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Table S1 
	  
 
Enrichment of metabolic pathway for brite-selective genes (1,691) 
	  

Term ID Term P-value Genes in 
term 

Target genes 
in term 

hsa01212 Fatty acid metabolism 7.58E-12 48 24 
hsa00190 Oxidative 

phosphorylation 
1.08E-11 120 40 

hsa00020 Citrate cycle (TCA 
cycle) 

5.88E-11 30 18 

hsa00280 Valine, leucine and 
isoleucine degradation 

4.83E-10 44 21 

hsa00071 Fatty acid degradation 3.70E-09 44 20 
hsa00062 Fatty acid elongation 6.56E-09 23 14 
hsa_M00087 β-oxidation 9.14E-09 12 10 
	  
	  
 
Enrichment of metabolic pathway for white-selective genes (1,138) 
 

Term ID Term P-value Genes in 
term 

Target genes 
in term 

hsa00290 Valine, leucine and 
isoleucine biosynthesis 

0.004 2 2 

hsa00340 Histidine metabolism 0.009 28 6 
hsa00360 Phenylalanine 

metabolism 
0.029 18 4 

hsa00330 Arginine and proline 
metabolism 

0.038 58 8 

hsa_M00094 Ceramide biosynthesis 0.041 12 3 
 
	  
	  
Table S1. Related to Figure 1. 
Genes selectively (FDR<0.05) expressed in brite (1,691 genes) and white (1,138 genes) 
hMADS adipocytes at day 19 were subjected to functional enrichment analyses using 
Homer (Heinz et al. 2010). Top scoring metabolic pathways extracted from the KEGG 
database (Kanehisa and Goto 2000; Kanehisa et al. 2014) are shown for brite-selective 
(top) and white-selective (bottom) genes. 
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Figure S1. Related to Figure 1. 
A. mRNA expression of the general adipocyte marker genes, perilipin 1 (PLIN1), PLIN2, 
diacylglycerol O-acyltransferase 2 (DGAT2), stearoyl-CoA desaturase (SCD), and fatty acid 
synthase (FASN) was determined during hMADS differentiation at the indicated time points. 
Error bars represent S.D. (n=3). p-values: **<0.005 as indicated. W=White, B=Brite. 
B. Quantification of lipids in white and brite hMADS adipocytes. White (light blue) and brite 
(orange) hMADS adipocytes were fixed with formaldehyde and stained with oil red O. The 
dye retained by the lipid vacuoles was quantified by measuring optical density at 500 nm by 
spectrophotometric analysis. Error bars represent S.E.M. (n=4). NS=not significant 
(p>0.05). 
C. Glycerol-3-phosphate dehydrogenase (GPDH) activity was determined in white (light 
blue) and brite (orange) hMADS adipocytes. Error bars represent S.E.M. (n=4). NS=not 
significant (p>0.05). 
D. UCP1 transcription is acutely induced by rosiglitazone at day 13, but requires long-term 
exposure to rosiglitazone for full activation. UCP1 pre-mRNA levels were determined 
following 2 hours exposure to DMSO (white) or rosiglitazone (light orange) at day 13 as well 
as in day 19 white (light blue) and brite (orange) adipocytes. Error bars represent S.D. 
(n=3). p-values: ***<0.001, **<0.005 as indicated.  
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Figure S2. Related to Figure 1. 
A. Principal component analysis of the top 500 genes with lowest variance in the respective 
RNA-seq duplicates from hMADS preadipocytes (green) as well as RNA-seq triplicates 
from white (light blue) and brite (orange) hMADS adipocytes at day 19.  
B. MA-plot comparing RNA expression in brite and white adipocytes. The plot shows mean 
expression (as normalized exon reads per kilobase) of all 13,307 expressed genes versus 
the log2 fold change for a given gene transcript in brite compared to white hMADS 
adipocytes at day 19. Significant (FDR<0.05) white-selective (blue, 1,138) and brite-
selective (red, 1,691) genes are indicated. 
C. Genes belonging to fatty acid metabolism, oxidative phosphorylation and TCA cycle 
display elevated expression levels in brite compared to white adipocytes. Metabolic 
pathways were extracted from the KEGG database (Kanehisa and Goto 2000; Kanehisa et 
al. 2014). For these pathways the mean log2 fold change in expression values for brite 
versus white hMADS adipocytes is plotted as a function of their gene rank. 
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Figure S3. Related to Figure 2. 
A. Scatterplot showing DHS tag counts (400 bp window) in all identified DHS sites (29,095 
sites) in white and brite hMADS adipocytes at day 19. r indicates Pearson’s correlation 
coefficient. 
B. Heat map showing DHS signal intensity in a ±2-kb window around all DHS peak centers 
in white and brite hMADS adipocytes at day 19. 



