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SUPPLEMENTAL INFORMATION 

 

Supplemental Methods 

Chromatin-immunoprecipitation (ChIP) 

ChIP was performed in a similar process as previously reported . Briefly, cells were fixed 

with 0.5% formaldehyde for 10 minutes at room temperature and subsequently treated 

with 125 mmol/L glycine for 10 minutes. For each ChIP assay 1x107 Cells were lysed in 

750μL lysis buffer [10 mmol/L Tris-Cl (pH8.0), 10 mmol/L EDTA, 0.5 mmol/L EGTA, 

0.25% Triton X-100, protease inhibitor cocktail]. Lysates were incubated for 15 minutes 

at room temperature with rotation and centrifuged. The pellet was resuspended in 

enrichment buffer [10 mmol/L Tris-Cl (pH 8.0), 200 mmol/L NaCl, 10 mmol/L EDTA, 

0.5mmol/L EGTA, protease inhibitor cocktail]. The preparation was incubated for an 

additional 15 minutes at room temperature with rotation. Insoluble material was 

pelleted, resuspended in 1 mL immunoprecipitation buffer [20 mmol/L Tris-Cl (pH 8.0), 

200 mmol/L NaCl, 0.5% Triton X-100, 0.05%sodium deoxycholate, 0.5% NP40, protease 

inhibitor cocktail], and sonicated to generate fragmented chromatin with approximately 

500 bp in length. For each ChIP, 1μg antibody for OCT1, or 1μg nonspecific 

immunoglobulin G (Sigma) was added and incubated overnight at 4°C. Immune 

complexes were precipitated for 1 hour at room temperature with 1/20th volume 

protein-G beads. Beads were washed three times with immunoprecipitation buffer, once 

with high salt buffer (immunoprecipitation buffer with 800 mmol/L NaCl), once in LiCl 

buffer [10 mmol/L Tris-Cl (pH 8.0), 250 mmol/L LiCl, 1% Triton X-100, 0.5% NP40, 0.1% 

sodium deoxycholate, 5 mmol/L EDTA, protease inhibitor cocktail], and twice with 

Tris-EDTA. Immune complexes were eluted with 40 μL elution buffer [10 mmol/L 

Tris-Cl (pH8.0), 1% SDS, 5 mmol/L EDTA] at 65°C for 1 hour and cross-links were 

reversed by adding 200 mmol/L NaCl and incubating at 65°C overnight. Eluted material 

was treated with 30 μg proteinase K for 2 hours at 42°C and purified (QIAGEN). 

Amplification of DNA from OCT1 ChIP was carried out with PCR reaction containing 

12.5μL SYBR green master mix (QIAGEN), 7μL water, 3μL of 5μM primer mix, and 2.5μL 
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DNA. An iCycler iQ real-time PCR detection system (Bio-Rad) was used to perform the 

quantitative PCR. 

Cell viability assays 

The MGC803 cells transfected with OCT1 vector in the presence or absence of synbindin 

siRNA and control vector were seeded onto 96-well plates at 2500cells/well. Cell 

proliferation was measured using the Cell Counting Kit-8 (CCK-8, Dojindo). At each time 

point, cells were incubated with 10mL CCK-8 reagent per well (100 ml medium/well) 

for 30min at 37°C, 5% CO2. The absorbance was measured at 450 nm.  

Flow cytometric analysis 

Cell cycle progression was assayed by DNA content using propidium iodide and flow 

cytometry. MGC803 cells were transfected with OCT1 vector, OCT1 vector+synbindin 

siRNA and control vector. Approximately 1×106 cells were trypsinized and washed 

twice with ice-cold PBS and then fixed overnight at -20°C in 70% ethanol. Immediately 

before flow cytometry, the cells were resuspended in PBS containing propidium iodide 

(50 µg/ml) and DNase-free RNase (10 µg/ml). Flow cytometry was performed using a 

FACScalibur (BD biosciences) system with CELLquest software. 

