on subsequent
work participation of Finns with long-term sickness absence. Additionally, we investigated
whether the effect differed by sex, age, or diagnostic category.

Design A register-based quasi-experimental study compared the intervention (partial sick leave) group with the comparison (full sick leave) group regarding their pre-post differences in the outcome. The pre-intervention and post-intervention-period each consisted of 365 days. Setting Nationwide, individual-level data on the beneficiaries of partial or full sickness benefit in 2008 were obtained from national sickness insurance, pension and earnings registers. **Participants** 1738 persons in the intervention and 56754 persons in the comparison group. **Outcome** Work participation, measured as the proportion (%) of time within 365 days when participants were gainfully employed and did not receive either partial or full ill-health-related

55 or unemployment benefits.

Results Although work participation declined in both groups, the decline was 5% (absolute difference-in-differences) smaller in the intervention than in the comparison group, with a minor sex difference. The beneficial effect of partial sick leave was seen especially among those aged 45 to 54 (5%) and 55 to 65 (6%) and in mental disorders (13%). When the groups were rendered more exchangeable (propensity score-matching on age, sex, diagnostic category, income, occupation, insurance district, work participation, sickness absence, rehabilitation periods and unemployment prior to intervention and their interaction terms), the effects on work participation were doubled and seen in all age groups and in other diagnostic categories than traumas.

Conclusions The results suggest that the new legislation has potential to increase work
66 participation of the population with long-term sickness absence in Finland. If applied in a larger
67 scale, partial sick leave may turn out to be a useful tool in reducing withdrawal of workers
68 from the labor market due to health reasons.

1 2 3	72 73	Article Summary
4 5 6	74 75 76	Strengths and limitations of the study:
7 8	77	Applying nationally representative population register-based data with valid information
9	78	on the payment of health- and unemployment-related allowances in Finland.
10 11	79	
12	80	 Applying a quasi-experimental study-design with difference-in differences and
13 14	81	propensity score analysis to control for selection on both observed and unobserved
15	82	factors.
16 17	83	
18	84	 Registers provided only a limited number of background characteristics.
19	85	
20 21 22 23 24 25 26 27 28 29 31 23 34 35 37 39 41 23 44 56 78 90 12 33 45 67 89 01 23 45 55 55 55 55 55 55 55 55 59	86	
52 53 54 55 56 57 58 59 60		

87 Introduction

The need to increase work participation of working age people is currently a matter of concern in many Western countries. In Finland, delayed or lacking labor market attachment of young people, absence from work during later years and early exit from labor market have all raised alarm. To counteract these trends, an active labor market policy has been adopted, including the introduction of partial social security benefits and other tools to increase the so called flexicurity of the labor market [1]. In Finland, legislation on partial sickness benefit was introduced in 2007. The new benefit allowed for the first time to combine part-time sick-leave with part-time work.

The Finnish social insurance is based on the Nordic Model. Everyone who is aged from 16 to 67, non-retired and living permanently in the country (employees, self-employed, students, unemployed job seekers and those on sabbatical or alternation leave) and also nonresidents working for at least four months in Finland are covered by statutory sickness insurance. The sickness allowances are financed by employers, employees and the state and they are administrated by the Social Insurance Institution of Finland (SII). Statutory benefits can rest on previous earnings or benefits or the minimum allowance can be granted. For the earnings-related occupational sickness benefits, a minimum of three months of employment is required.

At present, the Finnish national sickness benefit scheme includes a full and a partial sickness benefit. A medical certificate is an absolute requirement for the two sickness benefits to be granted. In order to be eligible for the partial benefit an employee has to be eligible for a full benefit as well, but according to medical judgment partial return to work is safe enough. Partial sick leave is thus alternative to full sick leave and it is always medically certified. During the first years after introducing the partial sickness benefit in Finland, a partial sick leave had to be directly preceded by a period of full sick leave of at least 60 days and the partial sickness benefit could be granted from a minimum of 12 to a maximum of 72 working days. During partial sick leave, work time and salary are reduced by 40 – 60% of the regular work hours and work tasks can be modified if necessary. The employee and the employer sign a fixed term

1 2	117	
3 4	118	work contract for the part-time work. In Finland, the use of partial sick leave is voluntary for
5 6 7 8 9 10 11 12 13 14	119	the individual. The employer, as well, is entitled to decline the use of the benefit in case the
	120	work arrangements needed at the work place are not feasible.
	121	
	122	Sickness absence rates are in many countries higher among women compared with men [2].
	123	Also partial sick leave has been more frequently used by women [3]. It is known that sickness
15 16	124	absence increases with age [2]. It is also recognized that challenges of return to work are
17 18	125	different for example in musculoskeletal diseases and mental disorders. In the latter category,
19 20	126	the outflow from disability benefits due to recovery has been lower [4].
21 22	127	
23 24	128	The current evidence on the effects of partial sick leave on return to work or work participation
25 26	129	is partly inconsistent. In the other Nordic countries, partial sick leave has been found to
27 28 29 30 31 32 33 34	130	increase the likelihood of return to regular working hours [5, 6] and to be associated with
	131	higher subsequent employment rate [7]. No effect of active sick leave (return to work to
	132	modified duties) on the average number of sick leave days or long-term disability was detected
	133	in a Norwegian cluster randomized controlled trial [8]. There is some discrepancy in the
35 36	134	findings on the effectiveness of partial sick leave in mental disorders. A Danish study [9] found
37 38	135	no effect, whereas a Swedish study [10] reported a weak effect of partial sick leave on full
39 40	136	recovery in the beginning of work disability due to mental disorders and a stronger effect when
40 41 42	137	partial sick leave was assigned after 60 days of full sick leave.
42 43	138	
44 45	139	In a randomized controlled trial among persons with musculoskeletal disorders we found that
46 47	140	early part-time sick leave predicted faster sustained return to work than full sick leave [11].
48 49	141	The beneficial effect of partial sick leave on work retention was also observed at population
50 51	142	level [12, 13]. Partial sick leave was associated in the short term with decreased work
52 53	143	retention, in terms of increased subsequent sickness absence. In the long-term it was
54 55	144	associated with increased work retention, in terms of increased subsequent use of partial
56 57	145	disability pension and decreased use of full disability pension. These findings imply the
58 59 60	146	necessity to use an outcome that simultaneously accounts for different indicators of work

participation. Some of these previous observational studies have suffered from limited data samples and narrow generalizability of findings [5, 9], self-reported data [9], and incomprehensive operationalization and measurement of work participation [5, 6, 10, 12, 13].

In order for policy makers to be able to make well informed decisions in the area of social and health policies, scientific evaluation of the effectiveness of population level interventions, e.g. introducing new legislation or policy change is needed [14]. Natural or quasi-experiments have successfully been used in connection with various population level interventions in the field of public health when planned experimentation, i.e. manipulation of exposure, has not been possible [15]. In the field of work disability research, this approach has, however been rare [2].

This study examined the effects of the new Finnish legislation that enabled the use of partial sickness benefit on subsequent work participation. For this we compared beneficiaries of partial sickness benefit with those receiving full sickness benefit a year after the law on partial sick leave was enacted. We utilized a quasi-experimental design with an integrated measure of work participation. Analyses were carried out in an individual-level register-based data representative of the Finnish working population with long-term sickness absence. We examined whether the effects of partial sick leave on subsequent work participation differed by sex, age, or diagnostic category of the benefit receivers.

169 Methods

171 Study design and setting

The population level intervention of interest in this study was the introduction of partial sick leave in Finland in 2007. We conducted a quasi-experimental study following recent guidelines on evaluating population health interventions [15]. This design was chosen to minimize the effect of both measured and unmeasured confounding. We compared the intervention (partial sick leave) group with the comparison (full sick leave) group regarding their pre-post

Page 7 of 49

1

BMJ Open

2	177	differences in work participation. The pre-intervention (T1) and post-intervention (T2) study
3 4	178	period each consisted of 365 days. A wash-out-period of one year was set pre and post
5 6	179	intervention (Figure 1) in order to obtain a robust effect of the intervention on work
7 8	180	participation. These time-windows were allowed to move according to the timing of the
9 10	181	individual's sick leave period.
11 12	182	
13 14	183	<figure 1=""></figure>
15 16	184	
17 18	185	Individual-level data were derived from the national sickness insurance register of the SII and
19 20	186	the pension and earnings registers of the Finnish Centre for Pensions. Data from these three
21 22	187	registers were linked on the basis of social security numbers of the participants. The social
23 24	188	insurance register provided information on all medically certified and compensated sickness
25 26	189	absence spells, temporary and permanent national disability pensions, and old age pensions in
27 28	190	Finland. The registers of the Finnish Centre for Pensions contained information on employment
29 30	191	periods, earnings-related pensions and unsalaried periods due to disability, rehabilitation or
31 32	192	unemployment. Written consent from the individuals was not needed as only encrypted
33 34	193	register data were obtained by the researchers carrying out the analyses in the Finnish
35 36	194	Institute of Occupational Health.
37 29	195	
30 39	196	Participants
40 41	197	Participants that were granted a partial sickness benefit (intervention group) were compared
42 43	198	with those who received a full sickness benefit (comparison group). A total sample of
44 45	199	individuals who had received either partial sickness benefit ($n = 1.838$) or full sickness benefit
46 47	200	$(n = 67\ 086)$ in 2007 - 2008 and whose compensated sickness absence period had ended
48 49	201	between 1 January and 31 December 2008 was drawn from the national sickness insurance
50 51	202	register. Since a full time sickness absence of 60 working days had to precede partial sick
52 53	203	leave, only those with full sick leave ending with an uninterrupted period of at least 60 days of
54 55	204	payment of the benefit were included in the total sample. Thus, in our sample, receivers of full
56 57	205	sickness benefit had not received partial sickness benefit, but they would have been entitled to
58 59 60	206	it as for the length of the preceding full time sickness absence.

Since eligibility for a partial sickness benefit required a prior work contract, we excluded from the analyses those who did not have any employment periods (n=2 and n=4 923) during the entire study period. We additionally excluded those who had died (n=24 in the partial sick)leave group and n=2600 in the full sick leave group) or moved to old age pension (n=1 and n=354, respectively), had not turned 16 at the time of the first data collection period (T1) (n=3) or whose sickness absence periods (ending in 2008) extended beyond the time-frame of data collection (n=66 and n=1 024). The final sample included 1 738 participants in the partial sick leave group and 56 754 participants in the full sick leave group. We focused our analyses in the four main diagnostic groups in which partial sickness benefit has most frequently been used, i.e. musculoskeletal diseases, mental disorders, traumas and tumors (M, F, S and T, and C and D-categories in ICD-10, respectively). All other diagnoses were merged in one group.