Loft et al._Figure S4
A

PPARγ1
TFIIB

Day
16  19 

0 9 W WB B

PPARγ2

B

C

0

3

-2

0

2

-2

4

0

2

3

1

-1

2

-1

1

D

Fo
ld

 c
ha

ng
e

br
ite

 v
s.

 w
hi

te
 (l

og
2)

Brite-selective 
White-selective
Constant-2

DHS CBP

H3K27ac

*

* *

*
* *

*

* *

MED1

0

2

1

-1

-2

3

-3

4
*

* *

% of sites/bg
PPAR/RXR (NR/DR1)
57% / 26%

Best match

De Novo Motif Analysis (200bp)

White-selective

Brite-selective

% of sites/bg
PPAR/RXR (NR/DR1)
50% / 5%

Best match

% of sites/bg
NF1-halfsite (CTF)
68% / 41%

Best match

% of sites/bg
CEBP (bZIP)
51% / 15%

Best match

Constant

% of sites/bg
PPAR/RXR (NR/DR1)
44% / 10%

Best match

% of sites/bg
CEBP (bZIP)
48% / 14%

Best match

% of sites/bg
NF1-halfsite (CTF)
40% / 25%

Best match

P-value

P-value

P-value

P-value

P-value

P-value

P-value

1e-387

1e-355

1e-56

1e-214

1e-146

1e-775

1e-341

Brite
-se

lec
tiv

e
W

hit
e-

se
lec

tiv
e

Con
sta

nt

Brite
White

200

0

100

Ta
g 

co
un

t/p
ea

k

PPARγ signal

* *

*
*

Figure S4. Related to Figure 2. 
A. Western blot showing PPAR  protein expression during hMADS differentiation at the 
indicated days. W=White, B=Brite. 
B. PPAR  signal (as tag count per peak in a 400 bp window) in PPAR  binding sites that 
are brite-selective (red, 2,211 peaks), white-selective (blue, 2,228 peaks) or constant 
(green, 2,385 peaks) in white (light blue) and brite (orange) hMADS adipocytes. p-value: 
*<2.2e-16 as indicated, Wilcoxon rank sum test. 
C. Top scoring motifs from de novo motif analyses of 200bp regions centered around 
PPAR  binding sites that are brite-selective, white-selective, or constant. The % of target 
sites (sites) as well as % of background sites (bg) with the given motif is displayed. RXR = 
retinoid X receptor, NR=nuclear receptor, DR1 = direct repeat 1, NF1 = nuclear factor 1, 
CTF = CAAT-binding transcription factor, CEBP = CCAAT/Enhancer Binding Protein, bZIP 
= basic leucine zipper.  
D. Boxplot showing the log2 fold change in DHS, CBP, MED1, and H3K27ac signal in 
PPAR  binding sites that are brite-selective (red), white-selective (blue), or constant 
(green). DHS, CBP, and MED1 signals were counted in a 400 bp window and H3K27ac 
signal in a 2kb window around the PPAR  peak center. p-value: *<2.2e-16 as indicated, 
Wilcoxon rank sum test. 
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Figure S5. Related to Figure 2. 
A. Correlation between log2 fold change in PPAR  signal and DHS (left), MED1 (middle), 
and H3K27ac (right) signal in brite compared to white hMADS adipocytes at all identified 
PPAR  binding sites (52,030). r indicates Pearson’s correlation coefficient and the red line 
shows the linear regression between plotted values. 
B. Brite-selective PPAR  binding sites shown in figure 2D (UCP1 -3.8kb, ACSL5 -10.8kb 
and +7.3kb) were validated by ChIP-qPCR in white (light blue) and brite (orange) hMADS 
adipocytes and expressed as % recovery compared to input sample. A negative control 
region (without any binding of PPAR ) is included. Error bars represent S.E.M. (n=3). 
*<0.05 in brite compared to white hMADS adipocytes. 
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Figure S6. Related to Figure 3. 
A. DHS and CBP signal (as tag count per peak in a 400bp window) in PPAR  constituents 
in regular PPAR  binding regions (grey, 46,392 peaks) and PPAR  super-enhancers 
(green, 5,638 peaks) in brite hMADS adipocytes. p-value: *<2.2e-16 as indicated, Wilcoxon 
rank sum test. 
B. PPAR  signal (as tag count per peak in a 400bp window) in non-reprogrammed (light 
grey, 1,296 peaks) or brite-selective (dark grey, 139 peaks) PPAR  constituents within 
brite-selective PPAR  super-enhancers in white (light blue) and brite (orange) hMADS 
adipocytes. p-value was determined by Wilcoxon rank sum test. 
C. Boxplot showing the log2 fold change in MED1 (400bp window) and H3K27ac signal 
