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Supporting Information Text 
I. Theoretical expression of the normalized p/(1-p) 
We consider the model shown in Figure 1a in the main text. Let  

pU1 = equilibrium probability of the pre-translocation state (upper amplitude) 
pU2 = equilibrium probability of the exonuclease state (upper amplitude) 
pL1 = equilibrium probability of the unbound post-translocation state (lower amplitude)  
pL2 = equilibrium probability of the d/rGTP bound post-translocation state (lower amplitude) 

The observed probability of lower amplitude, p, is the sum over the 2 lower amplitude state. 
p = pL1 + pL2                   (1) 

At equilibrium, we have  
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We express everything in terms of pL1.  

pU1 = pL1 !
r2r3
r1r4

                 (5) 

We solve for pL1 using that the total probability is 1. 
pU1 + pU 2 + pL1 + pL2 = 1                (6) 
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The quantity p/(1-p) has the expression  
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At [d/rGTP] = 0, the quantity p/(1-p) is  
p

1! p
"

#$
%

&' d/rGTP(
)

*
+=0

=
1

r2r3
r1r4

+
r2
r1

              (10) 

The theoretical expression for the normalized p/(1-p) is  
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The study of normalized p/(1-p) depends on the finding that the translocation rates r1 and r2 are not 
affected by the dNTP, which was established in a previous study 1. The normalized p/(1-p) is an 
equilibrium property employed as an initial scan of the effects of mutants, dNTP binding and rNTP 
binding. 
 
II. Survival probability and dwell time distribution of the lower amplitude  
To study the survival probability and dwell time distribution, we consider the escape problem of 
exiting from the lower amplitude. Let  

SL1(t) = probability of remaining in the lower amplitude beyond t and being in the unbound post-
translocation state at time t  

SL2(t) = probability of remaining in the lower amplitude beyond time t and being in the d/rGTP 
bound post-translocation state at time t  

The survival probability of the lower amplitude is  
S(t) = SL1(t) + SL2(t) 

Based on the model shown in Figure 1a in the main text, SL1(t) and SL2(t) are governed by  
d
dt
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The matrix has two distinct real eigenvalues.  

!1 =
r2 + kon d/rGTP[ ] + koff( ) + r2 + kon d/rGTP[ ] + koff( )2 " 4r2koff

2
   (13) 

!2 =
r2 + kon d/rGTP[ ] + koff( ) " r2 + kon d/rGTP[ ] + koff( )2 " 4r2koff

2
   (14) 

Both SL1(t) and SL2(t), and the sum S(t) = SL1(t) + SL2(t) have the general form  
S t( ) = a ! exp "#1t( ) + b ! exp "#2t( )             (15) 

The coefficients a and b are constrained by the 2 conditions below: 
S 0( ) = 1                     (16) 
!S 0( ) = "r2                    (17) 

Solving for a and b, we obtain  
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The survival probability is   
S t( ) = a ! exp "#1t( ) + 1" a( ) ! exp "#2t( )            (19) 

The probability density of the dwell time is  
! t( ) = " #S t( ) = a $ %1 exp "%1t( ) + 1" a( ) $ %2 exp "%2t( )        (20) 

The survival probability and dwell time distribution of the upper amplitude state has the same 
mathematical structure.  
 
III. Determining kinetic rates from observed dwell time samples  
The observed dwell time samples represent the dwell time beyond the cut-off threshold tC. 
Mathematically, the probability density for the observed dwell time samples is  

!Observed t( ) =
1

S tC( )
! t + tC( )               (21) 

= aObserved ! "1 exp #"1t( ) + 1# aObserved( ) ! "2 exp #"2t( )       (22) 
where coefficient aObserved is related to coefficient a as  

aObserved =
a ! exp "#1tC( )

a ! exp "#1tC( ) + 1" a( ) ! exp "#2tC( )
         (23) 

Observed dwell time samples are fitted to the probability density (22) given above using the 
Maximum Likelihood Estimation (MLE) to calculate the intermediate parameters.  