Outcome measure

Work participation was operationalized as the time the individuals were likely to have actually participated in gainful employment. It was approximated as the proportion (%) of time within 365 days when participants had an employment contract and did not receive either partial or full ill-health-related benefits (sickness benefits, rehabilitation allowances, disability pensions) or unemployment benefits. Work participation was calculated for T1 and T2. It was assumed that when receiving partial benefits, the participants worked half of the work time (which is typically the case in Finland).

Covariates

Data on sex, dates of birth and death, insurance district (region), annual gross income in 2007, diagnostic codes (ICD-10), and occupational branch were obtained from the sickness insurance register. Information on occupation was available for all participants in the intervention group and for a random sample of 7.7% of the participants in the comparison group.

Page 9 of 49

BMJ Open

1 2 3	235	Data analyses
4 5 6 7 8 9 10 11 2 13 4 15 6 7 18 9 20 1 22 3 24 5 6 7 8 9 10 11 2 13 4 15 6 7 18 9 20 1 22 3 24 5 26 7 28 9 30 1 32 3 34 35 6 37 38 9 4 1 4 2 4 3 4 4 5 4 6 4 7 4 8 9 5 1 5 2 5 3 4 5 5 5 6 5 7 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	236	The distributions of all variables were compared between the total full sickness benefit group
	237	$(n = 67\ 086)$ and the subsample of those participants in the full sickness benefit group for
	238	whom the registers provided information on occupational branch ($n = 4$ 347). Since no
	239	differences in the distributions were detected, we assumed that information on occupational
	240	branch was missing at random. Multiple imputation was used to compensate for the missing
	241	data on occupational branch in the comparison group. For this, we generated multiple imputed
	242	data sets $(n=10)$ using the <i>proc mi</i> of SAS. The imputation model included all covariates.
	243	
	244	Propensity score with 1:1 matching was used to match individuals on the probability that they
	245	would belong to the intervention (partial sick leave) group. Individuals that were matched to
	246	each other had equal or nearly equal (close enough) estimated propensity scores.
	247	
	248	Difference-in differences- (DID-) and propensity score- (PS-) analyses are methods that are
	249	complementary to each other and can be applied in causal inference to counter selection bias
	250	and confounding [16]. We applied the DID method alone and in combination with PS-
	251	matching. Combining methods to counter bias and confounding from different sources and
	252	comparing the results has been encouraged [15]. The DID-method can be applied to control
	253	for fixed unobserved individual differences and common trends.
	254	
	255	The DID-method allows one to estimate the difference in pre-post, within subject, differences
	256	between the intervention and the comparison group. The effect of partial sick leave on work
	257	participation was consequently estimated as the difference in pre-post-differences (differences
	258	between T2 and T1) between partial and full sick leave groups. The effect was estimated using
	259	general linear model with repeated measures design. F-statistic for the interaction term
	260	between the group assignment and change of work participation in time was applied as the
	261	difference-in-differences statistic.
	262	
	263	Propensity score is defined as conditional probability of being exposed to a certain intervention
59 60	264	given observed covariates [15, 17, 18]. It is applied to balance the covariates in two groups
2	265	and thus to reduce bias. We computed PS (i.e. probability of being exposed to partial sick
----------------	-----	--
3 4	266	leave) by logistic regression for all participants. The following set of variables and their
5 6	267	interaction terms were included in the logistic regression model: age, sex, diagnostic category,
7 8	268	income, occupation, insurance district, and work participation, sickness absence, rehabilitation
9 10	269	periods and unemployment at T1. The best fit model was chosen.
11 12	270	
13 14	271	Thereafter we matched the partial sick leave and full sick leave groups on the estimated
15 16	272	propensity score using local optimal (greedy) algorithm [19]. The matching was performed
17 18	273	within (sex x diagnostic category)-strata. Subsequently DID-analysis was also carried out in
19 20	274	the matched subsample.
21 22	275	
23 24	276	Several sensitivity analyses were carried out. The analyses were run separately for participants
25 26	277	for whom the registers provided information on occupational branch and for the total sample in
27	278	which imputed data on occupational branch were utilized for the comparison group. To
20 29 20	279	examine the group difference in work participation at T1 (due to unemployment or sick leave)
30 31	280	as source of reduced group comparability, the analyses were carried out separately among
32 33	281	participants who did not receive unemployment benefits at T1 and among participants with
34 35	282	100% of work participation at T1.
36 37	283	
38 39	284	
40 41	285	Results
42 43		
44 45	286	Descriptive characteristics of the study population
46 47	287	Information on the background characteristics of the intervention and comparison group in the
48 49	288	total analysed sample is shown in Table 1. Women constituted 71% of the partial sick leave
50 51	289	group and 53% of the full sick leave group. The partial benefit was most common among those
52 53	290	who were aged between 35 and 54, whereas the full benefit among those aged from 45 to 65.
54 55	291	The income level of those in the partial sick leave group was higher than of those in the full
56 57	292	sick leave group. The partial sickness benefit was most often used in connection with mental
58 59 60	293	disorders and musculoskeletal diseases, while the full benefit was most often used in

Page 11 of 49

1 2	294	musculoskeletal diseases. The use of the partial benefit was most frequent in social and
3 4	295	healthcare services and administrative and office work, whereas the full benefit was most
5 6	296	commonly used in industrial and service work. No large regional differences in the use of the
7 8	297	benefits were detected.
9	298	
11	299	<table 1=""></table>
12	300	
14 15	301	Difference-in-differences in work participation between partial and full sick leave group
16 17 18	302	
19 20	303	In both groups the level of work participation decreased during the follow up, the absolute
20 21 22	304	reduction being larger in the full sick leave group (-26.5%) compared with the partial sick
22	305	leave group (-21.2%) (Table 2). The absolute overall difference-in-differences in work
24 25	306	participation was 5.3% (95% CI 3.1% to 7.5%).
26 27	307	
28 29	308	The difference-in-differences in work participation tended to be larger in men than in women.
30 31	309	In all age categories, work participation declined more in the full than in the partial sick leave
32 33	310	group. The difference in the decline was significant in age-categories 45-54 and 55-65. There
34 35	311	was no effect in those aged 35-44. In the youngest age category (16-34 years) the difference-
36 37	312	in-differences was large but statistically non-significant.
38 39	313	
40 41	314	A statistically significantly larger effect (12.8% 95% CI 9.0% to 16.5%) was found in mental
42 43	315	disorders compared with the other diagnostic categories.
44 45	316	
46 47	317	<table 2=""></table>
48 49	318	
50 51	319	The results found in the subsample of participants for whom the registers provided information
52 53	320	on occupational branch were very similar to those in the total sample (data not shown). The
54 55	321	exclusion of the participants who received unemployment benefits at T1 led to an absolute
56 57	322	increase in the difference-in-differences in work participation (DID 7.6%, 95% CI 5.4% to
58 59 60	323	9.7%). The difference-in- differences in work participation increased further (DID 9.5%, 95%
00		11 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	324	CI 6.8% to 12.1%) when participants with reduced work participation (for any reason) at T1
3 4 5	325	were excluded from the analyses.
6	326	
7	327	
9	328	Difference-in-differences in work participation in the propensity score-matched subsample
10 11	329	
12 13	330	The matching procedure resulted in a total of 1 660 matched pairs of participants. The
14 15	331	propensity score matched partial sickness benefit receivers did not differ from full sickness
16 17	332	benefit receivers with regard to age, gross income, number of unemployment days, sickness
17	333	absence days, rehabilitation days or work participation at T1. There were some differences
19 20	334	between the groups in the distribution of occupational branches and insurance districts
21 22	335	(Appendix Table 1).
23 24	336	
25 26	337	The results from the DID-analysis in the PS-matched subsample are presented in Table 3. The
27 28	338	absolute overall difference-in-differences was increased to 9.8% (95% CI 5.9 to 13.7). A
29 30	339	tendency for a larger DID in men than in women was also found in this subsample. The DID
31 32	340	was still largest in those participants aged over 45 years, but in contrast to the total sample an
33 34	341	effect was seen in the younger age categories as well. Differences between the diagnostic
35 36	342	categories were reduced as compared to the total sample. The largest effect was still found in
37 38	343	mental disorders. In addition, a statistically significant DID was also found in musculoskeletal
39 40	344	diseases and tumours. Further adjustment for the differences in the distribution of occupation
41 42	345	and insurance district between the intervention and comparison group, had no effect on the
43 44	346	results of the DID-analysis.
45 46	347	
47 48	348	
49 50	349	< Table 3>
51 52	350	
52 53	351	
54 55		
56 57		
58		
59 60		
		12 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Discussion

Principal findings

We applied a quasi-experimental design to study the population level effects of the introduction of partial sickness benefit in Finland among a working population with long-term sickness absence. It was found that partial sick leave had a positive effect on work participation. Although the overall work participation declined from T1 to T2, at the population level the decline was 5% (absolute difference) smaller among the receivers of partial sickness benefit (intervention group) than among the receivers of full sickness benefit (comparison group). The beneficial effect of partial sick leave was seen especially among those aged from 45 to 54 and 55 to 65 and in mental disorders. No major sex difference was detected. When the groups were rendered more exchangeable, the effect on work participation was doubled, and effects were seen in other diagnostic categories than traumas and all age groups. Validity of the study An observational quasi-experimental study design can be applied to assess the effects of a planned event or intervention, when randomized controlled trials are not ethical or feasible. Observational studies can also better simulate real-world settings and offer more relevant

information in view of policy-making [20]. The internal validity of observational studies is lower

than that of randomized controlled trials due to possible selection according to exposure. For this reason, an analytical approach called potential outcomes or counterfactual framework was chosen. The term refers to the fact that in an ideal situation the exposed would be compared

to themselves when unexposed. Since this comparison is impossible, we need a comparable or

exchangeable comparison group. We utilized two methods (DID and PS) that have been

previously recommended and applied to control for selection on both observed factors and

unobserved fixed factors [15, 20, 21].

In the DID- method, it is assumed that the unobserved characteristics in the studied groups are stable and that the outcomes would change identically in these groups in the absence of intervention. Consequently, the intervention and comparison groups should be identical, except for the intervention status. However, it is sufficient that the groups are closely, though not exactly, similar [15]. We included in the comparison group only participants who would have been entitled to partial sickness benefit as for the length of the preceding sickness absence. We also applied a short wash-out period, to minimize the intragroup differences between the two time points. However, as full information on the eligibility of the participants for partial sickness benefit was not available in the registers (e.g. severity of the health problem and degree of remaining workability), we utilized matching on PS to further increase the exchangeability of the groups. Moreover, at the time of the study, the national rates in sickness absence were rather stable. The unemployment rate in Finland was relatively low during the intervention in 2008 (6.4%), however the rates were similar at T1 (7.7%-8.4%) and T2 (7.8%-8.4%).