(2kb window) in non-reprogrammed (light grey, 1,296 peaks) or brite-selective (dark grey, 
139 peaks) PPAR  constituents within brite-selective PPAR  super-enhancers in brite 
compared to white hMADS adipocytes. p-value was determined by Wilcoxon rank sum test. 
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Figure S7. Related to Figure 3. 
A. Functional enrichment analysis of genes associated with brite-selective super-enhancers 
using HOMER (Heinz et al. 2010). Top scoring metabolic pathways extracted from the 
KEGG database (Kanehisa and Goto 2000; Kanehisa et al. 2014) are shown with p-values 
as illustrated in the heatmap. 
B. Overlap between brite-selective PPAR  super-enhancers (SE) as determined by MED1- 
(324 regions) and H3K27ac-ranking (175 regions). A subset of brite-selective genes 
associated to the brite-selective PPAR  super-enhancers is listed.  
C+D. ChIP-seq profiles of PPAR , H3K27ac, and input control at the FHL1 (C) and PLIN2 
and SCD (D) loci in white (light blue) and brite (orange) hMADS adipocytes. The red and 
green lines indicate the position of brite-selective and common PPAR  super-enhancers, 
respectively.  
E. Bar plots showing mean tag count in the indicated PPAR  super-enhancer regions for 
duplicate MED1 ChIP-seq libraries in white (light blue) and brite (orange) hMADS 
adipocytes. Error bars represent S.E.M. (n=2). 
F. Quantification of PPAR  binding to constituent binding sites within brite-selective PPAR  
super-enhancers associated with the brite-selective genes PDK4, KLF11, and FHL1 (left) 
as well as within a common super-enhancer associated to the general adipocyte gene 
PLIN1 (right). Binding is determined by ChIP-qPCR in white (light blue) and brite (orange) 
hMADS adipocytes and expressed as % recovery compared to input sample. A negative 
control region (without any binding of PPAR ) is included. Error bars represent S.E.M. 
(n=3). *<0.05 in brite compared to white hMADS adipocytes. 
G. Bar plots showing binding of MED1 (left) and association with H3K27ac (right) for the 
selected subset of PPAR  binding sites within super-enhancers shown in Figure S7F. 
MED1 (400 bp window) and H3K27ac (2kb window) signal (as tag count per peak) are 
derived from duplicate ChIP-seq libraries from white (light blue) and brite (orange) hMADS 
adipocytes. The input signal from white (white) and brite (black) hMADS adipocytes in the 
given window is plotted as a control. Error bars represent S.E.M. (n=2). 
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Figure S8. Related to Figure 4. 
A. Densitometry scanning of KLF11 protein expression in white (light blue) and brite 
(orange) hMADS adipocytes at day 19. Protein data are normalized to SP1 expression. 
Error bars represent S.E.M. (n=3). p-values: *<0.05 compared to white adipocytes. 
B. Expression of KLF11 mRNA in white (W, light blue) and brite (B, orange) hMADS 
adipocytes at the indicated time points. Error bars represent S.D. (n=3). p-values: 
***<0.001, NS=not significant (p>0.05), as indicated. 
C. Effect of PPAR  knockdown on KLF11 protein levels in hMADS adipocytes as in Figure 
4C. hMADS adipocytes were transduced with lentivirus expressing scramble (black) or 
PPAR  (white) shRNA at day 10, and subsequently treated with rosiglitazone from day 13-
16. KLF11 protein levels were determined by densitometry scanning and normalized to 
TFIIB expression. Error bars represent S.E.M. (n=3). p-values: *<0.05 compared to 
scramble control. 
D. Effect of PPAR  antagonist on KLF11 transcription (as determined by pre-mRNA levels) 
in brite hMADS adipocytes at day 19. Cells were treated for 2 hours with DMSO (white) or 
the PPAR  antagonist GW9662 (light blue). Error bars represent S.D. (n=3). p-values: 
*<0.05 compared to DMSO control. 
E. Effect of 4 hours of cooling on gene expression in brite hMADS adipocytes at day 19. 
Expression of brite and white marker genes as well as general adipocyte genes (same 
