
Fast and Exact Continuous Collision Detection
with Bernstein Sign Classification

Supplementary Material

Min Tang1∗ Ruofeng Tong1 Zhendong Wang1 Dinesh Manocha2†

1. State Key Lab of CAD&CG, Zhejiang University 2. University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/BSC/

1 Proofs

In this supplementary document, we provide proofs of various lem-
mas, theorems and corollaries used in the paper.

Inflection Point Existence Lemma: For a cubic polynomial
Y (t) = k0 ∗ B3

0(t) + k1 ∗ B3
1(t) + k2 ∗ B3

2(t) + k3 ∗ B3
3(t),

its 2nd order derivative Y ′′(t) is:

Y ′′(t) = 6 ∗ (k2 − 2 ∗ k1 + k0) ∗B1
0(t)

+ 6 ∗ (k3 − 2 ∗ k2 + k1) ∗B1
1(t).

If the two scalars (k2 − 2 ∗ k1 + k0) and (k3 − 2 ∗ k2 + k1) have
different signs, there is an inflection point, otherwise there is no
inflection point in t ∈ [0, 1].

Proof. The inflection point corresponds to the root of Y ′′(t). If the
two scalars (k2−2∗k1 +k0) and (k3−2∗k2 +k1) have different
signs, there is one root for Y ′′(t), i.e. an inflection point, otherwise
there is no inflection point in t ∈ [0, 1].

Extreme Point Existence Lemma: For a cubic polynomial Y (t)
(defined as above), its 1st derivative Y ′(t) is:

Y ′(t) = 3 ∗ (k1 − k0) ∗B2
0(t) + 3 ∗ (k2 − k1) ∗B2

1(t)

+ 3 ∗ (k3 − k2) ∗B2
2(t).

If there is no inflection point in its domain and the two scalars (k1−
k0 and k3 − k2) have different signs, there is an extreme point,
otherwise there is no extreme point in t ∈ [0, 1].

Proof. If there is no inflection point (i.e. no root for Y ′′(t) = 0) in
[0, 1], Y ′(t) is monotonic in the domain. It the two scalars (k1−k0
and k3 − k2) have different signs, there is a root of Y ′(t) = 0 in
[0, 1], which corresponds to an extreme point. Otherwise there is
no extreme point in [0, 1].

Polynomial Decomposition Theorem: Let G(t) and H(t) be a
cubic polynomial and a quadratic polynomial, respectively:

G(t) = i0 ∗B3
0(t) + i1 ∗B3

1(t) + i2 ∗B3
2(t) + i3 ∗B3

3(t),

H(t) = j0 ∗B2
0(t) + j1 ∗B2

1(t) + j2 ∗B2
2(t). (1)

G(t) can be decomposed as:

G(t) = L(t) ∗H(t) +K(t), (2)

∗e-mail:{tang m,trf,westernseawolf}@zju.edu.cn
†e-mail:dm@cs.unc.edu

where L(t) and K(t) are two linear polynomials:

L(t) = u0 ∗B1
0(t) + u1 ∗B1

1(t),

K(t) = v0 ∗B1
0(t) + v1 ∗B1

1(t), (3)

where u[0,1] and v[0,1] can be calculated from i[0...3] and j[0...2].

Proof. This can be proven by substituting the algebraic expression-
s.

L(t) ∗H(t) = (j0 ∗B2
0(t) + j1 ∗B2

1(t) + j2 ∗B2
2(t))

∗ (u0 ∗B1
0(t) + u1 ∗B1

1(t))

= u0 ∗ j0 ∗B3
0(t)

+
2 ∗ u0 ∗ j1 + u1 ∗ j0

3
∗B3

1(t)

+
u0 ∗ j2 + 2 ∗ u1 ∗ j1

3
∗B3

2(t)

+ u1 ∗ j2 ∗B3
3(t). (4)

Moreover,

K(t) = K(t) ∗ (1− t+ t)2

= (v0 ∗B1
0(t) + v1 ∗B1

1(t))

∗ (B2
0(t) +B2

1(t) +B2
2(t))

= v0 ∗B3
0(t) +

2 ∗ v0 + v1
3

∗B3
1(t)