We utilized nationwide population data with comprehensive individual-level register-based information on ill-health- and unemployment-related absences from work. Personal identification (social security) numbers enabled linking information from three separate source registers. These registers have originally been established for administrative purposes, but the data can also be used for research [22]. Among the advantages of register-based studies is a low likelihood of selection and attrition bias. The source registers of this study provided valid information on the receivers and payment days of the benefits. A weakness of the registers is that they typically provide only a limited number of background characteristics of the participants and other covariates. The process of assignment to partial sick leave is not random. Most likely it is complex and it is affected by many actors (the patient, physician, employer, and workplace) for which information cannot be found in the national registers. Nevertheless, the factors that were included in the analyses have earlier been found to be important predictors of the use of health-related social security benefits and also associated with work disability and return to work.

BMJ Open

Information on diagnoses for sickness benefits was as well retrieved from registers and was based on medical assessment. In case of a long-term sickness absence (lasting more than 60 days) in Finland, the sickness benefit is paid in shorter periods, each being covered with a separate medical certificate. Diagnostic codes are transferred from these certificates to the administrative registers. We used the latest (and presumably the most accurate) diagnostic code provided for each long-term sickness absence in 2007-2008. Data on occupational branch had to be imputed for the majority of participants in the comparison group. Nevertheless, the sensitivity analyses suggested that using imputed data on occupation did not affect the results. In contrast to earlier studies on the topic, work participation was approximated in the current study by taking simultaneously into account the rate of different ill-health- and unemployment-related benefits. We operationalized work participation as proportion of time within a year not receiving ill-health related or unemployment benefits. Hence we had a relatively comprehensive indicator of the availability of the participants for the labour market. Results in relation to earlier findings The overall results of this study are congruent with earlier findings, indicating positive effects of partial sick leave on return to work and work retention [5-7, 12]. We found that partial sick leave had a positive effect on future work participation especially in mental disorders, but the results of the analyses in the subgroup suggested that the overall effect in the total sample might be underestimated. Our findings on the usefulness of partial sick leave in mental disorders, though not directly comparable, are congruent with a study showing beneficial effects of partial sick leave on RTW

in mental disorders after 60 days of full sick leave [10], but differ from an earlier study

436 reporting no effect [9]. The literature suggests that returning and continuing at work may be

437 more challenging for those with mental disorders than with somatic problems (e.g.

438 musculoskeletal diseases) [23-25]. In addition, the outflow from disability benefits due to

439 recovery has been lower among those with mental disorders than with musculoskeletal

diseases [4]. However, in our previous study we found an effect of partial sick leave on work disability pension in both diagnostic categories, the effect tending to be larger in mental disorders than in musculoskeletal diseases [12]. The diagnostic groups of musculoskeletal diseases and mental disorders may differ in the degree of comparability of the partial and full sick leave groups with regard to the background characteristics, severity of the health problem and remaining work ability, number of sickness absences as well as in transition to rehabilitation and unemployment. When the exchangeability of the groups was increased with propensity score matching, a beneficial effect on work participation was detected also in persons with musculoskeletal diseases and those with tumours. Sickness absence is known to increase with age [26]. In addition, it has been found that return to work after long-term sickness absence is less likely at higher ages [27, 28]. Partial sick leave was found to be most frequently used and also most effective among middle-aged and older workers. It may well be that work arrangements associated with partial sick leave are more easily implemented by employees in a more established or stable work situation. Conclusions The overall results of the effectiveness of partial sick leave on work participation suggest that the new legislation on partial sickness benefit introduced in 2007 has potential to increase work participation of the working population with long-term sickness absence in Finland. A positive effect was seen especially in mental disorders. In the future - if applied in a larger scale – partial sick leave may turn out to be an effective tool in reducing temporary and permanent withdrawal of workers from the labour market due to health reasons.

1 2	470	Contributors: JK, SS, EVJ, LJV and AK designed the study. All authors were involved in data
3 4	471	collection. JK, SS and AK conducted the analyses, all contributed to the interpretation of the
5 6	472	results and JK, SS and EVJ drafted the manuscript. All authors accepted the final version of the
7 8	473	manuscript.
9 10	474	
11 12	475	Funding: The study received financial support from the Social Insurance Institution of Finland
13	476	(grant no: 67/26/2011)
14 15 16	477	
17	478	Competing interests: Authors declare having no competing interests.
18	479	
20 21	480	Ethical approval: Ethical approval was not necessary as only encrypted data were analysed.
22 23	481	
24 25	482	Data sharing: No additional data available.
26 27	483	
28 29	484	Figure legend
30 31	485	Figure 1. Schematic presentation of the study design and difference-in-differences method. (T1
32 33	486	corresponds to pre-intervention period, T2 corresponds to post-intervention period).
34 35	487	
36 37	488	
38 39	489	
40 41	490	
42	491	
43 44 45	492	
45 46	493	
47 48	493	
49 50	495	
51 52	496	
53 54	490	
55 56	102	
57 58	490	
59 60	ענא	
$\begin{array}{c} 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 90\end{array}$	484 485 486 487 488 490 491 492 493 494 495 495 496 497 498 499	Figure 1. Schematic presentation of the study design and difference-in-differences method. (T) corresponds to pre-intervention period, T2 corresponds to post-intervention period).

2	500		
3			
4	501		
5			
6	502	Refe	rences
7			
8	503	1.	Philips , E.R., Alloja J, Krillo K, Lauringson A, Approaches to flexicurity: EU-models. 2007,
ğ	504	-	European foundation for the improvement of living and working conditions.
10	505	2.	OECD, Sickness, Disability and Work: Breaking the Barriers: A Synthesis of Findings across OECD
11	500	2	Countries, OECD Publishing. 2010.
12	508	5.	countries Scand 1 Work Environ Health 2008 34 (4): n 239-49
12	500	4	OFCD Sick on the job? Myths and Realities about Mental Health and Work in Mental health and
13	510	т.	Work., 2012, OECD Publishing.
14	511	5.	Andren, D. and M. Svensson, Part-time sick leave as a treatment method for individuals with
15	512		musculoskeletal disorders. Journal of occupational rehabilitation, 2012. 22(3): p. 418-26.
16	513	6.	Hogelund, J., A. Holm, and J. McIntosh, Does graded return-to-work improve sick-listed workers'
17	514		chance of returning to regular working hours? Journal of health economics, 2010. 29(1): p. 158-
18	515		69.
19	516	7.	Markussen, S., A. Mykletun, and K. Roed, The case for presenteeism - Evidence from Norway's
20	51/	0	sickness insurance program. Journal of Public Economics, 2012. 96 (11-12): p. 959-972.
21	518	δ.	Scheel, I.B., et al., Blind faith? The effects of promoting active sick leave for back pain patients: a
22	520	٩	Hogelund 1 A Holm and LE Enloy The effect of part-time sick leave for employees with
23	520	5.	mental disorders. The journal of mental health policy and economics 2012 15 (4): p. 157-70
24	522	10.	Andren, D., Does part-time sick leave help individuals with mental disorders recover lost work
25	523		<i>capacity?</i> J Occup Rehabil, 2014. 24 (2): p. 344-60.
26	524	11.	Viikari-Juntura, E., et al., Return to work after early part-time sick leave due to musculoskeletal
27	525		disorders: a randomized controlled trial. Scandinavian journal of work, environment & health,
28	526		2012. 38 (2): p. 134-43.
29	527	12.	Kausto, J., et al., Partial sick leave associated with disability pension: propensity score approach
30	528	10	in a register-based cohort study. BMJ open, 2012. 2(6).
31	529	13.	Kausto, J., et al., Associations between partial sickness benefit and disability pensions: initial
32	530	14	Grimshaw 1 of all Experimental and guari experimental decigns for evaluating guideline
33	532	14.	implementation strategies Family practice 2000 17 Suppl 1 : p S11-6
34	532	15.	Crain, P., et al., Using natural experiments to evaluate population health interventions: new
35	534	101	Medical Research Council guidance. Journal of Epidemiology and Community Health, 2012.
36	535		66 (12): p. 1182-1186.
37	536	16.	Ding, Y.Y., Risk adjustment: towards achieving meaningful comparison of health outcomes in the
38	537		real world. Ann Acad Med Singapore, 2009. 38 (6): p. 552-7.
30	538	17.	D'Agostino, R.B., Jr., Propensity score methods for bias reduction in the comparison of a
40	539	10	treatment to a non-randomized control group. Stat Med, 1998. 17 (19): p. 2265-81.
40	540 E 4 1	18.	Pattanayak, C.W., D.B. Rubin, and E.R. Zell, Propensity score methods for creating covariate
41	541	10	Coca-Derraillon M Local and global optimal propensity score matching SAS Global Forum
42 10	543	1).	
43	544	20.	Remler, D.K. and G.G. Van Ryzin, Research Methods in Practice. Strategies for Description and
44	545		Causation. 2011: SAGE Publications, Inc. 616.
40	546	21.	Gebel, M. and J. Vossemer, The impact of employment transitions on health in Germany. A
46	547		difference-in-differences propensity score matching approach. Soc Sci Med, 2014. 108: p. 128-
47	548		36.
48	549	22.	Gissler, M. and J. Haukka, Finnish health and social welfare registers in epidemiological research.
49	550	22	Norsk Epidemiologi, 2004. 14 (1): p. 113-120.
50	551	23.	briding, C., et al., work and mental nearly rearning from return-to-work renabilitation programs
51	552		2007. 30 (4-5): n. 444-57.
52	554	24.	Thornicroft, G., et al., Reducing stigma and discrimination: Candidate interventions. International
53	555		journal of mental health systems, 2008. $2(1)$: p. 3.
54	556	25.	van Oostrom, S.H., et al., Development of a workplace intervention for sick-listed employees with
55	557		stress-related mental disorders: Intervention Mapping as a useful tool. BMC health services
56	558		research, 2007. 7 : p. 127.
57	559	26.	Allebeck, P. and A. Mastekaasa, Swedish Council on Technology Assessment in Health Care
58	560		(SBU). Chapter 5. Risk factors for sick leave - general studies. Scandinavian journal of public
59	201		nearth. Supplement, 2004. 63 : p. 49-108.
60			

