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1 Supplementary methods

1.1 Sensitivity to endpoint assumed

We wished to assess the sensitivity of each of the three methods to the model used to

simulate the tumour shrinkage. Recall that (zi0, zi1, zi2) represents the baseline, interim,

and final values of the tumour size. The simulation results in section 3.4 of the main

paper assume that the logarithm of the tumour size ratios,

(
log

(
zi1

zi0

)
, log

(
zi2

zi0

))
, are

distributed as a bivariate normal random variable with constant covariance matrix.

We considered three alternatives to this:

1. The ratios of the tumour sizes,
(

zi1

zi0
, zi2

zi0

)
is distributed as a bivariate normal distri-

bution with constant covariance matrix. In order to avoid situations where a ratio

for an individual was below 0, we chose smaller values for the components of the

covariance matrices. The covariance matrix used was

(
0.125 0.125

0.125 0.25

)
. Under the

null, the mean tumour ratio was set to 0.7, corresponding to a shrinkage of 30%.

Under the alternative, the control treatment had a mean of 0.7 + 0.35 × 0.25, and

the active treatment had a mean of 0.7− 0.35× 0.25.

2. The differences in the absolute tumour size (zi1 − zi0, zi2 − zi1) are assumed to be

independent normal random variables with a standard deviation of 1. Under the

null, the mean is chosen to give a mean tumour shrinkage between baseline and the

final observation of 30%. Under the alternative, the means of the two treatments

are symmetric around this mean.
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3. The log tumour size ratio is a bivariate normal random variable, but the covariance

matrix for an individual is

(
0.5( zi0

E(zi0)
)2 0.5( zi0

E(zi0)
)2

0.5( zi0

E(zi0)
)2 ( zi0

E(zi0)
)2

)
. Thus, the standard devi-

ation of the log tumour size ratio increases linearly with the baseline tumour size,

but the average standard deviation across all patients is as before. The means of

the two treatments are chosen as in the main paper.

2 Supplementary figures and tables
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Figure 1: Power of the augmented binary and logistic regression methods for n = 75 for
ψ = −1, x = 0.35 as the dichotomisation threshold changes. The traditionally used 30%
threshold corresponds to 0.7 in the figure.
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Figure 2: Power of the three methods for n = 75, δ0 = δ1 = log(0.7) and β = 1, as γD,
the effect of tumour size on probability of failure, changes.

ψ Type-I error rate
Binary Augmented binary Karrison

-1 0.055 0.052 0.048
-0.75 0.063 0.061 0.052
-0.5 0.063 0.060 0.046

n=50 -0.25 0.050 0.053 0.048
0 0.046 0.054 0.048

0.25 0.046 0.054 0.045
0.5 0.043 0.048 0.055
0.75 0.040 0.048 0.055
1 0.026 0.050 0.050
-1 0.049 0.052 0.047

-0.75 0.047 0.058 0.052
-0.5 0.055 0.061 0.050

n=75 -0.25 0.056 0.053 0.053
0 0.048 0.048 0.052

0.25 0.046 0.047 0.051
0.5 0.049 0.046 0.048
0.75 0.040 0.049 0.049
1 0.038 0.053 0.049

Table 1: Estimated type-I error rate for x = 0 and varying values of ψ (section 3.4 in
main paper).
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3 Sensitivity analyses

The augmented binary approach makes several assumptions. We conducted a sensitivity

analysis to three of these assumptions: 1) the hazard of non-shrinkage failure depends

only on the most recent tumour size observation; 2) the various binary reasons for failure

(new lesions, toxicity and death) can be combined and modelled as one process; and 3)

the log tumour size ratios are bivariate normally distributed with constant covariance

matrix.

3.1 Sensitivity to assumption that probability of failure de-

pends on most recent tumour size observation

To investigate the sensitivity of the augmented binary method to assumption 1) we sim-

ulated tumour shrinkage data and failure data for patients as if they were observed at

four post-baseline timepoints (referred to in the following text as timepoints 1, 2, 3, and

4) instead of two. Timepoints 2 and 4 are the interim and final timepoints from the

two timepoint trial. The tumour size data was simulated assuming that the log tumour

size ratios were multivariate normal with mean (0.25δ1, 0.5δ1, 0.75δ1, δ1), and covariance

matrix


0.25 0.25 0.25 0.25

0.25 0.5 0.5 0.5

0.25 0.5 0.75 0.75

0.25 0.5 0.75 1

. The failure model was the same as used in the main

paper, except extended to four time points.