+
v0 + 2 ∗ v1

3
∗B3

2(t) + v1 ∗B3
3(t). (5)

From Equation (4) and Equation (5), we obtain:

L(t) ∗ H(t) +K(t)

= (u0 ∗ j0 + v0) ∗B3
0(t)

+
2 ∗ u0 ∗ j1 + u1 ∗ j0 + 2 ∗ v0 + v1

3
∗B3

1(t)

+
u0 ∗ j2 + 2 ∗ u1 ∗ j1 + v0 + 2 ∗ v1

3
∗B3

2(t)

+ (u1 ∗ j2 + v1) ∗B3
3(t). (6)

Based on Equation (1) and Equation (2), we obtain:

i0 = u0 ∗ j0 + v0 (7)

i1 =
2 ∗ u0 ∗ j1 + u1 ∗ j0 + 2 ∗ v0 + v1

3
(8)

i2 =
u0 ∗ j2 + 2 ∗ u1 ∗ j1 + v0 + 2 ∗ v1

3
(9)

i3 = u1 ∗ j2 + v1. (10)

From Equation (7) and Equation (10), we obtain:

v0 = i0 − u0 ∗ j0
v1 = i3 − u1 ∗ j2.

We substitute these expressions into Equation (8) and Equation (9)
and obtain:

3 ∗ i1 = 2 ∗ u0 ∗ j1 + u1 ∗ j0 + 2 ∗ v0 + v1

= 2 ∗ u0 ∗ j1 + u1 ∗ j0
+ 2 ∗ (i0 − u0 ∗ j0) + i3 − u1 ∗ j2

3 ∗ i2 = u0 ∗ j2 + 2 ∗ u1 ∗ j1 + v0 + 2 ∗ v1
= u0 ∗ j2 + 2 ∗ u1 ∗ j1
+ i0 − u0 ∗ j0 + 2 ∗ (i3 − u1 ∗ j2)

After rearranging the equations, we obtain:

2 ∗ (j1 − j0) ∗ u0 + (j0 − j2) ∗ u1 = 3 ∗ i1 − 2 ∗ i0 − i3
(j2 − j0) ∗ u0 + 2 ∗ (j1 − j2) ∗ u1 = 3 ∗ i2 − 2 ∗ i3 − i0

This can be expressed as:

u0 =

∣∣∣∣ 2 ∗ (j1 − j2) j0 − j2
3 ∗ i2 − 2i3 − i0 3 ∗ i1 − 2 ∗ i0 − i3

∣∣∣∣∣∣∣∣ 2 ∗ (j1 − j2) j0 − j2
j2 − j0 2 ∗ (j1 − j0)

∣∣∣∣ ,

u1 =

∣∣∣∣ 2 ∗ (j1 − j0) j2 − j0
3 ∗ i1 − 2 ∗ i0 − i3 3 ∗ i2 − 2i3 − i0

∣∣∣∣∣∣∣∣ 2 ∗ (j1 − j2) j0 − j2
j2 − j0 2 ∗ (j1 − j0)

∣∣∣∣ ,

v0 = i0 − u0 ∗ j0,
v1 = i3 − u1 ∗ j2.

Coplanarity Test Theorem for a VF Pair: For a deforming trian-
gle, whose initial and final positions are given as (a0,b0, c0) and
(a1, b1, c1) and a vertex with initial and final positions as p0 and
p1, the coplanarity test can be formulated as:

Y (t) = (pt − at) · nt

= k0 ∗B3
0(t) + k1 ∗B3

1(t) + k2 ∗B3
2(t) + k3 ∗B3

3(t), (11)

where k[0..3] are scalars:

k0 = (p0 − a0) · n0, k3 = (p1 − a1) · n1,

k1 = (2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0)/3,

k2 = (2 ∗ (p1 − a1) · n̂ + (p0 − a0) · n1)/3.

and

n0 = (b0 − a0)× (c0 − a0), n1 = (b1 − a1)× (c1 − a1),

n̂ = (n0 + n1 − (vb − va)× (vc − va)) ∗ 0.5,

va = a1 − a0, vb = b1 − b0, vc = c1 − c0.