Observed dwell
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Coefficient a is calculated from aObserved using the equation   

a =
aObserved ! exp "1tC( )

aObserved ! exp "1tC( ) + 1# aObserved( ) ! exp "2tC( )
         (25) 

Once the intermediate parameters {a, l 1, l2} are determined, we calculate the kinetic rates  
{r2, k on, koff} using the 3 equations below  

r2 = a ! "1 + 1# a( )"2                 (26) 

kon =
1

d/rGTP[ ]
!
a 1" a( ) #1 " #2( )2

a ! #1 + 1" a( )#2
            (27) 

koff =
!1!2

a " !1 + 1# a( )!2
               (28) 

These 3 equations are straightforward to verify using (13), (14) and (18).  
 
IV. Transition in the slope of log(survival probability) 
We examine the slope of log(S(t)).  

!
d
dt
log S t( )( ) = !1

S t( )
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SL1 t( )
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           (29) 
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Quantity Q t( ) = SL1 t( )
S t( )

 is the fraction of the survival probability in the unbound post-translocation 

state, from which the complex can fluctuate to the pre-translocation state (and thus, exit from the 
lower amplitude level).  
At time t = 0, Q(0) = 1. In the presence of dGTP (or rGTP), as t increases quantity Q converges to 
Q(∞), a constant smaller than 1. Correspondingly, the slope of log(S(t)) decreases from r2 at t = 0 to 
r2Q(∞) at large time.  
We study the time evolution of quantity Q(t). Based on the time evolution equation (12) for SL1(t) 
and SL2(t), we derive  

d
dt
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= koff ! r2 + kon d/rGTP[ ] + koff( )Q + r2Q
2          (32) 

The governing equation for Q(t) is  
d
dt
Q t( ) = F Q( )                  (33) 

where F(Q) has the expression  
F Q( ) = koff ! r2 + kon d/rGTP[ ] + koff( )Q + r2Q

2          (34) 
F(Q) has 2 stationary points:  

F Q( ) = r2 Q ! z1( ) Q ! z2( )               (35) 

z1 =
r2 + kon d/rGTP[ ] + koff( ) + r2 + kon d/rGTP[ ] + koff( )2 ! 4r2koff

2r2
    (36) 

z2 =
r2 + kon d/rGTP[ ] + koff( ) ! r2 + kon d/rGTP[ ] + koff( )2 ! 4r2koff

2r2
    (37) 

Mathematically, z1 and z2 have the properties:  

 z1 >
r2 + kon d/rGTP[ ] + koff( ) + r2 ! kon d/rGTP[ ]! koff( )2

2r2
" 1      (38) 

z2 <
r2 + kon d/rGTP[ ] + koff( ) ! r2 ! kon d/rGTP[ ]! koff( )2

2r2
" 1      (39) 

!F z1( ) = r2 z1 " z2( ) = r2 + kon d/rGTP[ ] + koff( )2 " 4r2koff > 0      (40) 

!F z2( ) = r2 z2 " z1( ) = " r2 + kon d/rGTP[ ] + koff( )2 " 4r2koff < 0     (41) 
It follows that z1 is unstable and z2 is stable. Consequently, Q(∞) is the same as z2.  
Function F(Q) is not linear. As a result, the decrease of Q from 1 to z2 is not a simple exponential 
decay with a constant rate. F(Q) is quadratic with !!F Q( ) = 2r2 > 0 . In [z2, 1], F(Q) satisfies  

F Q( ) ! "F z2( ) Q # z2( )                (42) 
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Note that both sides of the inequality above are negative, corresponding to that Q decreases from 1 
to z2 in the dynamical system.  
The inequality implies that the decrease of Q is slower than a simple exponential decay with rate 
! "F z2( ) , which is a constant and which is bounded by  

! "F z2( ) = r2 + kon d/rGTP[ ] + koff( )2 ! 4r2koff # r2 + kon d/rGTP[ ] + koff   (43) 

Therefore, we conclude that the rate of Q relaxing to z2 is bounded by r2 + kon d/rGTP[ ] + koff .  
The observed survival probability is  

SObserved t( ) =
S t + tC( )
S tC( )

                (44) 

==> log SObserved t( )( ) = log S t + tC( )( ) ! log S tC( )( )         (45) 
Thus, the plot of log SObserved t( )( )  is the just the plot of log S t( )( )  for t > tC, horizontally and 
vertically shifted. The most important point is that in log SObserved t( )( )  we don’t have the information 
of log S t( )( )  for t < tC. In particular, if any transition occurs in log S t( )( )  in the time period [0, tC], 
we won’t see it in the plot log SObserved t( )( ) .  
 