We simulated non-comparative data with n = 75, δ1 = log(0.7), and no dropout for

non-failure reasons. The parameters used in the failure model, αD and γD were varied

with (αD, γD) = {(−2, 0.1) or (−2.75, 0.2)}. The positive γD parameters mean that

patients with large tumour sizes at the previous timepoint are more likely to fail at the

next timepoint than are those with smaller tumour sizes.

For each simulation replicate, the shrinkage data and failure data were simulated

for all four timepoints. Then the data on timepoints 1 and 3 were thrown away, so that

patients were only observed at baseline, interim and final timepoints. If a patient failed at

timepoints 1 or 3 then they were recorded as failures at the interim and final timepoint

respectively. The potential for bias here is that a patient’s tumour size may be quite

different at baseline and at timepoint 1 (say), but the augmented binary model will only

use the baseline tumour size.

However, from 5000 simulation replicates, the coverage of the augmented binary ap-

proach was 94.46% when γD = 0.1 and 94.48% when γD = 0.2, which is not noticeably

different from the results in the main paper. Thus it does not appear that the augmented
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binary method is particularly sensitive to this assumption.

3.2 Sensitivity to modelling different reasons for failure as one

category

To test the sensitivity of type-I error rate and power to assumption 2) we simulated

data using separate models for the probability of new lesions and probability of death

or toxicity. For the sensitivity analysis, we simulated data such that the parameters

representing the effect of treatment on failure due to new lesions, and failure due to

death/toxicity respectively have the same magnitude, but have opposite signs. This

means that the overall probability of failure is the same in each treatment arm, but that

the probability of new lesions is lower on one arm, and the probability of toxicity or

death is lower on the other arm. The two differences cancel each other out, so that the

probability of detecting a difference in success probability between treatments should

be the type-I error rate. A range of treatment and tumour size parameter values were

considered. For each set of parameter values, we estimated the probability of rejecting the

null hypothesis when there was no difference in tumour shrinkage between treatments,

and when the value of x was 0.35.

The results of this analysis are given in table 2. They show that violation of the

assumption that two distinct reasons for non-shrinkage failure can be combined into one

outcome has little noticeable effect on the type-I error rate of any of the three approaches.

When the magnitude of the effect of tumour size is large, there is a small inflation in the

type-I error rate of the logistic regression approach. In the extreme case where the

γD = 0.2, and βD = 1, the type-I error rate was estimated to be 0.067 for the logistic

regression approach. The inflation in type-I error rate when using logistic regression is

explained by the fact that the model fitted is mis-specified. The power of the augmented

binary approach fell modestly when the direction of effects differed, whereas the power

of the logistic regression approach fell more sharply. Thus, although the type-I error

rate and power of the augmented binary approach are somewhat sensitive to the first

assumption, the sensitivity is no greater than that of the logistic regression approach.

3.3 Sensitivity to normality of log tumour shrinkages

To test sensitivity to the assumptions made about the distribution of tumour shrinkages,

we simulated tumour shrinkages using three different models: 1) the tumour-size ratios

(rather than the logarithm of the ratios) are bivariate normal with constant covariance

matrix; 2) the differences in tumour size between each visit are bivariate normal with

constant covariance; 3) the log tumour-size ratios are bivariate normal, but the covariance
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Type-I error rate Power for x = 0.35
|γO| |βO| Logistic

regression
Augmented
binary

Karrison Logistic
regression

Augmented
binary

Karrison

0 1 0.046 0.048 0.050 0.645 0.777 0.438
0.1 0 0.049 0.047 0.053 0.634 0.764 0.430
0.1 0.5 0.054 0.049 0.052 0.602 0.760 0.411
0.1 1 0.054 0.050 0.051 0.564 0.756 0.394
0.2 1 0.067 0.053 0.055 0.444 0.689 0.324

Table 2: Estimated type-I error rate and power when the treatment effect parameters in
the models used to simulate failure due to new lesions and failure due to death/toxicity
have the same magnitude, but different sign.

matrix is a linear function of the baseline tumour size. The estimated type-I error rate

and power are shown in table 3.