Proof. The normal vector nt of the deforming triangle at time t can
be represented as following:

nt = n0 ∗B2
0(t) + n̂ ∗B2

1(t) + n1 ∗B2
2(t), (12)

where B2
i (t) is the ith basis function of the Bernstein polynomials

of degree 2.

We define: α = B2
0(t) = (1 − t)2, β = B2

1(t) = 2 ∗ t ∗ (1 − t),
and γ = B2

2(t) = t2. As a result, Equation (12) becomes:

nt = n0 ∗ α+ n̂ ∗ β + n1 ∗ γ.

Given the moving vertex pt = p0 ∗ (1− t) +p1 ∗ t and a vertex of
the deforming triangle at = a0 ∗ (1 − t) + a1 ∗ t, their projected
distance along nt is:

(pt − at) · nt = ((p0 − a0) ∗ (1− t) + (p1 − a1) ∗ t) · nt

= ((p0 − a0) ∗ (1− t) + (p1 − a1) ∗ t)
·(n0 ∗ α+ n̂ ∗ β + n1 ∗ γ)

= (p0 − a0) · n0 ∗ (1− t) ∗ α
+ (p0 − a0) · n̂ ∗ (1− t) ∗ β
+ (p0 − a0) · n1 ∗ (1− t) ∗ γ
+ (p1 − a1) · n1 ∗ t ∗ γ
+ (p1 − a1) · n̂ ∗ t ∗ β
+ (p1 − a1) · n0 ∗ t ∗ α.

We substitute α, β, and γ and obtain:

(pt − at) · nt = (p0 − a0) · n0 ∗ (1− t)3

+ (p0 − a0) · n̂ ∗ 2 ∗ (1− t)2 ∗ t
+ (p0 − a0) · n1 ∗ (1− t) ∗ t2

+ (p1 − a1) · n1 ∗ t3

+ (p1 − a1) · n̂ ∗ 2 ∗ t2 ∗ (1− t)
+ (p1 − a1) · n0 ∗ t ∗ (1− t)2. (13)

Base on Equation (11), we have the k0, k1, k2, and k3:

k0 = (p0 − a0) · n0, k3 = (p1 − a1) · n1,

k1 = (2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0)/3,

k2 = (2 ∗ (p1 − a1) · n̂ + (p0 − a0) · n1)/3.

Inside Test Theorem for a VF Pair: Given the triangle and the
vertex defined by start and end positions over the interval [0, 1], the
inside test can be formulated as:

((bt − pt)× (ct − pt)) · nt = l0 ∗B4
0(t) + l1 ∗B4

1(t)

+l2 ∗B4
2(t) + ∗l3 ∗B4

3(t) + l4 ∗B4
4(t),(14)

where l[0...4] are scalars:

l0 = m0 · n0, l1 =
m0 · n̂ + m̂ · n0

2
, l3 =

m̂ · n1 + m1 · n̂
2

,

l2 =
m0 · n1 + 4 ∗ m̂ · n̂ + m1 · n0

6
, l4 = m1 · n1,

and

n0 = (b0 − a0)× (c0 − a0), n1 = (b1 − a1)× (c1 − a1),

n̂ = (n0 + n1 − (vb − va)× (vc − va)) ∗ 0.5,

m0 = (b0 − p0)× (c0 − p0), m1 = (b1 − p1)× (c1 − p1),

m̂ = (m0 + m1 − (vb − vp)× (vc − vp)) ∗ 0.5,

va = a1 − a0, vb = b1 − b0, vc = c1 − c0, vp = p1 − p0.

Proof. Its proof is similar to the proof of Coplanarity Test
Theorem for a VF Pair. We can replace (pt − at) with
((bt − pt)× (ct − pt)).

Simplified Inside Test Theorem for a VF pair: Based on combin-
ing Inequality G(t) ≥ 0 with Equation Y (t) = 0 and algebraic
manipulation, this inside test can be reduced to the following lower
degree constraint:

P (t) = p0 ∗B2
0(t) + p1 ∗B2

1(t) + p2 ∗B2
2(t) ≥ 0, (15)

where:

Y (t) = k0 ∗B3
0(t) + k1 ∗B3

1(t) + k2 ∗B3
2(t) + k3 ∗B3

3(t).