BMJ Open

562	27.	Steenstra, I.A., Prognostic factors for duration of sick leave in patients sick listed with acute low
563		back pain: a systematic review of the literature. Occupational and Environmental Medicine, 2005.
564		62 (12): p. 851-860.
565	28	Correlius I. R. et al. Prognostic Factors of Long-term Disability Due to Mental Disorders: A

568 Table 1. Characteristics of participants in partial and full sick leave group at the time of

	Partial sick leave n =1738	Full sick leave n = 56 754
Sex (%)	1 236 (71 1)	30.058 (53.0)
T ciliale	1 200 (711)	50 050 (55.0)
Age (years) (%)		10 001 (10 2)
10-34 25 44	217 (12.5)	10 901 (19.2)
45-54	753 (43 3)	11 231 (19.0) 18 740 (33 0)
55-65	338 (19.5)	15 882 (28.0)
Mean (SD)	46.2 (9.0)	45.7 (11.3)
Annual gross income (\mathbf{C})		
- 30,000	1 237 (71.2)	46 119 (81.3)
30 001 - 60 000	409 (23.5)	9 593 (16.9)
60 001 -	39 (2.2)	732 (1.3)
Missing	53 (3.1)	310 (0.5)
Median	24 618	20 668
Diagnostic categories (%)		
Mental disorders	663 (38.2)	14 255 (25.1)
	624 (35.9)	20 613 (36.3)
Traumas	112 (0.4)	3 031 (5.4) 8 416 (14 8)
Other	203 (11.7)	10 439 (18.4)
Insurance district (%)		
Northern	219 (12.6)	7 764 (13.7)
Western	259 (14.9)	7 824 (13.8)
Eastern	194 (11.2)	8 525 (15.0)
South-Western	410 (23.6)	13 254 (23.3)
Southern		
missing	0 (0.0)	58 (0.1)
Occupational branch (%)	(non-imputed subsample $n = 4 347$)
Technical and scientific work	193 (11.1)	409 (9.4)
etc. Social and healthcare services	516 (29 7)	719 (16 5)
Administration and office work	293 (16.9)	413 (9.5)
Commercial work	113 (6.5)	288 (6.6)
Agriculture and forestry	50 (2.9)	214 (4.9)
Transport	60 (3.4)	269 (6.2)
Industrial and construction	309 (17.8)	1 146 (26.4)
Service work	204 (11.7)	889 (20.5)

			Work	participation (%)				
	n	Pre-intervention period (T1) Mean (95%CI)	Post-intervention period (T2) Mean (95%CI)	Post-Pre difference (T2-T1) Mean (95%CI)	р	Difference in differences Mean (95%CI)	F- statistic	p
All ¹								
Partial sick leave Full sick leave	1 685 56 406	86.6 (85.2 to 88.1) 79.4 (79.1 to 79.6)	65.4 (63.4 to 67.4) 52.9 (52.5 to 53.2)	-21.2 (-23.4 to -19.1) -26.5 (-26.9 to -26.2)	0.001 0.001	5.3 (3.1 to 7.5)	22.8	0.001
Males ²								
Partial sick leave Full sick leave	490 26 507	86.6 (84.0 to 89.1) 80.3 (80.0 to 80.7)	62.7 (59.0 to 66.5) 50.2 (49.7 to50.7)	-23.9 (-27.9 to -19.9) -30.1 (-30.7 to -29.6)	0.001 0.001	6.3 (2.3 to 10.3)	9.3	0.002
Females ²								
Partial sick leave Full sick leave	1 195 29 889	85.4 (83.7 to 87.0) 78.6 (78.2 to 78.9)	66.9 (64.6 to 69.3) 55.2 (54.7 to 55.7)	-18.4 (-21.0 to -15.9) -23.4 (-23.9 to -22.9)	0.001 0.001	4.9 (2.4 to 7.5)	14.2	0.001
16-34 vears ¹								
Partial sick leave Full sick leave	210 10 759	89.3 (85.8 to 92.8) 84.6 (84.1 to 85.1)	75.5 (70.2 to 80.9) 66.1 (65.3 to 66.8)	-13.8 (-19.6 to -8.0) -16.6 (-20.8 to -12.5)	0.001 0.001	2.8 (-1.1 to 10.6)	2.5	0.111
35-44 vears ¹								
Partial sick leave Full sick leave	424 11 177	84.7 (81.9 to 87.5) 78.4 (77.9 to 79.0)	68.1 (64.2 to 72.0) 59.8 (59.1 to 60.5)	-16.6 (-20.8 to -12.5) -18.6 (-19.4 to -17.8)	0.001 0.001	2.0 (-2.2 to 6.2)	0.9	0.352
45-54 vears ¹								
Partial sick leave Full sick leave	725 18 659	86.9 (84.7 to 89.0) 77.6 (77.2 to 78.1)	65.7 (62.6 to 68.8) 51.8 (51.2 to 52.4)	-21.1 (-24.4 to -17.9) -25.9 (-26.5 to -25.2)	0.001 0.001	4.7 (1.4 to 8.0)	7.9	0.005
55-65 vears ¹								
Partial sick leave Full sick leave	326 15 811	89.6 (86.3 to 92.9) 78.5 (78.0 to 78.9)	57.0 (52.3 to 61.7) 40.2 (39.5 to 40.8)	-32.6 (-37.7 to -27.5) -38.3 (-39.0 to -37.6)	0.001 0.001	5.7 (0.5 to 10.8)	4.7	0.03
Musculoskeletal dise	ases ³							
Partial sick leave	598	87.0 (84.8 to 89.3)	60.3 (57.0 to 63.6)	-26.7 (-30.3 to -23.2)	0.001	0.7 (-2.9 to 4.3)	0.14	0.712
Full sick leave	20 537	79.7 (79.4 to 80.1)	52.3 (51.7 to 52.9)	-27.4 (-28.0 to -26.8)	0.001			
Mental disorders ³								
Partial sick leave	645	84.6 (82.2 to 87.1)	67.0 (63.8 to 70.3)	-17.6 (-21.3 to -13.9)	0.001	12.8 (9.0 to 16.5)	43.8	0.001
Full sick leave	14 136	74.6 (74.0 to 75.1)	44.2 (43.5 to 44.9)	-30.4 (-31.1 to -29.6)	0.001			

Table 2. Continued.

			Work	participation (%)				
	n	Pre-intervention period (T1) Mean (95%CI)	Post-intervention period (T2) Mean (95%CI)	Post-Pre difference (T2-T1) Mean (95%CI)	р	Difference in differences Mean (95%CI)	F- statistic	р
Traumas ³ Partial sick leave Full sick leave	132 8 312	86.7 (82.0 to 91.3) 82.9 (82.3 to 91.3)	68.1 (61.5 to 74.6) 67.6 (66.7 to 68.4)	-18.6 (-25.3 to -11.8) -15.3 (-16.2 to -14.5)	0.001 0.001	-3.2 (-10.0 to 3.5)	0.89	0.348
Tumours³ Partial sick leave Full sick leave	109 3 021	90.6 (85.9 to 95.4) 87.2 (86.3 to 88.1)	75.0 (67.4 to 82.5) 66.2 (64.8 to 67.6)	-15.7 (-23.5 to -7.9) -21.0 (-22.4 to -19.5)	0.001 0.001	5.3 (-2.6 to 13.2)	1.7	0.190
Other diagnostic cate Partial sick leave Full sick leave	egories ³ 201 10 400	87.4 (83.4 to 91.4) 80.2 (79.6 to 80.7)	63.6 (57.8 to 69.4) 50.1 (49.3 to 50.9)	-23.8 (-30.0 to -17.6) -30.0 (-30.9 to -29.2)	0.001	6.2 (-0.05 to 12.5)	3.8	0.052
		, , ,	(· · · · · · · · · · · · · · · · · · ·					

Adjusted for ¹ age, sex, income, diagnosis, occupational group, insurance district, ² age, income, diagnosis, occupational group, insurance district, ³ age, sex, income, occupational group, insurance district.

BMJ Open

Table 3. Comparison of work participation (%) between partial and full sick leave group (GLM repeated measures design) in the PS-matched subsample.

	Work partici	pation (%)		
	n (pairs)	Difference in differences Mean (95% CI)	F- statistic	р
All ¹	1 660	9.8 (5.9 to 13.7)	60.8	0.0001
Males ²	489	12.4 (6.9 to 17.9)	28.1	0.002
Females ²	1 171	7.2 (3.1 to 11.4)	34.0	0.0001
16-34 years	209	8.5 (0.5 to 16.6)	9.5	0.002
35-44 years	422	6.7 (0.7 to 12.6)	9.8	0.002
45-54 years	708	11.1 (6.3 to 15.9)	30.3	0.0001
55-65 years	321	12.9 (6.5 to 19.4)	12.2	0.001
Musculoskeletal diseases ³	598	6.3 (1.5 to 11.2)	6.0	0.015
Mental disorders ³	621	18.9 (14.2 to 23.5)	59.9	0.0001
Traumas ³	131	0.3 (-9.3 to 9.9)	0.0	0.99
Tumours ³	109	12.5 (1.8 to 23.2)	5.9	0.016
Other diagnostic categories ³	201	11.1 (3.3 to 18.9)	7.6	0.006

Adjusted for

¹ age, sex, income, diagnosis, occupational group, insurance district, ² age, income, diagnosis, occupational group, insurance district, ³ age, sex, income, occupational group, insurance district.

For Deer review only

1 2	1	EFFECTIVENESS OF INTRODUCTION OF NEW LEGISLATION OF
3 4	2	PARTIAL SICKNESS BENEFIT ON WORK PARTICIPATION: A QUASI-
5 6	3	EXPERIMENT IN FINLAND
7	4	
8 9	4	
10 11		
12		
13 14		
15		
16 17		
18		
19 20		
21		
22		
24		
25 26		
27 28		
28 29		
30 31		
32		
33 34		
35		
36 37		
38 20		
39 40		
41 42		
43		
44 45		
46		
47 48		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		

5 Abstract

Objectives To examine the effect of new legislation on partial sickness benefit on subsequent
work participation of Finns with long-term sickness absence. Additionally, we investigated
whether the effect differed by sex, age, or diagnostic category.

Design A register-based quasi-experimental study compared the intervention (partial sick

11 leave) group with the comparison (full sick leave) group regarding their pre-post differences in

12 the outcome. The pre-intervention and post-intervention-period each consisted of 365 days.

Setting Nationwide, individual-level data on the beneficiaries of partial or full sickness benefit

14 in 2008 were obtained from national sickness insurance, pension and earnings registers.

Participants 1738 persons in the intervention and 56754 persons in the comparison group.