The type-I error rate of the augmented binary approach shows no inflation for models

2) and 3). There was a small inflation (the observed type-I error rate was 0.057) for model

1). The power advantage of the augmented binary approach over logistic regression is

sensitive to the endpoint used - using model 2) the power of the augmented binary

approach (0.554) was lower than that of the logistic regression (0.580). These results

indicate that when analysing real data, assessing the plausibility of the assumption of

normality of the log tumour-size ratio is advisable. If there is evidence against the

assumption of normality of the log tumour size ratio, the augmented binary approach

can be easily modified so that a different function of the tumour shrinkage is used in the

model represented in equation 1 in section 2.1 of the main paper.

Type-I error rate Power for x = 0.35
Scenario Logistic

regression
Augmented
binary

Karrison Logistic
regression

Augmented
binary

Karrison

1 0.052 0.057 0.053 0.786 0.828 0.571
2 0.041 0.049 0.045 0.580 0.554 0.374
3 0.049 0.048 0.049 0.678 0.769 0.440

Table 3: Estimated type-I error rate and power when the mechanism for generating tu-
mour shrinkages differs. Scenario 1: the tumour-size ratios (rather than the logarithm of
the ratios) are bivariate normal with constant covariance matrix; scenario 2: the differ-
ences in tumour size between each visit are bivariate normal with constant covariance;
scenario 3: the log tumour-size ratios are bivariate normal, but the covariance matrix is
a linear function of the baseline tumour size.
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4 R code to fit augmented binary method

library(nlme)

library(R2Cuba)

library(boot)

integrand=function(logtumourratios,means_treated,means_untreated,Sigma,glm_dropout1,glm_dropout2,baselines)

{

#integrand evaluates the mean difference in success probability for a given log-tumour ratio.

#This function is called by probabilityofsuccess.

#get probabilities of not failing given patient is treated and given they are untreated:

n=length(baselines)

f1_treated=inv.logit(cbind(rep(1,n),baselines,rep(1,n))%*%glm_dropout1\$coefficients)

f2_treated=inv.logit(cbind(rep(1,n),exp(logtumourratios[1])*baselines,rep(1,n))%*%glm_dropout2$coefficients)

f1_untreated=inv.logit(cbind(rep(1,n),baselines,rep(0,n))%*%glm_dropout1$coefficients)

f2_untreated=inv.logit(cbind(rep(1,n),exp(logtumourratios[1])*baselines,rep(0,n))%*%glm_dropout2$coefficients)

pdf_treated=dmvnorm(cbind(-means_treated[,1]+logtumourratios[1],-means_treated[,2]+logtumourratios[2]),

mean=c(0,0),sigma=matrix(c(Sigma[1,1],Sigma[1,2],Sigma[2,1],Sigma[2,2]),2,2))

pdf_untreated=dmvnorm(cbind(-means_untreated[,1]+logtumourratios[1],-means_untreated[,2]+logtumourratios[2]),

mean=c(0,0),sigma=matrix(c(Sigma[1,1],Sigma[1,2],Sigma[2,1],Sigma[2,2]),2,2))

return(mean((1-f1_treated)*(1-f2_treated)*pdf_treated)-mean((1-f1_untreated)*(1-f2_untreated)*pdf_untreated))

}

probabilityofsuccess=function(continuousmodel,dropoutmodel1,dropoutmodel2,baselines,dichotomisationthreshold)

{

#probabilityofsuccess integrates over ‘integrand’ to find the mean difference in probability of success

#arguments - 1) gls object representing the tumour shrinkage model; 2),3) the two glm objects modelling

#the probability of dropout between each visit; 4) the vector of baselines for all patients;

#5) the dichotomisation threshold (on the percentage scale) used to classify patients as successes or failures.

#get the vector of mean tumour shrinkage were all patients untreated, and if all were treated

means_treated=cbind(cbind(rep(1,length(baselines)),rep(1,length(baselines)),rep(0,length(baselines)),

baselines,rep(1,length(baselines)))%*%continuousmodel$coefficients,cbind(rep(1,length(baselines)),

rep(0,length(baselines)),rep(1,length(baselines)),baselines,rep(2,length(baselines)))%*%continuousmodel$coefficients)

means_untreated=cbind(cbind(rep(1,length(baselines)),rep(0,length(baselines)),rep(0,length(baselines)),

baselines,rep(1,length(baselines)))%*%continuousmodel$coefficients,cbind(rep(1,length(baselines)),

rep(0,length(baselines)),rep(0,length(baselines)),baselines,rep(2,length(baselines)))%*%continuousmodel$coefficients)