genes as in Figure 1F) is shown. Cooling was performed at 31°C (blue) and control cells 
were left at 37°C (black). Error bars represent S.E.M. (n=3). p-values: **<0.005, *<0.05 
compared to control cells. 
F. Effect of isoproterenol on UCP1 and KLF11 mRNA levels in brite hMADS adipocytes at 
day 19. Adipocytes were subjected to 6 hours treatment with vehicle (Ctr, black) or 1uM 
isoproterenol (Iso, white). Error bars represent S.E.M. (n=3). p-values: *<0.05 compared to 
control. 
G. Relative expression of UCP1 in human subcutaneous abdominal WAT from a total of 18 
subjects treated for 3 months with placebo (white) and then 3 months with rosiglitazone 
(red) or vice versa. mRNA expression was normalized to control genes, PPIA and PGK1. 
Details on the human cohort are previously described (Tan et al. 2005). 
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Figure S9. Related to Figure 5. 
A. Effect of ZNF323 knockdown on expression of ZNF323 and UCP1 mRNA in day 16 
hMADS adipocytes. hMADS adipocytes were transduced with lentivirus expressing 
scramble (black) or ZNF323 (green) shRNA at day 10, and subsequently treated with 
rosiglitazone from day 13-16. Error bars represent S.D. (n=3). p-value: ***<0.001, **<0.005 
compared to scramble control.  
B. FHL1 mRNA (left) and protein (middle and right) expression levels in white (light blue) 
and brite (orange) hMADS adipocytes at day 19. FHL1 protein levels were determined by 
densitometry scanning and normalized to TFIIB expression. Error bars represent S.E.M. 
(n=3). p-value: ***<0.001, *<0.05 compared to white adipocytes. 
C. Effect of rosiglitazone on transcription of FHL1 (as determined by pre-mRNA levels) in 
hMADS adipocytes. hMADS adipocytes at day 13 were treated for 2 hours with DMSO 
(white) or rosiglitazone (light orange). p-value: **<0.005 compared to DMSO control.  
D. Effect of FHL1 knockdown on rosiglitazone-induced browning. hMADS adipocytes were 
transduced with lentivirus expressing scramble (black) or one of two different FHL1 (blue) 
shRNAs at day 10, and subsequently treated with rosiglitazone from day 13-16. mRNA 
expression of brite, white and general adipocyte markers was determined on day 16. Error 
bars represent S.D. (n=3). p-value: #<0.02 for both lentiviral constructs compared to 
scramble control.  
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Figure S10. Related to Figure 5. 
A. Effect of KLF11 knockdown on expression of white- and brite-selective genes in hMADS 
adipocytes. Heat map depicts the log2 fold changes in gene expression for white- and brite-
selective genes in hMADS adipocytes. hMADS adipocytes were transduced with lentivirus 
expressing scramble or KLF11 shRNA at day 10, and subsequently exposed to 
rosiglitazone from day 13-16. RNA-seq was performed at day 16. Data for the knockdown 
experiments are presented as mean of two independent RNA-seq replicates. 
B. Effect of KLF11 knockdown on -oxidation in hMADS adipocytes. hMADS adipocytes 
were transduced with lentivirus expressing scramble (black) or KLF11 (red) shRNA at day 
10, and subsequently exposed to DMSO or rosiglitazone from day 13-16. -oxidation was 
assessed by measuring relative amounts of 14C liberated from [1-14C] oleate by scintillation 
counting. Error bars represent S.E.M. (n=3). p-value: *<0.05 as indicated. 
C. Effect of ectopic expression of KLF11 on brite and white marker genes as well as 
general adipocyte markers in hMADS adipocytes. Rosiglitazone-treated hMADS adipocytes 
(day 15) were subjected to KLF11 adenovirus (AdKLF11) or empty adenoviral control 
(AdEV) and mRNA expression was evaluated 24 hours post transduction. The bar diagram 
shows % change in mRNA expression in AdKLF11-treated compared to AdEV-treated cells 
for the same subset of genes examined in Figure 5A-B. Error bars represent S.E.M. (n=3). 