Outcome Work participation, measured as the proportion (%) of time within 365 days when

participants were gainfully employed and did not receive either partial or full ill-health-related
or unemployment benefits.

Results Although work participation declined in both groups, the decline was 5% (absolute difference-in-differences) smaller in the intervention than in the comparison group, with a minor sex difference. The beneficial effect of partial sick leave was seen especially among those aged 45 to 54 (5%) and 55 to 65 (6%) and in mental disorders (13%). When the groups were rendered more exchangeable (propensity score-matching on age, sex, diagnostic category, income, occupation, insurance district, work participation, sickness absence, rehabilitation periods and unemployment prior to intervention and their interaction terms), the effects on work participation were doubled and seen in all age groups and in other diagnostic

27 categories than traumas.

Conclusions The results suggest that the new legislation has potential to increase work
participation of the population with long-term sickness absence in Finland. If applied in a larger
scale, partial sick leave may turn out to be a useful tool in reducing withdrawal of workers
from the labor market due to health reasons.

1 2 3	35 36	Article Summary
4 5 6 7	37 38 39	Strengths and limitations of the study:
7 8	40	Applying nationally representative population register-based data with valid information
9	41	on the payment of health- and unemployment-related allowances in Finland.
10	42	
12	43	 Applying a quasi-experimental study-design with difference-in differences and
13 14	44	propensity score analysis to control for selection on both observed and unobserved
15	45	factors.
16 17	46	
18	47	Registers provided only a limited number of background characteristics.
19 20	48	
21	49	
22		
24		
25 26		
27		
28 29		
30		
31 32		
33		
34 25		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49		
50 51		
52		
53		
о4 55		
56		
57 58		
59		
60		

50 Introduction

The need to increase work participation of working age people is currently a matter of concern in many Western countries. In Finland, delayed or lacking labor market attachment of young people, absence from work during later years and early exit from labor market have all raised alarm. To counteract these trends, an active labor market policy has been adopted, including the introduction of partial social security benefits and other tools to increase the so called flexicurity of the labor market [1]. In Finland, legislation on partial sickness benefit was introduced in 2007. The new benefit allowed for the first time to combine part-time sick-leave with part-time work.

The Finnish social insurance is based on the Nordic Model. Everyone who is aged from 16 to 67, non-retired and living permanently in the country (employees, self-employed, students, unemployed job seekers and those on sabbatical or alternation leave) and also nonresidents working for at least four months in Finland are covered by statutory sickness insurance. The sickness allowances are financed by employers, employees and the state and they are administrated by the Social Insurance Institution of Finland (SII). Statutory benefits can rest on previous earnings or benefits or the minimum allowance can be granted. For the earnings-related occupational sickness benefits, a minimum of three months of employment is required.

At present, the Finnish national sickness benefit scheme includes a full and a partial sickness benefit. A medical certificate is an absolute requirement for the two sickness benefits to be granted. In order to be eligible for the partial benefit an employee has to be eligible for a full benefit as well, but according to medical judgment partial return to work is safe enough. Partial sick leave is thus alternative to full sick leave and it is always medically certified. During the first years after introducing the partial sickness benefit in Finland, a partial sick leave had to be directly preceded by a period of full sick leave of at least 60 days and the partial sickness benefit could be granted from a minimum of 12 to a maximum of 72 working days. During partial sick leave, work time and salary are reduced by 40 – 60% of the regular work hours and work tasks can be modified if necessary. The employee and the employer sign a fixed term

Page 29 of 49		BMJ Open					
1	90						
2 3	00 Q1	work contract for the part-time work. In Finland, the use of partial cick leave is voluntary for					
4 5	01	the individual. The employer, as well, is entitled to decline the use of the benefit in case the					
6 7	82	the individual. The employer, as well, is entitled to decline the use of the benefit in case the					
8 9	83	work arrangements needed at the work place are not feasible.					
10 11	84						
12 13	85	Sickness absence rates are in many countries higher among women compared with men [2].					
13	86	Also partial sick leave has been more frequently used by women [3]. It is known that sickness					
15 16	87	absence increases with age [2]. It is also recognized that challenges of return to work are					
17 18	88	different for example in musculoskeletal diseases and mental disorders. In the latter category,					
19 20	89	the outflow from disability benefits due to recovery has been lower [4].					
21 22	90						
23 24	91	The current evidence on the effects of partial sick leave on return to work or work participation					
25 26	92	is partly inconsistent. In the other Nordic countries, partial sick leave has been found to					
27	93	increase the likelihood of return to regular working hours [5, 6] and to be associated with					
20 29 20	94	higher subsequent employment rate [7]. No effect of active sick leave (return to work to					
30 31	95	modified duties) on the average number of sick leave days or long-term disability was detected					
32 33 24	96	in a Norwegian cluster randomized controlled trial [8]. There is some discrepancy in the					
34 35	97	findings on the effectiveness of partial sick leave in mental disorders. A Danish study [9] found					
36 37	98	no effect, whereas a Swedish study [10] reported a weak effect of partial sick leave on full					
38 39	99	recovery in the beginning of work disability due to mental disorders and a stronger effect when					
40 41	100	partial sick leave was assigned after 60 days of full sick leave.					
42 43	101						
44 45	102	In a randomized controlled trial among persons with musculoskeletal disorders we found that					
46 47	103	early part-time sick leave predicted faster sustained return to work than full sick leave [11].					
48 49	104	The beneficial effect of partial sick leave on work retention was also observed at population					
50 51	105	level [12, 13]. Partial sick leave was associated in the short term with decreased work					
52 53	106	retention, in terms of increased subsequent sickness absence. In the long-term it was					
54 55	107	associated with increased work retention, in terms of increased subsequent use of partial					
56 57	108	disability pension and decreased use of full disability pension. These findings imply the					
58 59 60	109	necessity to use an outcome that simultaneously accounts for different indicators of work					
		5					

participation. Some of these previous observational studies have suffered from limited data samples and narrow generalizability of findings [5, 9], self-reported data [9], and incomprehensive operationalization and measurement of work participation [5, 6, 10, 12, 13].

In order for policy makers to be able to make well informed decisions in the area of social and health policies, scientific evaluation of the effectiveness of population level interventions, e.g. introducing new legislation or policy change is needed [14]. Natural or quasi-experiments have successfully been used in connection with various population level interventions in the field of public health when planned experimentation, i.e. manipulation of exposure, has not been possible [15]. In the field of work disability research, this approach has, however been rare [2].

This study examined the effects of the new Finnish legislation that enabled the use of partial sickness benefit on subsequent work participation. For this we compared beneficiaries of partial sickness benefit with those receiving full sickness benefit a year after the law on partial sick leave was enacted. We utilized a quasi-experimental design with an integrated measure of work participation. Analyses were carried out in an individual-level register-based data representative of the Finnish working population with long-term sickness absence. We examined whether the effects of partial sick leave on subsequent work participation differed by sex, age, or diagnostic category of the benefit receivers.

Methods

Study design and setting

The population level intervention of interest in this study was the introduction of partial sick leave in Finland in 2007. We conducted a quasi-experimental study following recent guidelines on evaluating population health interventions [15]. This design was chosen to minimize the effect of both measured and unmeasured confounding. We compared the intervention (partial sick leave) group with the comparison (full sick leave) group regarding their pre-post

Page 31 of 49

1

BMJ Open

1 2	140	differences in work participation. The pre-intervention (T1) and post-intervention (T2) study
3 4	141	period each consisted of 365 days. A wash-out-period of one year was set pre and post
5 6	142	intervention (Figure 1) in order to obtain a robust effect of the intervention on work
7 8	143	participation. These time-windows were allowed to move according to the timing of the
9 10	144	individual's sick leave period.
11 12	145	
13 14	146	<figure 1=""></figure>
15 16	147	
17 18	148	Individual-level data were derived from the national sickness insurance register of the SII and
19 20	149	the pension and earnings registers of the Finnish Centre for Pensions. Data from these three
21 22	150	registers were linked on the basis of social security numbers of the participants. The social
23 24	151	insurance register provided information on all medically certified and compensated sickness
25 26	152	absence spells, temporary and permanent national disability pensions, and old age pensions in
27 28	153	Finland. The registers of the Finnish Centre for Pensions contained information on employment
29 30	154	periods, earnings-related pensions and unsalaried periods due to disability, rehabilitation or
31 32	155	unemployment. Written consent from the individuals was not needed as only encrypted
33 34	156	register data were obtained by the researchers carrying out the analyses in the Finnish
35 36	157	Institute of Occupational Health.
30 37	158	
30 39	159	Participants
40 41	160	Participants that were granted a partial sickness benefit (intervention group) were compared
42 43	161	with those who received a full sickness benefit (comparison group). A total sample of
44 45	162	individuals who had received either partial sickness benefit ($n = 1.838$) or full sickness benefit
46 47	163	$(n = 67\ 086)$ in 2007 - 2008 and whose compensated sickness absence period had ended
48 49	164	between 1 January and 31 December 2008 was drawn from the national sickness insurance
50 51	165	register. Since a full time sickness absence of 60 working days had to precede partial sick
52 53	166	leave, only those with full sick leave ending with an uninterrupted period of at least 60 days of
54 55	167	payment of the benefit were included in the total sample. Thus, in our sample, receivers of full
56 57	168	sickness benefit had not received partial sickness benefit, but they would have been entitled to
58 59 60	169	it as for the length of the preceding full time sickness absence.

Since eligibility for a partial sickness benefit required a prior work contract, we excluded from the analyses those who did not have any employment periods (n=2 and n=4 923) during the entire study period. We additionally excluded those who had died (n=24 in the partial sick leave group and n=2600 in the full sick leave group) or moved to old age pension (n=1 and n=354, respectively), had not turned 16 at the time of the first data collection period (T1) (n=3) or whose sickness absence periods (ending in 2008) extended beyond the time-frame of data collection (n=66 and n=1 024). The final sample included 1 738 participants in the partial sick leave group and 56 754 participants in the full sick leave group. We focused our analyses in the four main diagnostic groups in which partial sickness benefit has most frequently been used, i.e. musculoskeletal diseases, mental disorders, traumas and tumors (M, F, S and T, and C and D-categories in ICD-10, respectively). All other diagnoses were merged in one group.

182 Outcome measure

Work participation was operationalized as the time the individuals were likely to have actually participated in gainful employment. It was approximated as the proportion (%) of time within 365 days when participants had an employment contract and did not receive either partial or full ill-health-related benefits (sickness benefits, rehabilitation allowances, disability pensions) or unemployment benefits. Work participation was calculated for T1 and T2. It was assumed that when receiving partial benefits, the participants worked half of the work time (which is typically the case in Finland).

