SUPPORTING INFORMATION–Training the Model

When training a model for binary classification, the goal is typically to learn a function f that can be used to predict the label for a new example. In our problem, the goal is to accurately predict a newly admitted patient's probability of testing positive for *C. difficile* during the current admission. Let x_i represent the ith training example, (i.e., patient admission). x_i is a d-dimensional feature vector that is in 0, 1 d . Let X represent the feature space that x_i lies in. Let y_i represent a binary label indicating whether or not the ith patient tested positive for *C. difficile* during the current admission. Then our learning task is defined as follows: $\mathcal{D} = \mathbf{x}_i, y_i \mathbf{x}_i \in \mathcal{X}, y_i \in -1, 1, \sum_{i=1}^n$, where *n* is the number of unique patient admissions available for training. In general, with logistic regression, we seek a function $f: \mathbb{R}^d \to 0, 1$ of the form:

$$
f \; \bm{x}_i \; = \frac{1}{1 + e^{-b_0 + \bm{w}^T \bm{x}_i}}
$$

where $w \in \mathbb{R}^d$ (and $x \in \mathbb{R}^d$). Solving for the regression coefficients w and the offset b_0 is a maximum likelihood estimation problem. When d is large, i.e., the data lie in a high-dimensional space, it is easy to overfit. Therefore, to improve generalizability to unseen future patient cases, and reduce the likelihood of overfitting to the training data, we employ L2-regularized logistic regression.¹⁸ In L2-regularized logistic regression, a regularization term $\frac{1}{2}$ w ² is included in the objective function.

$$
\min_{w} \frac{1}{2} w^{2} + C \frac{n}{i-1} \log(1 + \exp^{-y_{i}w^{T}x_{i}})
$$
 (Eq. 1)

 is a scalar tuning parameter that controls the tradeoff between the number of errors on the training set and the complexity of the model. Note, we add an extra constant dimension to w and compute the offset b_0 implicitly. The solution to Eq. 1 depends on the { \mathbf{x}_i, y_i } $_{i=1}^n$ employed in the training. The training data is used in Eq. 1 to find the optimal setting of w . The hyperparameter C in Eq. 1 was found using five-fold cross-validation on the training set, sweeping the value from 2^{-8} to 2^{-1} .

SUPPORTING INFORMATION–Calculating Colonization Pressure

In terms of *C. difficile*, colonization pressure (CP) aims to measure the number of infected patients, in a unit or hospital. In our analysis, the contribution a patient, *p*, makes to the CP on day, $\mathit{CPP}(t)$, depends on when the patient tested positive for the first and last time, t_f and t_l , and when the patient is discharged from the hospital t_d (where time is measured in days from the day of admission). While the patient continues to test positive he or she contributes a constant amount to the CP . After the last positive test result (which is often the first positive test result, since testing for a cure is not recommended) a patient contributes to the \mathcal{CP} for no more than 14 days. During this time period, the patient is assumed to be treated or in isolation, and we assume a linearly decreasing relationship. Equation 1 defines this function.

$$
CPP \ p, t = -\frac{t}{14} + \frac{(t_l + 14)}{14} \quad t \in [t_l, \min \ t_d, t_l + 14]
$$
 Eq.1
0 otherwise

We have time-stamped locations for each patient, thus we calculate a colonization pressure for each unit, $CPU \ u, t$, as in Equation 2. The CPU u, t depends on each patient's contribution to the colonization pressure on that day and each patient's length of stay in unit, u, on day t, $LOS(u, p, t)$

$$
CPU \t u, t = p \t CPP \t p, t * \frac{LoS(u, p, t)}{24} \t Eq.
$$

2

When extracting the relevant **unit-wide colonization pressure** for a new patient on a given day we sum the CPU u, t across all units in which that patient spent any time. As a result, the unit-wide colonization pressure varies across patients

for a given day. The **hospital-wide colonization pressure** is calculated as

 u CPU(u , t), and is the same across all patients on a given day.