p-values: ***<0.001, **<0.005, *<0.05 for AdKLF11 compared to AdEV.  
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Figure S11. Related to Figure 6. 
A. Plot illustrating the mean % loss of KLF11 (of 3 independent biological experiments) at 
selected target sites upon shRNA-mediated KLF11 knockdown in hMADS adipocytes. 
B. Top scoring motifs from de novo motif analyses in 50bp regions around the center of 
KLF11 binding sites in the promoter region (16,390 sites within 2kb of TSS), near distal to 
genes (4,529 sites from 2kb to 10kb away from TSS) and far distal to genes (9,680 sites 
from 10kb to 50kb away from TSS). The % of target sites (sites) as well as % of 
background sites (bg) with the given motif is listed. NFY = nuclear transcription factor Y, SP 
= specificity protein, KLF = kruppel-like factor. 
C. Co-immunoprecipitation of KLF11 and PPAR  in hMADS adipocytes. At day 15 
rosiglitazone-treated hMADS adipocytes were transduced with his-tagged KLF11 
(AdKLF11) or control (AdEV) adenovirus. IP was performed 24 hours post transduction, 
and subsequently protein expression of PPAR , KLF11, and his-tagged KLF11 was 
examined by western blotting on immounoprecipitated and input material. Data are 
representative of two independent experiments.  
D. Effect of KLF11 knockdown on relative MED1 occupancy at a subset of shared 
PPAR /KLF11 binding sites (BS) within brite-selective PPAR  super-enhancers. hMADS 
adipocytes were transduced with lentivirus expressing scramble (dark grey) or KLF11 (red) 
shRNA at day 10 and subsequently exposed to rosiglitazone from day 13-16. MED1 binding 
was determined by ChIP-qPCR at a subset of shared PPAR /KLF11 binding sites (BS) 
within brite-selective PPAR  super-enhancers at day 16. Two shared PPAR /KLF11 
binding sites (PLIN1 1.3kb, and SCD1 -12kb) within common PPAR  super-enhancers are 
shown for comparison. Error bars represent S.E.M. (n=3). p-values: **<0.005, *<0.05 for 
Scramble compared to shKLF11.  
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Figure S12. Related to Figure 6. 
A. H3K27ac signal (as tag count per peak in a 2kb window) in putative KLF11-activated 
(red, 1,179 sites), KLF11-repressed (blue, 489 sites) and KLF11-unaffected (green, 1,076 
sites) binding sites (BS). hMADS adipocytes were transduced with lentivirus expressing 
scramble (dark grey) or KLF11 (red) shRNA at day 10 and subsequently exposed to 
rosiglitazone from day 13-16. ChIP-seq was performed at day 16 in scramble and KLF11 
knock down cells. 
B. Plot showing the % of total KLF11 binding sites (BS) located in the promoter region 
(within 2kb of TSS), near distal (from 2kb to 10kb away from TSS) or far distal (10kb to 
50kb away from TSS) regions that are activated (red) or repressed (blue) by KLF11 
knockdown.   
C. Enrichment of KLF11-activated (red), KLF11-repressed (blue), or KLF11-unaffected 
(green) binding sites (BS) near top brite-selective genes significantly induced by KLF11 
knockdown (left) or top white-selective genes (right). Enrichment is determined as the 
number of binding sites per gene within different distances from the TSS (0-100 kb) of 
regulated genes relative to the number of binding sites per gene of constitutively expressed 
genes, as defined in Figure 1E. 
D. ChIP-seq profiles of KLF11 in white (light blue) and brite (orange) hMADS adipocytes as 
well as H3K27ac profiles from the FABP3 and PDK4 loci in hMADS adipocytes transduced 
with Scramble (dark grey) or KLF11 #1 (light grey) shRNA. The arrows indicate putative 
KLF11-activated binding sites with loss of H3K27ac upon knockdown of KLF11. 
E. Plot illustrating mean % change in H3K27ac signal in brite compared to white hMADS 
adipocytes at KLF11-activated binding sites within 100kb of top brite- (black) and white-
selective (grey) genes. Error bars represent the 95% confidence interval around the mean. 
p-value: ***<0.001, two-tailed Student’s test. 