#find lower and upper points for integration:

maxmean1=max(c(means_treated[,1],means_untreated[,1]))

maxmean2=max(c(means_treated[,2],means_untreated[,2]))

minmean1=min(c(means_treated[,1],means_untreated[,1]))

minmean2=min(c(means_treated[,2],means_untreated[,2]))

#integrate

a=cuhre(2,1,integrand=integrand,means_treated=means_treated,means_untreated=means_untreated,

Sigma=getVarCov(continuousmodel),glm_dropout1=dropoutmodel1,glm_dropout2=dropoutmodel2,baselines=baselines,

lower=c(qnorm(1e-08,minmean1,sqrt(getVarCov(continuousmodel)[1,1])),qnorm(1e-08,minmean2,

sqrt(getVarCov(continuousmodel)[2,2]))),upper=c(qnorm(1-1e-08,maxmean1,sqrt(getVarCov(continuousmodel)[1,1])),
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log(dichotomisationthreshold)),flags=list(verbose=0,final=1,pseudo.random=0,mersenne.seed=NULL))

return(a$value)

}

partialderivatives=function(continuousmodel,dropoutmodel1,dropoutmodel2,baselines,dichotomisationthreshold)

{

#finds numerical partial derivatives of probability of success w.r.t to parameters in the continuous model

#and both glm model value at current parameters

value=probabilityofsuccess(continuousmodel,dropoutmodel1,dropoutmodel2,baselines,dichotomisationthreshold)

partials=rep(0,10)

#partials w.r.t continuous parameters first:

for(i in 1:5)

{

continuousmodel_temp=continuousmodel

continuousmodel_temp$coefficients[i]=continuousmodel_temp$coefficients[i]+0.000001

value_temp=(probabilityofsuccess(continuousmodel_temp,dropoutmodel1,dropoutmodel2,baselines,

dichotomisationthreshold)-value)/0.000001

partials[i]=value_temp

}

#dropout model 1:

for(i in 1:3)

{

dropoutmodel1_temp=dropoutmodel1

dropoutmodel1_temp$coefficients[i]=dropoutmodel1_temp$coefficients[i]+0.000001

value_temp=(probabilityofsuccess(continuousmodel,dropoutmodel1_temp,dropoutmodel2,baselines,

dichotomisationthreshold)-value)/0.000001

partials[(i+5)]=value_temp

}

#dropout model 2:

for(i in 1:3)

{

dropoutmodel2_temp=dropoutmodel2

dropoutmodel2_temp$coefficients[i]=dropoutmodel2_temp$coefficients[i]+0.000001

value_temp=(probabilityofsuccess(continuousmodel,dropoutmodel1,dropoutmodel2_temp,baselines,

dichotomisationthreshold)-value)/0.000001

partials[i+8]=value_temp

}

#return the partial derivatives and the actual probability

return(c(partials,value))

}

#y is the log-tumour shrinkage for each individual at both time points;
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#id indexes which individual each datapoint corresponds to

#X is the design matrix, with a column for the intercept; a column representing the treatment

#indicator at the first visit; a column representing the treatment indicator for the second

#visit; and a column representing the baseline tumour size of each individual

#time is a vector labelling which visit the observation comes from

#dropout1 is a vector of 1’s and 0’s which represent if an individual drops out

#due to death/tox between baseline and the interim

#dropout2 is as above, but 1 if the individual drops out after the interim; only individuals

#who made it past the interim are included in this vector.

#baseline is the vector of each individual’s baseline tumour size;

#interim is the vector of each individual’s interim tumour size, assuming they did not drop out

#treatment is the treatment indicator.

dropoutmodel1=glm(dropout1~baseline+treatment,family="binomial")

dropoutmodel2=glm(dropout2~interim+treatment[dropout1==0],family="binomial")

continuousmodel=gls(y~X[,-1]+time,correlation=corSymm(form=~1|id),weights=varIdent(form=~1|time),na.action=na.omit)

partials=partialderivatives(continuousmodel,dropoutmodel1,dropoutmodel2,baseline,0.7)

mean=partials[12]

partials=partials[1:11]

covariance=matrix(0,11,11)

covariance[1:5,1:5]=continuousmodel$varBeta

covariance[6:8,6:8]=summary(dropoutmodel1)$cov.unscaled

covariance[9:11,9:11]=summary(dropoutmodel2)$cov.unscaled

#delta method approximation of variance

variance=t(partials)%*%covariance%*%partials

#confidence interval for difference in mean probability of success

CI=c(mean-1.96*sqrt(variance),mean,mean+1.96*sqrt(variance))
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