191 Covariates

Data on sex, dates of birth and death, insurance district (region), annual gross income in 2007, diagnostic codes (ICD-10), and occupational branch were obtained from the sickness insurance register. Information on occupation was available for all participants in the intervention group and for a random sample of 7.7% of the participants in the comparison group.

Page 33 of 49

1 2 2	198	Data analyses
3 4 5	199	The distributions of all variables were compared between the total full sickness benefit group
6 7	200	$(n = 67\ 086)$ and the subsample of those participants in the full sickness benefit group for
8	201	whom the registers provided information on occupational branch ($n = 4$ 347). Since no
10 11	202	differences in the distributions were detected, we assumed that information on occupational
12 13	203	branch was missing at random. Multiple imputation was used to compensate for the missing
14 15	204	data on occupational branch in the comparison group. For this, we generated multiple imputed
16 17	205	data sets $(n=10)$ using the <i>proc mi</i> of SAS. The imputation model included all covariates.
17 18 10	206	
20	207	Propensity score with 1:1 matching was used to match individuals on the probability that they
22	208	would belong to the intervention (partial sick leave) group. Individuals that were matched to
23 24 25	209	each other had equal or nearly equal (close enough) estimated propensity scores.
25 26	210	
27	211	Difference-in differences- (DID-) and propensity score- (PS-) analyses are methods that are
29 30	212	complementary to each other and can be applied in causal inference to counter selection bias
31 32 33 34	213	and confounding [16]. We applied the DID method alone and in combination with PS-
	214	matching. Combining methods to counter bias and confounding from different sources and
35 36	215	comparing the results has been encouraged [15]. The DID-method can be applied to control
37 38	216	for fixed unobserved individual differences and common trends.
39 40	217	
41 42	218	The DID-method allows one to estimate the difference in pre-post, within subject, differences
43 44	219	between the intervention and the comparison group. The effect of partial sick leave on work
45 46	220	participation was consequently estimated as the difference in pre-post-differences (differences
47 48	221	between T2 and T1) between partial and full sick leave groups. The effect was estimated using
49 50	222	general linear model with repeated measures design. F-statistic for the interaction term
51 52	223	between the group assignment and change of work participation in time was applied as the
53 54	224	difference-in-differences statistic.
55 56	225	
57 58	226	Propensity score is defined as conditional probability of being exposed to a certain intervention
59 60	227	given observed covariates [15, 17, 18]. It is applied to balance the covariates in two groups
		9 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	228	and thus to reduce bias. We computed PS (i.e. probability of being exposed to partial sick							
3 4	229	leave) by logistic regression for all participants. The following set of variables and their							
5 6	230	interaction terms were included in the logistic regression model: age, sex, diagnostic category,							
7 8	231	income, occupation, insurance district, and work participation, sickness absence, rehabilitation							
9 10	232	periods and unemployment at T1. The best fit model was chosen.							
11 12	233								
13 14	234	Thereafter we matched the partial sick leave and full sick leave groups on the estimated							
15 16	235	propensity score using local optimal (greedy) algorithm [19]. The matching was performed							
17 18	236	within (sex x diagnostic category)-strata. Subsequently DID-analysis was also carried out in							
19 20	237	the matched subsample.							
21 22	238								
23 24	239	Several sensitivity analyses were carried out. The analyses were run separately for participants							
25 26	240	for whom the registers provided information on occupational branch and for the total sample in							
27 28	241	which imputed data on occupational branch were utilized for the comparison group. To							
29 30	242	examine the group difference in work participation at T1 (due to unemployment or sick leave)							
31 32	243	as source of reduced group comparability, the analyses were carried out separately among							
33 34	244	participants who did not receive unemployment benefits at T1 and among participants with							
35 36	245	100% of work participation at T1.							
37 38	246								
39 40	247								
41 42	248	Results							
43	240	Descriptive characteristics of the study population							
44 45	249	Descriptive characteristics of the study population							
46 47	250	Information on the background characteristics of the intervention and comparison group in the							
48 49	251	total analysed sample is shown in Table 1. Women constituted 71% of the partial sick leave							
50 51	252	group and 53% of the full sick leave group. The partial benefit was most common among those							
52 53	253	who were aged between 35 and 54, whereas the full benefit among those aged from 45 to 65.							
54 55	254	The income level of those in the partial sick leave group was higher than of those in the full							
56 57	255	sick leave group. The partial sickness benefit was most often used in connection with mental							
58 59	256	disorders and musculoskeletal diseases, while the full benefit was most often used in							

Page 35 of 49

1 2	257	musculoskeletal diseases. The use of the partial benefit was most frequent in social and
3 4	258	healthcare services and administrative and office work, whereas the full benefit was most
5 6	259	commonly used in industrial and service work. No large regional differences in the use of the
7 8	260	benefits were detected.
9 10 11 12 13	261	
	262	<table 1=""></table>
	263	
15 16	264	Difference-in-differences in work participation between partial and full sick leave group
16 17 18	265	
19 20	266	In both groups the level of work participation decreased during the follow up, the absolute
21 22	267	reduction being larger in the full sick leave group (-26.5%) compared with the partial sick
23 24	268	leave group (-21.2%) (Table 2). The absolute overall difference-in-differences in work
25 26	269	participation was 5.3% (95% CI 3.1% to 7.5%).
27	270	
28 29 30 31 32 33 34 35 36 37	271	The difference-in-differences in work participation tended to be larger in men than in women.
	272	In all age categories, work participation declined more in the full than in the partial sick leave
	273	group. The difference in the decline was significant in age-categories 45-54 and 55-65. There
	274	was no effect in those aged 35-44. In the youngest age category (16-34 years) the difference-
	275	in-differences was large but statistically non-significant.
38 39	276	
40 41 42 43	277	A statistically significantly larger effect (12.8% 95% CI 9.0% to 16.5%) was found in mental
	278	disorders compared with the other diagnostic categories.
44 45	279	
46 47	280	<table 2=""></table>
48 49	281	
50 51	282	The results found in the subsample of participants for whom the registers provided information
52 53	283	on occupational branch were very similar to those in the total sample (data not shown). The
54 55	284	exclusion of the participants who received unemployment benefits at T1 led to an absolute
56 57	285	increase in the difference-in-differences in work participation (DID 7.6%, 95% CI 5.4% to
58 59	286	9.7%). The difference-in- differences in work participation increased further (DID 9.5%, 95%
00		11 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	287	CI 6.8% to 12.1%) when participants with reduced work participation (for any reason) at T1 $$						
3 4	288	were excluded from the analyses.						
5 6	289							
7	290							
8 9	291	Difference-in-differences in work participation in the propensity score-matched subsample						
10	292							
11 12 13	293	The matching procedure resulted in a total of 1 660 matched pairs of participants. The						
13	294	propensity score matched partial sickness benefit receivers did not differ from full sickness						
15 16	295	benefit receivers with regard to age, gross income, number of unemployment days, sickness						
17 18	296	absence days, rehabilitation days or work participation at T1. There were some differences						
19 20	297	between the groups in the distribution of occupational branches and insurance districts						
21 22	298	(Appendix Table 1).						
23 24	299							
25 26	300	The results from the DID-analysis in the PS-matched subsample are presented in Table 3. The						
27	301	absolute overall difference-in-differences was increased to 9.8% (95% CI 5.9 to 13.7). A						
28 29 20	302	tendency for a larger DID in men than in women was also found in this subsample. The DID was still largest in those participants aged over 45 years, but in contrast to the total sample an						
30 31	303							
32 33	505							
34 35	304	effect was seen in the younger age categories as well. Differences between the diagnostic						
36 37	305	categories were reduced as compared to the total sample. The largest effect was still found in						
37 38	306	mental disorders. In addition, a statistically significant DID was also found in musculoskeletal						
39 40	307	diseases and tumours. Further adjustment for the differences in the distribution of occupation						
41 42	308	and insurance district between the intervention and comparison group, had no effect on the						
43 44	309	results of the DID-analysis.						
45 46	310							
47	311							
48 49	312	< Table 3>						
50 51	313							
52 53	314							
54 55								
56								
57 58								
59								
00		12						

Discussion

Principal findings

317	We applied a quasi-experimental design to study the population level effects of the
318	introduction of partial sickness benefit in Finland among a working population with long-term
319	sickness absence. It was found that partial sick leave had a positive effect on work
320	participation. Although the overall work participation declined from T1 to T2, at the population
321	level the decline was 5% (absolute difference) smaller among the receivers of partial sickness
322	benefit (intervention group) than among the receivers of full sickness benefit (comparison
323	group). The beneficial effect of partial sick leave was seen especially among those aged from
324	45 to 54 and 55 to 65 and in mental disorders. No major sex difference was detected. When
325	the groups were rendered more exchangeable, the effect on work participation was doubled,
326	and effects were seen in other diagnostic categories than traumas and all age groups.
327	
328	
329	Validity of the study
330	
331	An observational quasi-experimental study design can be applied to assess the effects of a
332	planned event or intervention, when randomized controlled trials are not ethical or feasible.
333	Observational studies can also better simulate real-world settings and offer more relevant
334	information in view of policy-making [20]. The internal validity of observational studies is lower
335	than that of randomized controlled trials due to possible selection according to exposure. For
336	this reason, an analytical approach called potential outcomes or counterfactual framework was
337	chosen. The term refers to the fact that in an ideal situation the exposed would be compared
338	to themselves when unexposed. Since this comparison is impossible, we need a comparable or
339	exchangeable comparison group. We utilized two methods (DID and PS) that have been
340	previously recommended and applied to control for selection on both observed factors and
341	unobserved fixed factors [15, 20, 21].

In the DID- method, it is assumed that the unobserved characteristics in the studied groups are stable and that the outcomes would change identically in these groups in the absence of intervention. Consequently, the intervention and comparison groups should be identical, except for the intervention status. However, it is sufficient that the groups are closely, though not exactly, similar [15]. We included in the comparison group only participants who would have been entitled to partial sickness benefit as for the length of the preceding sickness absence. We also applied a short wash-out period, to minimize the intragroup differences between the two time points. However, as full information on the eligibility of the participants for partial sickness benefit was not available in the registers (e.g. severity of the health problem and degree of remaining workability), we utilized matching on PS to further increase the exchangeability of the groups. Moreover, at the time of the study, the national rates in sickness absence were rather stable. The unemployment rate in Finland was relatively low during the intervention in 2008 (6.4%), however the rates were similar at T1 (7.7%-8.4%) and T2 (7.8%-8.4%).