 
Supplemental Materials and Methods 
 
 
hMADS cell culturing and differentiation 
hMADS cells are self-renewing multipotent stem cells that exhibit a normal 
karyotype. The isolation and characterization of hMADS-3 cells obtained from the 
prepubic fat pad of a 4-month-old male donor have previously been reported 
(Rodriguez et al. 2004; Rodriguez et al. 2005). In this work hMADS-3 cells were 
cultured in DMEM (Lonza, low glucose) supplemented with 10% fetal bovine serum 
(Lonza), 10 mM Hepes, 2 mM L-glutamine (Lonza), penicillin (62.5 µg/ml), 
streptomycin (100 µg/ml), and 2.5 ng/ml hFGF2 (Peprotech). Two days post 
confluence (day 0) the cells were induced to differentiate in DMEM/Ham`s F12 
(Lonza) supplemented with 10 µg/ml transferrin, 1 µM dexamethasone, 500 µM 3-
isobutyl-1-methylxanthine (IBMX), 0.85 µM insulin, and 0.2 nM T3. At day 3 of 
differentiation, IBMX and dexamethasone were omitted from the medium and 0.5 µM 
rosiglitazone was added until day 9 of differentiation leading to development of white 
hMADS adipocytes. For induction of browning 0.5 µM rosiglitazone was added again 
at day 13 and left on the cells until day 16. Control white adipocytes were treated 
with DMSO from day 13 to 16. From day 16 and forth the differentiation medium of 
both white and brite adipocytes was depleted for rosiglitazone.  
 