G(t) = l0 ∗B4
0(t) + l1 ∗B4

1(t)

+l2 ∗B4
2(t) + ∗l3 ∗B4

3(t) + l4 ∗B4
4(t)

and p[0...2] are scalars, which can be calculated based on k[0...3]
and l[0...4].

Proof. We have:

Y (t) = k0∗B3
0(t)+k1∗B3

1(t)+k2∗B3
2(t)+k3∗B3

3(t) = 0 (16)

and:

Y (t) = k′0 ∗B4
0(t) + k′1 ∗B4

1(t) + k′2 ∗B4
2(t)

+ k′3 ∗B4
3(t) + k′4 ∗B4

4(t) = 0. (17)

Here:

k′0 = k0, k
′
1 =

k0 + 3 ∗ k1
4

, k′2 =
k1 + k2

2

k′3 =
3 ∗ k2 + k3

4
, k′4 = k3.

We obtain

G(t) ∗ k′0 − Y (t) ∗ l0 =

(l1 ∗ k′0 − l0 ∗ k′1) ∗B4
1(t) +

(l2 ∗ k′0 − l0 ∗ k′2) ∗B4
2(t) +

(l3 ∗ k′0 − l0 ∗ k′3) ∗B4
3(t) +

(l4 ∗ k′0 − l0 ∗ k′4) ∗B4
4(t). (18)

This Equation can be expressed as:

s0 ∗B3
0(t) + s1 ∗B3

1(t) + s2 ∗B3
2(t) + s3 ∗B3

3(t). (19)

Here:

s0 = (l1 ∗ k′0 − l0 ∗ k′1) ∗ 4

s1 = (l2 ∗ k′0 − l0 ∗ k′2) ∗ 2

s2 =
(l3 ∗ k′0 − l0 ∗ k′3) ∗ 4

3

s3 = l4 ∗ k′0 − l0 ∗ k′4 (20)

And:

(G(t) ∗ k′0 − Y (t) ∗ l0) ∗ k0 − Y (t) ∗ s0 =

(s1 ∗ k0 − s0 ∗ k1) ∗B3
1(t) +

(s2 ∗ k0 − s0 ∗ k2) ∗B3
2(t) +

(s3 ∗ k0 − s0 ∗ k3) ∗B3
3(t). (21)

t̂
0

t′

)(tY

1

Figure 1: Side Determination Theorem I: Given a t′ ∈ [0, 1], if
Y (t′) has the same sign of Y (0), then t′ < t̂, else t′ > t̂.

If Sign(Y(0)) = Sign(T(0))
 Y(t) has no root.

Else
 Y(t) has 2 roots.

Yes No
If Sign(Y’(t’)) = Sign(Y’(0))

If Sign(Y(0)) = Sign(T(1))
 Y(t) has no root.

Else
 Y(t) has 2 roots.
Else

If Sign(Y(0)) = Sign(T(0))
 Y(t) has no root.

Else
 Y(t) has 2 roots.

T(t) has a root t’ in [0, 1]?

Figure 2: Computing the Number of Roots of Y (t): We can
compute them based on sign evaluations.

This Equation can be expressed as:

p0 ∗B2
0(t) + p1 ∗B2

1(t) + p2 ∗B2
2(t). (22)

Here:

p0 = (s1 ∗ k0 − s0 ∗ k1) ∗ 3

p1 =
(s2 ∗ k0 − s0 ∗ k2) ∗ 3

2
p2 = s3 ∗ k0 − s0 ∗ k3 (23)

Sine Y (t) = 0, we have:

P (t) = (G(t) ∗ k′0 − Y (t) ∗ l0) ∗ k0 − Y (t) ∗ s0
= G(t) ∗ k′0 ∗ k0 = G(t) ∗ k0 ∗ k0.

So P (t) has the same sign of G(t).