We utilized nationwide population data with comprehensive individual-level register-based information on ill-health- and unemployment-related absences from work. Personal identification (social security) numbers enabled linking information from three separate source registers. These registers have originally been established for administrative purposes, but the data can also be used for research [22]. Among the advantages of register-based studies is a low likelihood of selection and attrition bias. The source registers of this study provided valid information on the receivers and payment days of the benefits. A weakness of the registers is that they typically provide only a limited number of background characteristics of the participants and other covariates. The process of assignment to partial sick leave is not random. Most likely it is complex and it is affected by many actors (the patient, physician, employer, and workplace) for which information cannot be found in the national registers. Nevertheless, the factors that were included in the analyses have earlier been found to be important predictors of the use of health-related social security benefits and also associated with work disability and return to work.

BMJ Open

Information on diagnoses for sickness benefits was as well retrieved from registers and was based on medical assessment. In case of a long-term sickness absence (lasting more than 60 days) in Finland, the sickness benefit is paid in shorter periods, each being covered with a separate medical certificate. Diagnostic codes are transferred from these certificates to the administrative registers. We used the latest (and presumably the most accurate) diagnostic code provided for each long-term sickness absence in 2007-2008. Data on occupational branch had to be imputed for the majority of participants in the comparison group. Nevertheless, the sensitivity analyses suggested that using imputed data on occupation did not affect the results. In contrast to earlier studies on the topic, work participation was approximated in the current study by taking simultaneously into account the rate of different ill-health- and unemployment-related benefits. We operationalized work participation as proportion of time within a year not receiving ill-health related or unemployment benefits. Hence we had a relatively comprehensive indicator of the availability of the participants for the labour market. Results in relation to earlier findings The overall results of this study are congruent with earlier findings, indicating positive effects of partial sick leave on return to work and work retention [5-7, 12]. We found that partial sick leave had a positive effect on future work participation especially in mental disorders, but the results of the analyses in the subgroup suggested that the overall effect in the total sample might be underestimated. Our findings on the usefulness of partial sick leave in mental disorders, though not directly comparable, are congruent with a study showing beneficial effects of partial sick leave on RTW in mental disorders after 60 days of full sick leave [10], but differ from an earlier study reporting no effect [9]. The literature suggests that returning and continuing at work may be more challenging for those with mental disorders than with somatic problems (e.g. musculoskeletal diseases) [23-25]. In addition, the outflow from disability benefits due to recovery has been lower among those with mental disorders than with musculoskeletal For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

diseases [4]. However, in our previous study we found an effect of partial sick leave on work disability pension in both diagnostic categories, the effect tending to be larger in mental disorders than in musculoskeletal diseases [12]. The diagnostic groups of musculoskeletal diseases and mental disorders may differ in the degree of comparability of the partial and full sick leave groups with regard to the background characteristics, severity of the health problem and remaining work ability, number of sickness absences as well as in transition to rehabilitation and unemployment. When the exchangeability of the groups was increased with propensity score matching, a beneficial effect on work participation was detected also in persons with musculoskeletal diseases and those with tumours. Sickness absence is known to increase with age [26]. In addition, it has been found that return to work after long-term sickness absence is less likely at higher ages [27, 28]. Partial sick leave was found to be most frequently used and also most effective among middle-aged and older workers. It may well be that work arrangements associated with partial sick leave are more easily implemented by employees in a more established or stable work situation. Conclusions The overall results of the effectiveness of partial sick leave on work participation suggest that the new legislation on partial sickness benefit introduced in 2007 has potential to increase work participation of the working population with long-term sickness absence in Finland. A positive effect was seen especially in mental disorders. In the future - if applied in a larger scale – partial sick leave may turn out to be an effective tool in reducing temporary and permanent withdrawal of workers from the labour market due to health reasons. **Figure legend** Figure. Schematic presentation of the study design and difference-in-differences method. (T1 corresponds to pre-intervention period, T2 corresponds to post-intervention period). For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	422	Defe	
2	433	кете	rences
3	434		
4	777		
5	435	1.	Philips , E.R., Alloja J, Krillo K, Lauringson A, Approaches to flexicurity: EU-models. 2007,
6	436		European foundation for the improvement of living and working conditions.
1	437	2.	OECD, Sickness, Disability and Work: Breaking the Barriers: A Synthesis of Findings across OECD
8	438		countries, OECD Publishing. 2010.
9	439	3.	Kausto, J., et al., Partial sick leavereview of its use, effects and feasibility in the Nordic
10	440		countries. Scand J Work Environ Health, 2008. 34 (4): p. 239-49.
11	441	4.	OECD, Sick on the job? Myths and Realities about Mental Health and Work, in Mental health and
12	442	F	WORK, 2012, UECD PUDIISNING.
13	445	5.	musculoskeletal disorders Journal of occupational rehabilitation 2012 72 (3): p. 418-26
14	445	6.	Hogelund, J., A. Holm, and J. McIntosh, Does graded return-to-work improve sick-listed workers'
15	446	0.	chance of returning to regular working hours? Journal of health economics, 2010, 29 (1): p. 158-
16	447		69.
17	448	7.	Markussen, S., A. Mykletun, and K. Roed, The case for presenteeism - Evidence from Norway's
18	449		sickness insurance program. Journal of Public Economics, 2012. 96 (11-12): p. 959-972.
19	450	8.	Scheel, I.B., et al., Blind faith? The effects of promoting active sick leave for back pain patients: a
20	451	•	cluster-randomized controlled trial. Spine (Phila Pa 1976), 2002. 27 (23): p. 2734-40.
21	452	9.	Hogelund, J., A. Holm, and L.F. Eplov, The effect of part-time sick leave for employees with
22	455	10	Andron D. Doos part time cick loave help individuals with montal disorders recover lost work
23	454	10.	capacity 21 Occup Rehabil 2014 24 (2): p 344-60
24	456	11.	Vijkari-Juntura, E., et al., Return to work after early part-time sick leave due to musculoskeletal
25	457		disorders: a randomized controlled trial. Scandinavian journal of work, environment & health,
26	458		2012. 38 (2): p. 134-43.
27	459	12.	Kausto, J., et al., Partial sick leave associated with disability pension: propensity score approach
28	460		in a register-based cohort study. BMJ open, 2012. 2 (6).
29	461	13.	Kausto, J., et al., Associations between partial sickness benefit and disability pensions: initial
30	462	14	findings of a Finnish nationwide register study. BMC Public Health, 2010. 10 : p. 361.
31	403	14.	Grimshaw, J., et al., Experimental and quasi-experimental designs for evaluating guideline
32	465	15	Crain P et al. Using natural experiments to evaluate nonulation health interventions; new
33	466	15.	Medical Research Council guidance. Journal of Epidemiology and Community Health. 2012.
34	467		66 (12): p. 1182-1186.
35	468	16.	Ding, Y.Y., Risk adjustment: towards achieving meaningful comparison of health outcomes in the
36	469		real world. Ann Acad Med Singapore, 2009. 38 (6): p. 552-7.
37	470	17.	D'Agostino, R.B., Jr., Propensity score methods for bias reduction in the comparison of a
38	4/1	10	treatment to a non-randomized control group. Stat Med, 1998. 17 (19): p. 2265-81.
30	472	18.	Pattanayak, C.W., D.B. Rubin, and E.R. Zell, <i>Propensity score methods for creating covariate</i>
40	473	19	Coca-Perraillon M Local and global optimal propensity score matching SAS Global Forum
40 //1	475	19.	
12	476	20.	Remler, D.K. and G.G. Van Ryzin, Research Methods in Practice, Strategies for Description and
12	477		Causation. 2011: SAGE Publications, Inc. 616.
43	478	21.	Gebel, M. and J. Vossemer, The impact of employment transitions on health in Germany. A
44 15	479		difference-in-differences propensity score matching approach. Soc Sci Med, 2014. 108 : p. 128-
40	480	22	36. Ciastan M. and J. Haulder. <i>Cianish hashth and assist welfare registers in an identiclasian research</i>
40	481	22.	Gissier, M. and J. Haukka, Finnish health and social weithere registers in epidemiological research.
47 70	402	23	Reland C et al. Work and mental health: learning from return-to-work rehabilitation programs
40	484	25.	designed for workers with musculoskeletal disorders. International journal of law and psychiatry
49	485		2007. 30 (4-5): p. 444-57.
50	486	24.	Thornicroft, G., et al., Reducing stigma and discrimination: Candidate interventions. International
51	487		journal of mental health systems, 2008. 2(1): p. 3.
ປ∠ 52	488	25.	van Oostrom, S.H., et al., Development of a workplace intervention for sick-listed employees with
55	489		stress-related mental disorders: Intervention Mapping as a useful tool. BMC health services
04 55	490 401	76	research, 2007. 7: p. 127. Allaback, P. and A. Mastakaasa, Swadich Council on Technology Assessment in Health Core
55	491 107	20.	(SBII) Chanter 5 Risk factors for sick leave - general studies. Scandinavian journal of public
56	493		health. Supplement, 2004, 63: p. 49-108.
5/	494	27.	Steenstra, I.A., Prognostic factors for duration of sick leave in patients sick listed with acute low
58	495	-	back pain: a systematic review of the literature. Occupational and Environmental Medicine, 2005.
59	496		62 (12): p. 851-860.
60			

497 28. Cornelius, L.R., et al., *Prognostic Factors of Long-term Disability Due to Mental Disorders: A*498 *Systematic Review.* Journal of Occupational Rehabilitation, 2010. **21**(2): p. 259-274.
499

30 058 (53.0)

10 901 (19.2)

11 231 (19.8)

18 740 (33.0)

15 882 (28.0)

46 119 (81.3)

9 593 (16.9)

14 255 (25.1)

20 613 (36.3)

3 0 3 1 (5.4)

8 416 (14.8) 10 439 (18.4)

7 764 (13.7)

7 824 (13.8) 8 525 (15.0)

13 254 (23.3)

19 349 (34.1)

(non-imputed subsample n = 4347)

38 (0.1)

409 (9.4)

719 (16.5)

413 (9.5)

288 (6.6)

214 (4.9) 269 (6.2)

1 146 (26.4)

889 (20.5)

732 (1.3)

310 (0.5)

20 668

45.7 (11.3)