 
Fatty acid oxidation 
Determination of fatty acid oxidation was performed essentially as previously 
described (Berge et al. 2003). In brief, hMADS cells were seeded in 25 cm2 flasks, 
and immediately prior to measurements the medium was changed to Roswell Park 
Memorial Institute medium (RPMI, Life Technologies) containing 2.5 mM glucose, 
1% FBS and 0.5 mM L-carnitine. After 30 min of incubation, each flask was added 
100 µL of hot oleate solution consisting of RPMI medium with 20 µg/mL fatty acid-
free BSA, and 2.5 mM hot oleate stock (6.67 mg/mL oleate, 5.625 µCi/mL hot [1-14C] 
oleate, 8% ethanol and 91.7 mM KOH). Flasks were sealed with a rubber stopper 
containing filter paper and incubated at 37°C. After 4 hours flasks were placed on ice 
and added 300 µL phenethylamine:methanol (1:1, v/v) to the filter paper and 200 µL 
6M HCl to the media. The cultures were left at room temperature overnight for 
[14C]CO2 trapping. The filter papers were then transferred to vials with 8 mL 
scintillation fluid, and 14C was measured by scintillation counting. Data are expressed 
as mean values ± SEM. Two-tailed Student’s t-test was used to determine 
significance. 
 
 
Mitochondrial respiration data analyses 
For mitochondrial respiration analysis, hMADS cells were seeded in 24 multi-well 
plates (Seahorse) and differentiated and/or transduced as described previously. 
Oxygen consumption rate (OCR) of 16 or 19 day-old differentiated cells was 
determined using an XF24 Extracellular Flux Analyzer (Seahorse Bioscience). 
Uncoupled and maximal OCR was determined using oligomycin (1.2 µM) and FCCP 
(1 µM), respectively. Rotenone and Antimycin A (R&A; 1 µM each) were used to 
inhibit Complex I- and Complex III-dependent respiration, respectively.  
Mitochondrial parameters displayed in histograms were measured independently for 
each well using the following formula: “basal mitochondrial respiration” = (basal–
R&A); “uncoupled mitochondrial respiration” = ((oligomycin–R&A)/(basal–R&A)); 
“maximal mitochondrial respiration” = (FCCP-R&A). Data are expressed as mean 
values ± SEM. Two-tailed Student’s t-test was used to determine significance. 



 
Data Analyses 
 
RNA-seq data  
RNA reads were aligned to the human reference genome (version hg19) using 
Bowtie2 (Langmead and Salzberg 2012) with standard parameters. Splice-junction 
reads were handled by creation of a pseudo-splice genome, similar to the strategy 
utilized in RSEQTools (Habegger et al. 2011). Reads were filtered post-alignment for 
a MAPQ score greater than or equal to 30. The number of exon reads for all RefSeq 
genes were counted using Subread (Liao et al. 2013). Differential expression 
between three independent replicates of white and brite hMADS adipocytes 
(FDR<0.05), or between two independent replicates of scramble and KLF11 
knockdown samples (FDR<0.1) was determined using the Wald test for the GLM 
coefficients in DESeq2 (paired analysis) (Love et al. 2014). For some analyses a 
subset of top brite- (603 genes) and white-selective (292 genes) genes were defined 
as those having FDR<0.001 and a log2 fold change>0.5 in either direction. 
Functional enrichment analysis was performed with HOMER (Heinz et al. 2010) 
using pathways related to metabolism from the KEGG annotation (Kanehisa and 
Goto 2000; Kanehisa et al. 2014) 
 
Mapping of DHS-/ChIP-seq data 
Sequence reads from PPARγ-, MED1-, CBP-, KLF11-, and H3K27ac ChIP-seq 
libraries as well as input- and DHS-seq libraries were trimmed and collapsed using 
FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Bowtie (Langmead et al. 
2009) was used to align each collapsed library to the human reference genome 
(version hg19) using the following parameters: ‘-m 3 –best –strata’, with all other 
parameters default. In all cases, tag counts were normalized to 10M reads in all 
subsequent analyses, unless stated otherwise. PPARγ-, MED1-, KLF11-, and 
H3K27ac ChIP-seq experiments were performed in two independent biological 
replicates and sequenced independently.  
 