Tumor cell invasion assays 

Tumor cell invasion assays were performed using Boyden chambers with filter inserts 

(pore size, 8-μm) coated with Matrigel (40 μg; Collaborative Biomedical, Becton 

Dickinson Labware, Bedford, MA) in 24-well dishes (Nucleopore, Pleasanton, CA, USA) 

as described previously [1]. Briefly, 1×105 cells after transfected with OCT1 vector in the 

presence or absence of synbindin siRNA were seeded in the upper chamber, while the 

same medium was placed in the lower chamber. The plates were incubated for 24 h. 

Then the cells were fixed in 4% formaldehyde and stained with 0.05% crystal violet in 

PBS for 20min at room temperature. Cells on the upper side of the filters were removed 

by cotton-tipped swabs, and the filters were washed with PBS. The cells on the lower 

side of the filters were defined as invasive cells and counted at x200 magnification in 10 

different fields of each filter. 

Annexin V analysis 
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The apoptotic status was analyzed by using a TACS annexin V-FITC kit (R&D Systems, 

Minneapolis, MN). Briefly, cells (1×106cells/mL) were transfected with OCT1 vector in 

the presence or absence of synbindin siRNA. After washing in ice-cold PBS, cells were 

collected by EDTA treatment and incubated with a mixture of annexin V-FITC and PI for 

15 minutes at room temperature according to the manufacturer’s instruction. Early 

apoptotic (only annexin V-positive) cells were distinguished from late apoptotic or 

necrotic (annexin V and PI double-positive) cells by a flow cytometric analysis. 

Array-based Copy Number Variation (CNV) analysis 

The altered chromosome segments in 293 stomach adenocarcinoma patients of The 

Cancer Genome Atlas (TCGA) cohort were obtained via the UCSC cancer genome 

browser [2], and the CNV data of Singapore cohort can be accessed from GEO database 

(GSE31168). Both datasets were based on the Affymetrix SNP6.0 microarray, and were 

analyzed by GISTIC 2.0 algorithm [3] using default parameters for ‘threshold’ and ‘focal’ 

modes, respectively. The VUMC data were based on customized array-CGH method, and 

was obtained from GEO database (GSE26389). The compatible CGHCall algorithm [4] 

was used calculate the CNV of all genes for in VUMC dataset. To identify significant 

relationships between the CNVs of OCT1 and other genes, a dimension reduction 

permutation (DRP) statistical algorithm was used to analyze the TCGA CNV dataset. The 

DRP algorithm has been described previously [5]. 

Gene Set Enrichment Analysis (GSEA) 

GSEA is a method of analyzing and interpreting microarray and such data using 

biological knowledge [6]. The data in question is analyzed in terms of their differential 

enrichment in a predefined biological set of genes (representing pathways). These 

predefined biological sets can be published information about biochemical pathway or 

coexpression in a previous experiment. GSEA was performed using GSEA version 2.0 

from the Broad Institute at MIT. Two datasets were analyzed by GSEA: a ‘multi-cancer’ 

dataset [7] including 64 solid tumors and 27 normal tissues (GSE28866) and The Cancer 

Genome Atlas (TCGA) dataset including 282 GC samples. Both datasets were determined 

by 3'-End Sequencing for Expression Quantification (3SEQ). In this study, GSEA firstly 
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generated an ordered list of all genes according to their correlation with OCT1 

expression, and then a predefined gene set (signature of gene expression upon 

perturbation of certain cancer-related gene) receives an enrichment score (ES), which is 

a measure of statistical evidence rejecting the null hypothesis that its members are 

randomly distributed in the ordered list. Parameters used for the analysis were as 

follows. The “c6.all.v4.0.symbols.gmt” gene sets were used for running GSEA and 1000 

permutations were used to calculate P-value and permutation type was set to gene_set. 