V. Review and summary of relevant results from our previous studies 
A. The assignment of the biochemical identity of states for specific Φ29 DNAP kinetic transitions 
to the measured ionic current signal has been established: 

1) Transitions across the translocation step were assigned to the fluctuations of ionic current 
between two amplitude levels 2. The assignment was based upon i) two amplitude levels are 
observed only when an abasic reporter group is inserted in the template strand to couple the 
current amplitude to the DNA displacement inside the nanopore lumen; in the absence of an 
abasic reporter group in the template strand, only one amplitude level is observed. Crucially, 
these experiments ruled out the possibility that the observed two amplitude levels are 
attributed to conformational changes in the binary complex that alter the extent to which the 
complex impedes ion flow into the nanopore; ii) the distance of the DNA movement; and iii) 
the direct comparison of the amplitudes in the fluctuations to amplitudes traversed during 
processive synthesis catalyzed by Φ29 DNAP complexes atop the nanopore. 
2) The dNTP binding was assigned to the emergence of a second dwell time cluster in the 
lower amplitude 1. The assignment was based upon i) the strict dependence of the second 
dwell time cluster on the complementarity of dNTP to the templating base; ii) the dependence 
of the second dwell time cluster on the complementary dNTP concentration. 
3) The primer strand transfer between the polymerase and exonuclease sites was assigned to 
the presence of a second dwell time cluster in the upper amplitude 3based upon the behavior 
of Φ29 DNAP mutants known to perturb the primer strand transfer. Examination of ionic 
current traces recorded during exonucleolysis catalyzed by Φ29 DNAP complexes atop the 
nanopore verified that there is no unique amplitude associated with the state in which the 
primer strand occupies the exonuclease site. 
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B. We developed experimental methods to observe the DNA displacement in the transitions 
between the pre-translocation state to the post-translocation state 4. Combining this experimental 
capability and a mathematical method, we studied the detailed kinetic relation of translocation and 
dNTP binding. We found that the translocation and dNTP binding are sequential. Specifically, 
dNTP binding can occur only in the post-translocation state; dNTP binding locked the complex in 
the post-translocation state; fluctuation back to the pre-translocation state can occur only after the 
dissociation of dNTP. We reconstructed rates of translocation and dNTP binding simultaneously 
from data 1. 
The forward translocation rate, the reverse translocation rate, and the nucleotide triphosphate  
asscociation and dissociation rates are measured simultaneously in our studies. If an apparent dNTP 
binding rate is measured without resolving the translocation states, the apparent rate contains the 
effects of translocation rates and the dNTP binding rate. We further studied the effect of voltage 
(force) and dNTP concentrations on these rates. We found that the dNTP has no effect on the 
translocation rates and the voltage (force) has no effect on dNTP association or dissociation rates 1. 
In contrast, the apparent dNTP binding rate measured without resolving the translocation states will 
be affected by the voltage (force) since the voltage changes the translocation rates. The actual 
binding rates in the post-translocation state can be affected by alterations in the structure of the 
nucleotide triphosphate, or by mutations in the enzyme. 
 