Peak-calling  
Regions enriched for PPARγ, KLF11 or DHS signal in white and brite hMADS 
adipocytes were identified using HOMER (Heinz et al. 2010) with the ‘-size given’ 
and ‘-factor’ settings and with all other parameters set at default. Subsequently, an 
additional stringency filter was applied, so only peaks >15 fold (PPARγ), >10 fold 
(DHS) or >5 fold (KLF11) over the matching input control were kept for further 
analyses. Merged peak files were generated from the individual PPARγ, KLF11 or 
DHS peak files if the center of two or more peaks were within 250 bp. Peaks from 
these merged peak files were only included if having more than 30 tags (PPARγ 
peak file), 15 tags (KLF11 peak file), and 10 tags (DHS peak file) per 10 M tags in a 
400 bp window around the center of each merged peak. This resulted in merged 
peak files consisting of 52,030 PPARγ peaks, 38,391 KLF11 peaks, and 29,095 DHS 
peaks. HOMER was also used for counting tags at identified peak regions, 
annotating binding sites to RefSeq genes, and performing de novo motif search.  
 
Identification of PPARγ super-enhancers 
For identification of PPARγ super-enhancers individual PPARγ peaks were stitched 
together if they were within 12,500 bp, as previously described (Whyte et al. 2013). 
Sequence tag information for MED1 and input control were obtained in a window 
corresponding to the stitched PPARγ peak region. All identified PPARγ regions were 
then ranked according to increasing total MED1 ChIP-seq signal (with subtraction of 
input) in the given regions. Regions with more than 200 input-subtracted MED1 
ChIP-seq tags per 10 M total reads in two independent MED1 ChIP-seq replicates 
were regarded as PPARγ super-enhancers. In total, 1,212 PPARγ super-enhancers 



were identified in white and/or brite hMADS adipocytes, and these were tested for 
differential MED1 occupancy. Identical criteria were used to rank the PPARγ regions 
based on total (input-subtracted) ChIP-seq signal of H3K27ac resulting in 
identification of 1,188 PPARγ super-enhancers. 
 
Differential signal intensity in PPARγ binding sites and super-enhancers 
Differential signal intensity in PPARγ binding regions in white and brite hMADS 
adipocytes was determined using HOMER. First, annotatePeaks.pl with the ‘-noadj’ 
option was used to count the number of raw tags in PPARγ binding regions in the 
given condition (without any normalization). Then getdifferentialpeaks.pl was run with 
the parameters ‘-peaks –batch’, which calls on EdgeR (Robinson et al. 2010) to 
perform differential expression calculations with paired analysis. For this analysis the 
raw tag counts will be normalized based on the total library size for each condition in 
the given PPARγ binding regions. An FDR<0.1 was used to determine differential 
PPARγ occupancy in the PPARγ peak regions, whereas an FDR<0.01 was applied 
to test PPARγ regular and super-enhancers for differential MED1 or H3K27ac 
occupancy. For comparison, peak regions and PPARγ super-enhancers with 
insignificant changes were defined based on FDR and log2 fold changes as indicated 
in the text. 
 
Identification of H3K27ac-responsive KLF11 binding sites 
For identification of H3K27ac-responsive KLF11 binding sites H3K27ac ChIP-seq 
was performed in hMADS adipocytes transduced with lentivirus expression KLF11 or 
scramble shRNA. H3K27ac tag count information was obtained in all KLF11 binding 
sites in a 2,000 bp window around the KLF11 peak center. KLF11 binding regions 
with a H3K27ac-to-input ratio above 2.5 (23,032 sites) were tested for differential 
H3K27ac signal using getdifferentialpeaks.pl from HOMER with the following 
parameters ‘-peaks -dispersion 0.01’, and were regarded as responsive to the KLF11 
knockdown if obtaining p<0.1.  
 
Significance calculations in box plots 
The p-value for the difference between data in box plots was computed using 
Wilcoxon rank sum test (unmatched samples) or Wilcoxon matched pairs signed 
ranks test (matched samples). 
 
Significance calculation between categorical variables 
The p-value between data containing categorical variables was computed using 
either Fisher’s exact test (for samples sizes <2000) or Chi-square with Yates' 
continuity correction (for samples sizes >2000). 
 
Correlation analyses 
Pearson’s product-moment correlation coefficient was used to determine the linear 
correlation between two data sets. 
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