The maximum gene set size was fixed at 1500 genes, and the minimum size fixed at 15 

genes. The expression level of OCT1 (POU2F1) was used as phenotype label, and “Metric 

for ranking genes” was set to Pearson Correlation. All other basic and advanced fields 

were set to default. 

To overcome gene-set redundancy and help in the interpretation of altered 

pathways, we applied the “Enrichment Map” algorithm, a network-based method for 

interpreting gene-set enrichment results [8].  Gene-sets are organized in a network, 

where each set is a node and links represent gene overlap between sets. Automated 

network layout groups related gene-sets into network clusters, helping to identify the 

major enriched functional themes. The default parameters were used to generate 

enrichment networks: P-value cutoff=0.005; FDR Q-value cutoff=0.1; overlap coefficient 

cutoff=0.75. 

Prediction of OCT1 binding sites by 3D structure-based energy calculations 

An initial assignment using the TFsearch prediction tool indicated potential 

OCT1-binding sites within the synbindin promoter (ranged from -700 to TSS). Then, a 

more dedicated 3D structure-based method was used to identify OCT1-binding site with 

higher confidence.  

Prediction of OCT1 binding sites based on ChIP-seq data 

The features of OCT1- binding sequences can be interpreted by the enriched stretches in 

OCT1 ChIP-seq data. A previous study has identified 5-mer stretches that are specifically 

enriched in top 1% OCT1-binding sequences [9]. We analyzed the enrichment of 

OCT1-binding motifs within the scanning window (described above) as a measure to 
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search for potential OCT1 binding site in the synbindin promoter. This method was 

combined with 3DTF algorithm to identify highly confident candidate sequences. 

Western blotting 

Western blot assays were performed to examine OCT1 and synbindin proteins. Cell 

extracts were prepared using RIPA buffer (Thermo Fisher) from cells that were treated 

as indicated. After electrophoresis, proteins were electroeluted at 120 volts onto a 

polyvinylidene difluoride (PVDF) membrane (Invitrogen). Primary antibodies raised 

OCT1 were purchased from Abcam. The anti-synbindin antibody was purchased from 

Abnova, and the α-tubulin antibody was used as a control. The Western blotting analysis 

was repeated at least three times. 

In vivo experiments 

Briefly, male BALB/c athymic nude mice (4–6 weeks old) were obtained from the 

experimental animal center of Shanghai Institute for Biological Sciences (SIBS). All mice 

were injected subcutaneously into the right side of back with 1.0×107 stable MGC803 

cells transfected with OCT1 vector and control vector to establish the GC xenograft 

model. 14 days after first injection,the two groups were sacrificed and the xenograft 

tissues were taken for Western blot and Immunofluorescence. Tumor diameters were 

measured at regular intervals with digital calipers, and tumor volume was calculated by 

the formula: tumor volume (mm3) = shorter diameter2 × longer diameter/2. The tumor 

volume data are presented as means ± SD (n = 6). 
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Supplementary Figures 

 

Figure S1. Expression and amplification of OCT1 gene in gastric tissues.  
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(A) OCT1 is upregulated in intestinal metaplastic tissues. The upper panel shows OCT1 

immunofluorescent staining (green) in normal gastric tissue, while the lower panel 

presents OCT1 expression in intestinal metaplastic tissues. Cell nucleus were stained 

with DAPI in blue. 

(B) The Circos plot shows gene copy number variation (CNV) in the TCGA stomach 

adenocarcinoma (STAD) cohort. The level of CNV was based on the mean aggregation of 

log ratio signals of all probes within each gene, regardless of the level of alterations (focal or 

broad). OCT1 is located in a recurrently amplified region in chromosome 1 (magnified 

plot). The lower plot shows the CNV (log2 ratio and GISTIC-estimated events) of OCT1 in 

all patients by increasing order. While the copy number of OCT1 was increased in 96 

cases, it was decreased in only 10 patients.  