C. The kinetic rates r1, r2, kon and koff are reconstructed from dwell time distributions. In the presence 
of dNTP, the dwell time distribution of the lower amplitude is a combination of 2 exponential 
modes. Mathematically, both modes vary with dNTP concentration. The mode with long dwell time 
is affected much more prominently by dNTP concentration. The long dwell time mode is caused by 
binding and repeated binding of dNTP. Given a set of dwell time samples, there is no clear-cut 
threshold for distinguishing which sample belongs to which mode. 
In our method, we fit all dwell time samples to a combination of 2 exponential modes to obtain 3 
intermediate parameters: decay rate of the first mode, decay rate of the second mode and the relative 
fraction of the first mode. From these 3 intermediate parameters and the fitting results for the upper 
amplitude dwell time samples, we calculate kinetic rates r1, r2, kon and koff. This set of 4 kinetic rates 
is calculated from data for each individual voltage and each individual dNTP concentration. In the 
calculation, there is no priori assumption about the independence of rates on voltage or dNTP. 
Rather, the conclusion that r1 and r2 are independent of dNTP and the conclusion that kon and koff are 
independent of voltage are established by comparing rates calculated from data corresponding to 
different voltages or different dNTP concentrations 1. This mathematical method thus avoids the 
ambiguous task of classifying an individual dwell time sample as corresponding to “no dNTP 
binding”, “dNTP binding once”, or “repeated dNTP binding”. 
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Figure S1. Effects of complementary dNTP or complementary rNTP on the lower amplitude dwell 
time distributions. Plots of log(survival probability) vs. dwell time for the lower amplitude level for 
complexes formed between DNA1-H_H and the wild type Φ29 DNAP (a-c) or the D12A/D66A 
mutant (d), showing the concentration-dependent effects of dGTP (a and b) or rGTP (c and d). In all 
plots, the dashed red line represents an exponential distribution with rate r2, which is the constant 
slope of log(survival probability) at 0 µM dGTP or rGTP (see text), and which is obtained by fitting 
to the data at 0 µM dGTP or rGTP (panels a-d, i). The solid red fitting lines in panels a and b (ii-v) 
show the fit of the data to a model of two exponential modes. The dashed black fitting lines in 
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panels c and d (ii-v) show the fit of the data to an exponential distribution. The dwell time samples 
were extracted from data files collected when complexes were captured at 180 mV; each file yields 
~8,000-80,000 dwell time samples for each amplitude level. In the plots, while 1 out of every 20 
points is shown, the curves are fit to the full set of dwell time samples. 
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Figure S2. Effects of complementary dNTP or complementary rNTP on the upper amplitude dwell 
time distributions. Plots of log(survival probability) vs. dwell time for the upper amplitude level for 
complexes formed between DNA1-H_H and the wild type Φ29 DNAP, captured at 180 mV in the 
presence of increasing concentrations of (a) dGTP or (b) rGTP. The dashed black fitting lines show 
the fit to an exponential distribution. These data demonstrate that the presence of dNTP or rNTP 
does not affect the dwell time distribution of the upper amplitude level, confirming that dNTP or 
rNTP binds only after the translocation, when the complex is in the post-translocation state. 



S11 

 

 
 

Figure S3. Effect of the Y254V mutation on the dNTP concentration-dependence of 
polymerization. (a) The functional coupling between DNA synthesis and exonucleolysis for the 
Y254V mutant Φ29 DNAP (lanes 1-8) or the wild type Φ29 DNAP (lanes 9-16) is shown as a 
function of the indicated concentration of dNTPs. (b) DNA synthesis catalyzed by the D12A/D66A-
6His mutant (lanes 1-8) or the D12A/D66A/Y254V-6His mutant (lanes 9-16) as a function of the 
indicated concentration of dNTPs. 
Reactions were conducted in 12.5 µl using 0.36 ng of a primer/template DNA substrate (32P-labeled, 
15 mer primer strand hybridized with a 33 mer template strand), in 50 mM Tris-HCl, pH 7.5, 1 mM 
DTT, 4% glycerol, 12.5 µg BSA, 20 ng of the indicated enzyme, and the indicated concentration of 
dNTPs. Reactions were initiated by the addition of MgCl2 to a final concentration of 10 mM, 
incubated for 5 min at 30°C, and stopped with 3 µl of formamide buffer (95% formamide, 20 mM 
EDTA, 0.05% bromphenol blue and 0.05% xylene cyanol). Products were resolved by denaturing 
electrophoresis (20% PAGE/8M urea) in TBE buffer. Lanes labeled 'C' show the position of the 
primer strand in the unreacted DNA substrate. 
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Figure S4. Effects of a primer terminal 2´-OH group on dwell time distributions at each of the two 
amplitude levels for wild type and mutant Φ29 DNAP binary complexes. Plots of log(survival 
probability) vs. dwell time for the upper amplitude (a and b), or the lower amplitude (c and d), for 
complexes formed between wild type (a-d, i), D12A/D66A (a-d, ii), or Y254V Φ29 DNAP (a-d, 
iii), and DNA1-H_H (a and c) or DNA1-OH_H (b and d). The dashed black fitting lines show the 
fit of the data to an exponential distribution. The solid red fitting lines in panels b, i-iii, show the fit 
of the data to a model of two exponential modes. Complexes were captured at 180 mV. 