Side Determination Theorem I: Given a polynomial Y (t), which
has only one root t̂ ∈ [0, 1] and Y (t̂) = 0. Sign(Y (0)) 6=
Sign(Y (1)). Given a t′ ∈ [0, 1], if Y (t′) has the same sign as
Y (0), then t′ < t̂, otherwise t′ > t̂.

Proof. We prove it using contradiction: If Y (t′) has the same sign
of Y (0) and t′ > t̂, then in the interval [t′, 1], Sign(Y (t′)) 6=
Sign(Y (1)). Since Y(t) is a continuous function, it must have an-
other root in the domain [t′, 1]. This is contradictory to the fact that
(̂t) is the only root in the domain [0, 1].

Root Finding Lemma: For a cubic polynomial Y (t) with an ex-
treme point in its domain, its 1st derivative Y ′(t) is:

Y ′(t) = 3 ∗ (k1 − k0) ∗B2
0(t) + 3 ∗ (k2 − k1) ∗B2

1(t)

+ 3 ∗ (k3 − k2) ∗B2
2(t).

(a)

0 t′

)(tY

1
0̂t 1̂t 0

t′
)(tY

1t ′′0̂t 1̂t
(b)

Figure 3: Sign Determination Theorem II: For a t′ ∈ [0, 1], if
Y (t′) has the same sign of Y (0), then t′ < t̂, else t′ > t̂.

We have Y (t) = Y ′(t)∗L(t)+K(t), whereL(t) andK(t) are two
linear polynomials and can be calculated with the Polynomial De-
composition Theorem. We can use the rules in Fig. 2 to compute
the number of roots of Y (t).

Proof. We define t′′ as the only root of Y ′(t), i.e., Y ′(t′′) = 0.
We need to determine the sign of Y (t′′). If Sign(Y (t′′)) =
Sign(Y (0)) then Y (t) has no root, otherwise Y (t) must have two
roots in [0, 1]. Since Y (t′′) = Y ′(t′′) ∗ L(t′′) +K(t′′) = K(t′′),
Sign(Y (t′′)) = Sign(K(t′′)). So we need to determine the sign
of K(t′′).

If K(t) has no root in [0, 1], then Sign(K(t′′)) = Sign(K(0)).

Otherwise, let t′ be the only root of K(t) in [0, 1]. Based
on the Side Determination Theorem I, if Sign(Y ′(t′)) =
Sign(Y ′(0)), t′ < t′′, else t′ > t′′. If t′ < t′′,
then Sign(K(t′′)) = Sign(K(1)), else Sign(K(t′′)) =
Sign(K(0)).

Side Determination Theorem II: For a given polynomial Y (t),
in a domain [0, 1] which has two roots t̂0 and t̂1. Sign(Y (0)) =
Sign(Y (1)). For t′ ∈ [0, 1], if Y (t′) has a different sign than
Y (0) (Fig. 3(a)), then t̂0 < t′ < t̂1, otherwise t̂0, t̂1 are on the
same side of t′ (Fig. 3(b)).

Proof. If Y (t′) has a different sign as compared to Y (0), then t′ ∈
[t̂0, t̂1]; otherwise:

• If t′ < t̂0, Sign(Y (t′)) 6= Sign(Y (0)), there is another root
in the interval [0, t’], this contradicts the fact Y (t) has two
roots.

• If t′ > t̂1, Sign(Y (t′)) 6= Sign(Y (1)), there is another root
in the interval [t’, 1], this contradicts the fact that Y (t) has
two roots.

If Sign(Y (t′)) = Sign(Y (0)) = Sign(Y (1)), then t′ 3 [t̂0, t̂1],
otherwise, Sign(Y (t′)) = Sign(Y (t′′)). This contradicts the fact
that Sign(Y (0)) 6= Sign(Y (t′′)), where t′′ is the extreme point.

Sign Determination Theorem I: Let L(t) be a linear polynomial
and Y (t) be a cubic polynomial which corresponds to the Bézier
curve of Case (b) (Section 3.2) in the domain [0, 1]. Let:

• L(t′) = 0, and t′ ∈ [0, 1].

• Y (t̂) = 0, and t̂ ∈ [0, 1].