(C) Heat map showing CNVs of the TCGA gastric cancer cohort including both broad and focal 

events. Each column represents a segmented genomic region, and each row represents a GC 

patient.  

(D) Focal CNV events in TCGA gastric cancer cohort, wherein the broad CNV events have 

been subtracted.  

(E) Summary on the prevalence of OCT1 amplification in three indicated GC cohorts. The 

TCGA and Singapore datasets (based on SNP array platform) were analyzed by GISTIC 

algorithm for focal and broad CNV events. The frequencies for OCT1 amplification 

(including both focal and broad events) were respectively 32.1% (TCGA cohort) and 28.0% 

(Singapore cohort). Focal amplification of OCT1 was found in 10.2% cases in TCGA 

cohort and 9.3% patients in Singapore cohort. The VUMC dataset was based on 

ArrayCGH platform and analyzed CGHCall algorithm, which revealed 22.2% GC cases 

with amplified OCT1 gene. 
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Figure S2. Association between OCT1 expression and clinicopathological patterns of 

GC. 

(A) Statistical analysis on the staining intensity of OCT1 in patients stratified by tumor 
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sizes (median split). Tumors with larger sizes showed significantly higher OCT1 staining 

intensity than those with smaller tumor sizes (P<0.0001, Mann Whitney test).  

(B) Association between OCT1 expression and clinicopathological features of gastric 

cancer patients. All 90 patients were stratified by OCT1 expression levelinto OCT1-low 

and OCT1-high groups (median split), and the clinicopathological features were 

compared between two groups using the statistical method indicated.  

(C) Gastric cancer patients (n=90) were divided into 4 groups according to OCT1 expression 

levels (quartile split into Q1-Q4), and their survival were compared using Kaplan-Meier 

survival analysis. The numbers of cases at risk are shown in the lower panel. Significant 

differences were found between the pairs Q1 v.s. Q3 (P=0.017), Q2 v.s. Q3 (P=0.010), and Q3 

v.s. Q4 (P=2.1x10-5). 

(D) Survival of patients with different AJCC grades were compared by Kaplan-Meier survival 

analysis. Significant different was only found between the groups with AJCC state II and stage 

III (P=0.006).  

(E) Multivariate Cox regression survival analysis suggested independent prognostic 

value of OCT1. Different factors (including OCT1, AJCC stage, tumor size, sex and age) 

were analyzed for their association with patient survival using Cox regression model. 

The P-value, Exp (b) (hazard ratio) and its 95% confident interval (CI) are shown for 

each factor.  
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Figure S3. Enrichment map summary of GSEA on OCT1-associated pathways . 

(A) OCT1-associated gene sets were identified by GSEA on gene expression profiles in 

multiple tumors. The multi-cancer dataset (GSE28866) included 64 solid tumors and 27 

normal tissues, and a ranked gene list was calculated according to the correlation with OCT1 

expression. Detailed analysis method for can be found in Methods section. The 

Enrichment Map analysis was used to overcome gene-set redundancy and improve the 

interpretation of large gene lists. Multiple gene sets related to RAS-ERK signaling were 

found to be associated with OCT1 expression (dashed circle), with PDGF/ERK signature 

as the most correlated gene set. Other clusters of gene sets include MAPK pathways, CRX 

and NRL, STK33, etc. 

(B) The expression of ranked genes in the PDGF/ERK signature is shown in the heat map. 

(C) The OCT1-associated gene sets were determined using TCGA stomach adenocarcinoma 

(STAD) gene expression profiles. The expression of all genes were determined by 3’ RNA 

sequencing method, and the GSEA/Enrichment Map analyses were performed using the 

same approaches as in (A). The TCGA gastric cancer data also identified the strong 

correlation between OCT1 expression and RAS-ERK signaling, with PDGF/ERK signature 

being the most correlated gene set.   
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Figure S4. OCT1 binds to the promoter region of synbindin. 