502	intervention (n, %).		
		Partial sick leave n =1738	Full sick leave n = 5
	Sex (%)		
	Female	1 236 (71.1)	30 05
	Age (years) (%)		
	16-34	217 (12.5)	10 90
	35–44	430 (24.7)	11 23
	45-54	753 (43.3)	18 74
	55-65	338 (19.5)	15 88
	Mean (SD)	46.2 (9.0)	45.
	Annual gross income (€)		
	- 30,000	1 227 (71 2)	46 11
	30 001 - 60 000	409 (23 5)	9 59
	60 001 -	39 (2 2)	7
	Missing	53(2.2) 53(31)	,
	Median	24 618	
	Diagnostic categories (%)		
	Mental disorders	663 (38.2)	14 25
	Musculoskeletal diseases	624 (35.9)	20 61.
	Tumours	112 (6.4)	3.0
	Traumas	136 (7.8)	8 41
	Other	203 (11.7)	10 43
	Insurance district (%)		
	Northern	219 (12.6)	7 76
	Western	259 (14.9)	7 82
	Eastern	194 (11.2)	8 52
	South-Western	410 (23.6)	13 25
	Southern	656 (37.7)	19 34
	Missing	0 (0.0)	
	Occupational branch (%)	((non-imputed subsample n
	Technical and scientific work	193 (11.1)	4
	etc.		
	Social and healthcare services	516 (29.7)	71
	Administration and office work	293 (16.9)	4
	Commercial work	113 (6.5)	23
	Agriculture and forestry	50 (2.9)	2
	Transport	60 (3.4)	2
	Industrial and construction	309 (17.8)	1 14
	work, mining		
	Service work	204 (11.7)	88

60

Work participation (%)								
			WOIR					
	n	Pre-intervention period (T1) Mean (95%CI)	Post-intervention period (T2) Mean (95%CI)	Post-Pre difference (T2-T1) Mean (95%CI)	р	Difference in differences Mean (95%CI)	F- statistic	p
All¹ Partial sick leave Full sick leave	1 685 56 406	86.6 (85.2 to 88.1) 79.4 (79.1 to 79.6)	65.4 (63.4 to 67.4) 52.9 (52.5 to 53.2)	-21.2 (-23.4 to -19.1) -26.5 (-26.9 to -26.2)	0.001 0.001	5.3 (3.1 to 7.5)	22.8	0.001
Males² Partial sick leave Full sick leave	490 26 507	86.6 (84.0 to 89.1) 80.3 (80.0 to 80.7)	62.7 (59.0 to 66.5) 50.2 (49.7 to50.7)	-23.9 (-27.9 to -19.9) -30.1 (-30.7 to -29.6)	0.001 0.001	6.3 (2.3 to 10.3)	9.3	0.002
Females² Partial sick leave Full sick leave	1 195 29 889	85.4 (83.7 to 87.0) 78.6 (78.2 to 78.9)	66.9 (64.6 to 69.3) 55.2 (54.7 to 55.7)	-18.4 (-21.0 to -15.9) -23.4 (-23.9 to -22.9)	0.001 0.001	4.9 (2.4 to 7.5)	14.2	0.001
16-34 years¹ Partial sick leave Full sick leave	210 10 759	89.3 (85.8 to 92.8) 84.6 (84.1 to 85.1)	75.5 (70.2 to 80.9) 66.1 (65.3 to 66.8)	-13.8 (-19.6 to -8.0) -16.6 (-20.8 to -12.5)	0.001 0.001	2.8 (-1.1 to 10.6)	2.5	0.111
35-44 years¹ Partial sick leave Full sick leave	424 11 177	84.7 (81.9 to 87.5) 78.4 (77.9 to 79.0)	68.1 (64.2 to 72.0) 59.8 (59.1 to 60.5)	-16.6 (-20.8 to -12.5) -18.6 (-19.4 to -17.8)	0.001 0.001	2.0 (-2.2 to 6.2)	0.9	0.352
45-54 years¹ Partial sick leave Full sick leave	725 18 659	86.9 (84.7 to 89.0) 77.6 (77.2 to 78.1)	65.7 (62.6 to 68.8) 51.8 (51.2 to 52.4)	-21.1 (-24.4 to -17.9) -25.9 (-26.5 to -25.2)	0.001 0.001	4.7 (1.4 to 8.0)	7.9	0.005
55-65 years¹ Partial sick leave Full sick leave	326 15 811	89.6 (86.3 to 92.9) 78.5 (78.0 to 78.9)	57.0 (52.3 to 61.7) 40.2 (39.5 to 40.8)	-32.6 (-37.7 to -27.5) -38.3 (-39.0 to -37.6)	0.001 0.001	5.7 (0.5 to 10.8)	4.7	0.03
Musculoskeletal diseas Partial sick leave Full sick leave	598 20 537	87.0 (84.8 to 89.3) 79.7 (79.4 to 80.1)	60.3 (57.0 to 63.6) 52.3 (51.7 to 52.9)	-26.7 (-30.3 to -23.2) -27.4 (-28.0 to -26.8)	0.001 0.001	0.7 (-2.9 to 4.3)	0.14	0.712
Mental disorders³ Partial sick leave Full sick leave	645 14 136	84.6 (82.2 to 87.1) 74.6 (74.0 to 75.1)	67.0 (63.8 to 70.3) 44.2 (43.5 to 44.9)	-17.6 (-21.3 to -13.9) -30.4 (-31.1 to -29.6)	0.001 0.001	12.8 (9.0 to 16.5)	43.8	0.001

. . .

Table 2. Continued.

	Work participation (%)							
	n	Pre-intervention period (T1) Mean (95%CI)	Post-intervention period (T2) Mean (95%CI)	Post-Pre difference (T2-T1) Mean (95%CI)	p	Difference in differences Mean (95%CI)	F- statistic	р
Traumas ³								
Partial sick leave	132	86.7 (82.0 to 91.3)	68.1 (61.5 to 74.6)	-18.6 (-25.3 to -11.8)	0.001	-3.2 (-10.0 to 3.5)	0.89	0.348
Full sick leave	8 312	82.9 (82.3 to 91.3)	67.6 (66.7 to 68.4)	-15.3 (-16.2 to -14.5)	0.001			
Tumours ³								
Partial sick leave	109	90.6 (85.9 to 95.4)	75.0 (67.4 to 82.5)	-15.7 (-23.5 to -7.9)	0.001	5.3 (-2.6 to 13.2)	1.7	0.190
Full sick leave	3 021	87.2 (86.3 to 88.1)	66.2 (64.8 to 67.6)	-21.0 (-22.4 to -19.5)	0.001	. ,		
Other diagnostic cate	egories ³							
Partial sick leave	201	87.4 (83.4 to 91.4)	63.6 (57.8 to 69.4)	-23.8 (-30.0 to -17.6)	0.001	6.2 (-0.05 to 12.5)	3.8	0.052
Full sick leave	10 400	80.2 (79.6 to 80.7)	50.1 (49.3 to 50.9)	-30.0 (-30.9 to -29.2)	0.001	(

Adjusted for ¹ age, sex, income, diagnosis, occupational group, insurance district, ² age, income, diagnosis, occupational group, insurance district, ³ age, sex, income, occupational group, insurance district.
Table 3. Comparison of work participation (%) between partial and full sick leave group (GLM repeated measures design) in the PS-matched subsample.

Work participation (%)					
	n (pairs)	Difference in differences Mean (95% CI)	F- statistic	р	
All ¹	1 660	9.8 (5.9 to 13.7)	60.8	0.0001	
Males ²	489	12.4 (6.9 to 17.9)	28.1	0.002	
Females ²	1 171	7.2 (3.1 to 11.4)	34.0	0.0001	
16-34 years	209	8.5 (0.5 to 16.6)	9.5	0.002	
35-44 years	422	6.7 (0.7 to 12.6)	9.8	0.002	
45-54 years	708	11.1 (6.3 to 15.9)	30.3	0.0001	
55-65 years	321	12.9 (6.5 to 19.4)	12.2	0.001	
Musculoskeletal diseases ³	598	6.3 (1.5 to 11.2)	6.0	0.015	
Mental disorders ³	621	18.9 (14.2 to 23.5)	59.9	0.0001	
Traumas ³	131	0.3 (-9.3 to 9.9)	0.0	0.99	
Tumours ³	109	12.5 (1.8 to 23.2)	5.9	0.016	
Other diagnostic categories ³	201	11.1 (3.3 to 18.9)	7.6	0.006	

Adjusted for

¹ age, sex, income, diagnosis, occupational group, insurance district, ² age, income, diagnosis, occupational group, insurance district, ³ age, sex, income, occupational group, insurance district.

 For beer review only

BMJ Open

Figure. Schematic presentation of the study design and difference-in-differences method. (T1 corresponds to pre-intervention period, T2 corresponds to post-intervention period). 338x190mm (300 x 300 DPI)

APPENDIX

Table 1. Characteristics of participants in partial and full sick leave group at the time of intervention (n, %). Propensity score-matched subsample (n=1660 pairs).

	Partial sick leave	Full sick leave
Female (%)	1 171 (70.5)	1 171 (70.5)
Age (years) Mean (95% CI)	46.1 (45.7 to 46.5)	46.0 (45.5 to 46.5)
Annual gross income (€)		
Mean (95% CI)	27 302 (26 754 to 27 850)	26 274 (25 637 to 26 910)
Diagnostic categories (%)		
1ental disorders	621 (37.4)	621 (37.4)
Ausculoskeletal diseases	598 (36.0)	598 (36.0)
umours	109 (6.6)	109 (6.6)
Traumas	131 (7.9)	131 (7.9)
Other V	201 (12.1)	201 (12.1)
Occupational branch (%)		
Technical and scientific work etc.	178 (10.7)	223 (13.4)
Social and healthcare services	492 (29.6)	402 (24.2)
Administration and office work	281 (16.9)	230 (13.9)
Commercial work	112 (6.7)	137 (8.3)
Agriculture and forestry	490 (3.0)	71 (4.3)
Fransport	58 (3.5)	79 (4.8)
Industrial and construction work, mining	300 (18.3)	301 (18.1)
Service work	190 (11.4)	217 (13.1)
Insurance district (%)		
Northern	206 (12.4)	234 (14.1)
Western	253 (15.2)	221 (13.3)
Eastern	188 (11.3)	258 (15.5)
South-Western	392 (23.6)	347 (20.9)
Southern	621 (37.4)	600 (36.1)
Number of unemployment days T1		
Mean (95% CI)	2.8 (1.8 to 3.8)	3.6 (2.5 to 4.6)
Number of full sick leave days T1		
Mean (95% CI)	17.0 (15.3 to 18.7)	17.9 (16.0 to 19.9)
Number of rehabilitation days, T1		
vean (95% CI)	1.7 (0.9 to 2.5)	1.6 (0.8 to 2.4)
Work participation, T1		
Mean (95% CI)	94.1 (93.6 to 94.7)	93.7 (93.0 to 94.3)