We have:

If Sign(Y (t′)) = Sign(Y (0))

Sign(L(t̂)) = Sign(L(1))

Else

Sign(L(t̂)) = Sign(L(0))

Endif

Proof. With Side Determination Theorem I, we have: if
Sign(Y (t′)) = Sign(Y (0)), then t′ < t̂ ⇒ Sign(L(t̂) =

Sign(L(1)), else t′ > t̂⇒ Sign(L((̂t)) = Sign(L(0)).

Sign Determination Theorem II: Let L(t) be a linear polynomial
and Y (t) be a cubic polynomial which corresponds to the Bézier
curve of Case (c) in the domain [0, 1]. Let:

• L(t′) = 0, and t′ ∈ [0, 1].

• Y (t̂0) = 0 and Y (t̂1) = 0, and t̂0 ∈ [0, 1], t̂1 ∈ [0, 1], t̂0 <
t̂1.

• Y ′(t′′) = 0, and t′′ ∈ [0, 1]. Y ′(t) is the 1st order derivative
of Y (t).

We have:

If Sign(Y (t′)) 6= Sign(Y (0))

Sign(L(t̂0)) = Sign(L(0))

Sign(L(t̂1)) = Sign(L(1))

Else

If Sign(Y ′(t′)) = Sign(Y ′(0))

Sign(L(t̂0)) = Sign(L(1))

Sign(L(t̂1)) = Sign(L(1))

Else

Sign(L(t̂0)) = Sign(L(0))

Sign(L(t̂1)) = Sign(L(0))

Endif

Endif

Proof. With Side Determination Theorem II, we have: If
Sign(Y (t′)) 6= Sign(Y (0)), then t̂0 < t′ < t̂1 ⇒
Sign(L(t̂0) = Sign(L(0)) and Sign(L(t̂1) = Sign(L(1)).
Otherwise, t̂0, t̂1, and t′′ are at the same side of t′, and with Side
Determination Theorem I, we obtain:

if Sign(Y ′(t′)) = Sign(Y ′(0)), then t′ < t′′, otherwise t′ > t′′.

t′ < t′′ ⇒ t′ < t̂0 and t′ < t̂1 ⇒ Sign(L(t̂0)) = Sign(L(1))
and Sign(L(t̂1)) = Sign(L(1)).

t′ > t′′ ⇒ t′ > t̂0 and t′ > t̂1 ⇒ Sign(L(t̂0)) = Sign(L(0))
and Sign(L(t̂1)) = Sign(L(0)).

2 Error Bound for Conservative Culling

The conservative culling algorithm is described in Section 4.3. It
uses a floating-point filter and we present an error-bound for that

filter. Since our computation only uses addition, substraction, and
multiple operations, it is relatively simple to derive such a bound.

According to the IEEE 754 standard, given an exact arithmetic
operator × and its floating point counterpart

⊗
, a × b =

ROUND(a
⊗
b) and |a

⊗
b − a × b| ≤ |a × b| ∗ ε. For the

double precision format, ε = 2−52.

We use following rules to evaluate the error bounds for addi-
tion/subtraction and , repsetively:

Rule I: Error bound for addition/substraction: Give two num-
bers with rounding errors, i.e. a + c1 ∗ ε and b + c2 ∗ ε, rounding
error of the addition/substration operation on them will be bounded
by:

∆ = (a+ c1 ∗ ε)± (b+ c2 ∗ ε)
+ ||(a+ c1 ∗ ε)± (b+ c2 ∗ ε)|| ∗ ε
= a± b+ (c1 ± c2) ∗ ε+ ||a± b||) ∗ ε+O(ε2)

< a± b+ (c1 ± c2) ∗ ε+ (||a± b||+ 1) ∗ ε (24)

The accumulate rounding error is bounded by (c1±c2+ ||a±b||+
1) ∗ ε.