(A) An initial assignment on OCT1-binding sites on the synbindin promoter using the 

TFsearch prediction tool. The putative OCT1-binding sites were found upstream (-700) 

of the transcription start site (TSS) of synbindin gene.  

(B) Luciferase reporter assay showing the transactivation of synbindin promoter by 
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OCT1. The synbindin promoter sequence (-654 to -241bp upstream of TSS) was inserted 

to a reporter vector, and then co-transfected with OCT1 in MGC803 cells. Ectopic 

expression of OCT1 strongly increased luciferase activity (*** P<0.001, two-sided 

student t-test).  

(C) Chromatin immunoprecipitation (ChIP) assay showing the binding of OCT to 

synbindin promoter in vivo. The promoter region of synbindin was amplified from the 

DNA recovered from the immunoprecipitation complex using a specific antibody for 

OCT1. The input DNA and ChIP yield using non-specific IgG are included as controls. 

(D) The sequences tested in luciferase assays were picked up from the prediction results 

by 3DTF (upper panel) and ChIP seq-based (lower panel) methods. The red arrow heads 

show the position of the true binding site, while grey arrow heads indicate the other 

tested sequences. 

(E) Luciferase assay revealed that OCT1 transactivates the predicted binding site (marked as 

‘P’) but not other control sites (C1-C5). (** P<0.01, t-test) 
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Figure S5. Effects of OCT1 silencing and synbindin ectopic expression on the 

phosphorylation of ERK and substrates in MKN45 cells. 

The MKN45 cells were transfected with siRNAs for OCT1 (#1 and #2, respectively) in the 

absence or presence of synbindin expression vector, and Western Blot was used to 

determined the levels of the indicated proteins/phosphor-proteins. While OCT1 silencing 

suppressed phosphorylation of ERK/RSK/ELK1, synbindin overexpression blocked the effect 

of OCT1 silencing. 

 

 

 



14 

 

Figure S6. Synbindin binds to DEF-domain of ERK2 protein 

(A) The binding mode of ERK-synbindin complex as predicted by the Hex spherical polar 

Fourier protein docking algorithm. In this model, the LDc domain of synbindin interacts 

with the DEF-domain of ERK2, in contact with its residues L191, L232 and Y261.  
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(B) Crystallography-determined structure of ERK/PEA15 binding complex (PDB 

accession 4IZA), wherein PEA15 binds to the DEF-domain of ERK but not D-domain. 

(C) The structure of ERK binding to a designed Ankyrin Repeat protein, based on 

crystallography data (PDB accession 3ZUV). The DEF-domain of ERK is also involved in 

the interaction with Ankyrin Repeat protein.  

(D) The ERK2/synbindin heteroduplex structure (validated by GST pull-down) created a 

binding surface to MEK1, and the picture shows a predicted structure of MEK1 binding 

to the ERK2/synbindin duplex. These results suggest that synbindin may facilitate 

MEK1/ERK2 interaction. 

(E) The histogram shows the most frequently phosphorylated proteins found in gastric 

cancer cell lines, based on the PhosphoSite database (combined data from 

high-throughput proteomic experiments). The phosphorylation of ERK2 protein was 

identified in all the 32 analyzed gastric cancer cell lines, which represents the most 

frequent phosphorylation event in the whole proteome. Altogether 6496 proteins were 

found phosphorylated by different frequencies, ranging from 1/32 to 32/32. Synbindin 

was not found phosphorylated in any analyzed cell line, suggesting its phosphorylation 

is not required for ERK phosphorylation in GC cells. 

(F) Proposed model for synbindin-involved ERK activation. The left panel shows the 

interaction between synbindin LDc domain and ERK DEF-domain (experimentally validated), 

which creates a binding surface for MEK1. The binding with MEK1 facilitates ERK 

phosphorylation (middle panel), which enables ERK to activate its substrates docked to DEF 

and D-domains (right panel). 
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