Flow cytometry based enrichment for cell shape mutants identifies multiple genes that influence *Helicobacter pylori* morphology Supplementary Materials

Laura K. Sycuro¹, Chelsea S. Rule^{1,2}, Timothy W. Petersen³, Timna J. Wyckoff^{1,4}, Tate Sessler¹, Dilip B. Nagarkar¹, Fakhra Khalid¹, Zachary Pincus⁵, Jacoby Biboy⁶, Waldemar Vollmer⁶, and Nina R. Salama^{1,2}

¹Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, ²Department of Microbiology, University of Washington School of Medicine, Seattle, WA, ³BD Biosciences, Seattle, WA, ⁴Division of Science and Mathematics, University of Minnesota, Morris, MN, ⁵Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA, ⁶Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom.

Inventory:

Table S1. Muropeptide composition of His-Csd6 treated *csd6csd6* mutant sacculi.

 Table S2. Bacterial strains

Table S3. Primers

Figure S1. Spectra illustrating the approximate position of gates utilized to enrich for shape mutants in morphological sorting feasibility experiments.

Figure S2. Low FSC gate used for FACS sort of *H. pylori* transposon mutant library.

Figure S3. Identification of insertions in known shape loci within the pooled FACS output population.

Figure S4. Morphological characterization of double mutants.

Figure S5. Loss or overexpression of *csd4* perturbs cell shape and length.

		DBH11	DBH11
Peak No.	Muropeptide	+ buffer	+ His-Csd6
1	Tri	0.0	12.7
2	Tetra	13.0	0.0
3	Penta(Gly5)	4.5	4.6
4	Di	0.0	0.0
5	Penta	30.4	31.1
6	TetraTri	0.0	0.6
7	TetraPenta(Gly5)	3.8	3.3
8	TetraTetra	9.3	9.0
9	TetraPenta	14.1	13.5
10	PentaAnh	1.6	1.7
11	TetraTriAnh I	0.0	0.7
12	TetraTriAnh II	0.0	0.1
13	TetraTetraAnh I	6.9	6.1
14	TetraTetraAnh II	2.0	1.6
15	TetraPentaAnh	7.5	7.3
1 - 15	all known	93.0	92.5

Table S1. Muropeptide	composition	of His-Csd6	treated of	csd1csd6	mutant sacculi.

Table S2. Bacterial strains.

Name	Relevant Genotype or Description	Reference or Source
NSH57	Wild-type H. pylori: mouse-adapted G27	(Baldwin et al., 2007)
LSH100	Wild-type H.pylori: NSH57 with fliM repaired	(Lowenthal et al., 2009)
LSH18	∆csd4::catsacB in NSH57	(Sycuro et al., 2012)
KGH10	∆ <i>ccmA∷catsacB</i> in NSH57	(Sycuro et al., 2010)
LSH112	∆ <i>csd3∷catsacB</i> in NSH57	(Sycuro et al., 2010)
P1S1G1_5	csd6:tnGPScat in NSH57	this study
TSH17	<i>∆csd6∷cat</i> in LSH100	this study
TSH31	Δcsd6::cat McGee:csd6:aphA3 in LSH100	this study
TSH35	McGee:csd6:aphA3 in LSH100	this study
LSH79	rdxA::csd4 in NSH57	this study
LSH104	∆ <i>csd4::catsacB</i> rdxA::csd4 in NSH57	(Sycuro et al., 2012)
P1S1G1_6	HPG27_458: <i>tnGPScat</i> in NSH57	this study
P1S1G1_9	HPG27_866: <i>tnGPScat</i> in NSH57	this study
P1G1S1_11	HPG27_355 <i>:tnGPScat</i> in NSH57	this study
P1G1S1_12	HPG27_1132:tnGPScat in NSH57	this study
P1S1G1_20	HPG27_782:tnGPScat in NSH57	this study
MHH17	ΔHPG27_782:: <i>cat</i> in NSH57	this study
P4G1S1_29	mviN:tnGPScat in NSH57	this study
TSH1	<i>∆mviN∷cat</i> in LSH100	this study
TSH13	Δ <i>mviN::cat rdxA::mviN</i> in LSH100	this study
LSH154	Csd1H250A in NSH57	(Sycuro et al., 2010)
LSH28	Csd4E222A in NSH57	(Sycuro et al., 2012)
DBH11	Csd1H250A Δ <i>csd6::cat</i> in NSH57	this study
TSH27	Csd4E222A Δ <i>csd6∷cat</i> in NSH57	this study
DH10B	<i>E. coli</i> cloning strain	Invitrogen
BL21(DE3)	E. coli protein expression strain	Invitrogen

Table S3. Primers.