Rule II: Error bound for multiply operation: The multiple of
a+ c1 ∗ ε and b+ c2 ∗ ε is ∆ (with rounding error):

∆ = (a+ c1 ∗ ε) ∗ (b+ c2 ∗ ε)
+ ||(a+ c1 ∗ ε) ∗ (b+ c2 ∗ ε)|| ∗ ε
= a ∗ b+ (b ∗ c1 + a ∗ c2 + ||a ∗ b||) ∗ ε+O(ε2)

< a ∗ b+ (b ∗ c1 + a ∗ c2 + ||a ∗ b||+ 1) ∗ ε (25)

The accumulative rounding error is bounded by (b ∗ c1 + a ∗ c2 +
||a ∗ b||+ 1) ∗ ε.

In order to perform conservative culling, we need to test the signs
of

k0 = (p0 − a0) · n0, k3 = (p1 − a1) · n1,

k1 = (2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0)/3,

k2 = (2 ∗ (p1 − a1) · n̂ + (p0 − a0) · n1)/3.

and

n0 = (b0 − a0)× (c0 − a0), n1 = (b1 − a1)× (c1 − a1),

n̂ = (n0 + n1 − (vb − va)× (vc − va)) ∗ 0.5,

va = a1 − a0, vb = b1 − b0, vc = c1 − c0.

Let nv = (vb − va)× (vc − va), for k1 and k2, it is equivalent
to testing:

k′1 = 2 ∗ (p0 − a0) · n̂ + (p1 − a1) · n0

= (p0 − a0) · (n0 + n1 − (vb − va)× (vc − va))

+ (p1 − a1) · n0,

= (p0 − a0) · (n0 + n1 − nv) + (p1 − a1) · n0,

(26)

Similarly, we have:

k′2 = (p1 − a1) · (n0 + n1 − nv) + (p0 − a0) · n1. (27)

For k0, k′1, k′2, k3, their rounding errors are sum of i× j · k, where
i, j, and k are vectors, and

i× j · k = iy ∗ jz ∗ kx − iz ∗ jy ∗ kx
+ iz ∗ jx ∗ ky − ix ∗ jz ∗ ky
+ ix ∗ jy ∗ kz − iy ∗ jx ∗ kz

(a) VF Inside Test (b) EE Inside Test

ta

ta

tb

tc tp

tb
tc

td

Figure 4: Inside Tests: For VF and EE pairs, we need to per-
form inside tests to check if the vertex is inside the triangle, or the
two edges are intersecting with each other, when their vertices are
coplanar.

We use the Rule I and Rule II to accumulate the rounding errors,
and compute the error bounds for k0, k′1, k′2, k3 on-the-fly. These
dynamically computed error bounds are used by the filtering algo-
rithm.

3 EE Query Algorithm

As shown in Fig. 4(b), in order to perform an inside test for a EE
pair, we need to perform three one-sided tests to make sure the t-
wo edges, atbt and ctdt, intersect with each other. This can be
expressed based on the following inequalities:

((bt − dt)× (ct − dt)) · nt ≥ 0, (28)
((ct − dt)× (at − dt)) · nt ≥ 0, (29)
((at − dt)× (bt − dt)) · nt ≤ 0. (30)

The only different between EE query algorithm vs VF query algo-
rithm is to use these inequalities for the inside tests. The rest of the
formulation and algorithm structure is the same.

4 Avoiding Division Operations

A key aspect of the algorithm is that we don’t perform any division
operations. In practice, division operations are more expensive in
the context of extended precision computation and it is harder to
obtain tight error bounds for floating-point filters.

For a linear polynomial L(t) = a ∗ B1
0(t) + b ∗ B1

1(t), its root is
give t′ = a

a−b
. We do not need to perform the division by (a− b),

since we only need to:

• Check if L(t) has a root in [0, 1]: We can check the signs
of a, b. If they have the same sign, there is no root in [0, 1],
otherwise, there is 1 root in [0, 1].

• Evaluate Y (t′), where Y (t) is a cubic or quadratic poly-
nomial in Bernstein form. In our algorithm, we only need
to know the sign of Y(t). For a cubic polynomial: If
(a − b) > 0, Sign(Y (a

a−b
) = Sign(Y (a)), otherwise

Sign(Y (a
a−b

) = −Sign(Y (a)). For a quadratic polyno-
mial, Sign(Y (a

a−b
) = Sign(Y (a)).

In both these cases, we can compute the signs of the expression
without explicitly performing a division operations.