Name	Sequence			
Transposon primers				
N3	TTTAATACGACGGGCAATTTGCACTTCAG			
N2	CAGTTTAAGACTTTATTGTC			
S	TAATCCTTAAAAACTCCATTTCCACCCCT			
S2	AGTTCCCAACTATTTGTCC			
Shape loci primers				
HPG27_353-359u-5-Xhol	CCCTCGAGATGATAGAAGCTTGCAAAGCG			
HPG27_353-356d-3-EcoRI	ACATGCATAGCTCCATCAGG			
HPG27_1197-311u-5	CACTGATTCTATGGGCGTTA			
HPG27_1195-315d-3	CCTAAAGCGTCGGTATTGTA			
HPG27_1483-955-5	GACGCTTTTTTGGTGCTAGAA			
HPG27_1479-256-3	GCGCTAATAGGGGCAATGATG			
HPG27_464-193u-5	AGAAAGGGAATATCCAACGC			
HPG27_464-242d-3	TTACGCGCATAAATGGCTGG			
Targeted disruption primers				
hp0823-5	CTCAAATCAGCGCGATTTTAGC			
hp0823-3M	ATCCACTTTTCAATCTATATCTCTTCTTCAGCC			
hp0823-5M	CCCAATAGCG			
hn0823-3				
HPG27 477FO	ACCGGCTCTGTTAATGG			
	ATCCACTTTTCAATCTATATCACTCTAAACTAG			
HPG27_477RI	GCTTGGATT			
HPG27 477FI	CCCAGTTTGTCGCACTGATAACTTCACTCGCT			
	AIGACGG			
HPG27_477_RO	GAATIGGAGCTATAAGAGAGC			
838.1	GCTCTAGAAATTGTTGCAATTCCCCCACCAA			
838.3	AICCACITICAAICTATAICCATAAAAICCCT AAGCTGTTGGT			
838.2	ACGCGTCGACAAGATTACAAGCCATGATTTTA			
	AA			
838.4	CCCAGTTTGTCGCACTGATAAAAGGGGGCAA			
	TTTAGCCCT			
Complementation primers				
1 sacl	GCGCGAGCTCAAGGGTTTCTTTAGGGAT			
3 sacl	GCGCGAGCTCCATCATTAACATCATTATCG			
2 kpnl	GCGCGGTACCCTGTTCTAATGGGGTGTT			
4 kpnl	GCGCGGTACCGGCATATTTTTCCCTTATAT			
Kan1 Sall	GCGCGTCGACACAGAATTACTCTATGAAGCG			
Kan2 Xhol	GCGCCTCGAGATCTAGGTACTAAAACAATTC			
csd6p1 Xbal	GCGCTCTAGAGACTCCGTTCCAATCG			
csd6p2 BamHI	GCGCGGATCCTACATCCCCTTTAAGTTGTAAG			
csd6.1-EcoRI	GCGCGAATTCGAAGAAAAGAGCTTGCAAA			
csd6.2-Clal	GCGCATCGATAGGTTTGAGCGCGAA			
Protein expression primers				
5'Ndecsd6	GCGCGCGCATATGAGTGATCGTTTGTTAG			
3'XhoISTOPcsd6	GCGCGCGCTCGAGTTATTTTTCCATTATG			

Figure S1. Spectra illustrating the approximate position of gates utilized to enrich for shape mutants in morphological sorting feasibility experiments. Color density plots of spectra for wild-type cells (top row) and each class of shape mutant (bottom row). Pink outlines illustrate inclusion gates used to sort mixed culture populations containing each respective mutant and wild-type. The number outside each gate provides the percent of each single strain population that would be expected to sort into the gate. Strains used: NSH57, LSH18, KGH10, LSH112.

Figure S2. Low FSC gate used for FACS sort of *H. pylori* transposon mutant library. The light gray ovals show the gate position overlaying the wild-type (red arrow) and csd4 mutant scatter plots generated on the day of the sort. ~25% the $\Delta csd4$ straight rod mutant and ~0.5% of the wild-type populations were included by the gate (red boxes), suggesting the library sort might be expected to enrich for straight rod mutants by 50-fold.

128 160

FSC

192 224

SSC

32

256

 $\Delta csd4$ (straight rod)

32

6

Figure S3. Identification of insertions in known shape loci within the pooled FACS output population. CEKG PCR was performed using a primer upstream (5') or downstream (3') of each shape locus paired with primer N3, which anneals within the transposon, as described in Experimental Procedures. M, 1 kb DNA ladder; F, forward oriented insertions detected with 3' primer; R, reverse oriented insertions detected with the 5' primer.

Figure S4. Morphological characterization of double mutants. A,C) Scatter plots arraying indicated populations by cell length (x-axis, μm) and cell curvature (y-axis, arbitrary units). B,D) Smooth histograms displaying population cell curvature (x-axis) as a density function (y-axis). Bootstrapped Komologorov–Smirnov (KS) statistics of population cell curvature distributions: wild-type vs. all strains p<0.00001, *csd1* vs. *csd6* p<0.00001, *csd1* vs. *csd6* p=0.00003, *csd6* vs. *csd1csd6* p=0.00003, *csd6* vs. *csd4csd6* p=0.000136. Strains used: LSH100, LSH13, LSH18, TSH17, DBH11, TSH27.

Figure S5. Loss or overexpression of *csd4* perturbs cell shape and length. A–B) Scatter plots arraying cell length (x-axis, μ m) and cell curvature (y-axis, arbitrary units). Each point represents the outline of the cell image obtained by phase contrast microscopy. C) Smooth histogram displaying population cell curvature (x-axis, arbitrary units) as a density function (y-axis). D) Smooth histogram (kernel density estimate) displaying axis length (x-axis, μ m) as a density function (y-axis). *csd4* mutant ($\Delta csd4$), complemented (*csd4*cmpl) and merodiploid (*csd4*OP). Strains used: LSH100, LSH18, LSH104, LSH79.

