## SUPPLEMENTARY DATA

**Fig. S1.** MALDI-TOF MS of *endo*-glucanase-generated XyG fragments from (A) *S. lycopersicum* var. *Saint-Pierre*, (B) *S. lycopersicum* var. cerasiforme, (C) *S. pimpinellifolium* and (D) *S. peruvianum* leaves. Possible structures of XyG fragments are shown according to the one-letter nomenclature proposed by Fry *et al.*, (1993) and as described in Fig. 1. The structures in bold were characterized by York *et al.*, (1996), Jia *et al.*, (2005) and Hoffman *et al.*, (2005). Underlined structures indicate the presence of *O*-acetylated side chains on the XyG fragment. The black star represents unassigned fragment and the black square represents the sodiated adduct corresponding to (Pent)<sub>6</sub>GlcA<sub>1</sub>OAc<sub>1</sub> originating from glucuronoarabinoxylan. Pent. Pentose, GlcA. glucuronic acid, OAc. *O*-acetyl group.



**Fig. S2.** MALDI-TOF MS of *endo*-glucanase-generated XyG fragments from *S. lycopersicum* cv. dombito cell-suspension. Possible structures of XyG fragments are shown according to the one-letter nomenclature proposed by Fry *et al.*, (1993) and shown in Fig. 1. The structures in bold were characterized by York *et al.*, (1996), Jia *et al.*, (2003) and Hoffman *et al.*, (2005). Underlined structures indicate the presence of *O*-acetylated side chains on the XyG fragment.



**Fig. S3.** Structural characterization of LSG/XXXG and LSGG/XXLG oligosaccharides from *S. peruvianum* pollen tubes. (A) MALDI-TOF/TOF MS of the precursor ion at m/z = 1365.7 ( $[M+Na]^+$  adduct) of the permethylated Hex<sub>4</sub>Pent<sub>3</sub> structures (LSG and XXXG) and the corresponding fragmentation pattern. (B) MALDI-TOF/TOF MS of the precursor ion at m/z = 1569.8 ( $[M+Na]^+$  adduct) of the permethylated Hex<sub>5</sub>Pent<sub>3</sub> structures (LSGG and XXLG) and the corresponding fragmentation pattern. Ara. arabinose, Fuc. Fucose, Gal. galactose, Glc. glucose, Xyl. xylose. \*, double fragmentation ion. The MALDI-TOF MS of the permethylated oligosaccharides is shown in Fig. 6.



**Fig. S4.** MALDI-TOF MS of *endo*-glucanase-generated XyG fragments from the hemicelluloseenriched extract of *S. lycopersicum* var. cerasiforme pollen tubes. Possible structures of XyG fragments are shown according to the one-letter nomenclature proposed by Fry *et al.*, (1993) as described in Fig. 1. Underlined structures indicate *O*-acetylated side chains of XyG fragments. \* indicates the shift of m/z = 16 of the potassium adducts which are present in addition to sodiated adducts.



**Fig. S5.** MALDI-TOF MS of *endo*-glucanase-generated XyG fragments from (A) the cell wall extract and (B) the hemicellulose-enriched extract of *N. tabacum* pollen tubes. Possible structures of XyG fragments are shown according to the one-letter nomenclature proposed by Fry *et al.*, (1993) and shown in Fig. 1. The three structures in bold were characterized in *Nicotiana alata* pollen tubes by Lampugnani *et al.*, (2013). Underlined structures represent *O*-acetylated side chains. Black star represents unassigned fragment. \* indicates the shift of m/z = 16 of the potassium adducts.



**Table S1.** Relative abundance of XyG oligosaccharides released after *endo*-glucanase digestion of the cell wall of *S. lycopersicum* cv. dombito cell suspension and *S. lycopersicum* var. cerasiforme leaves.

| Mass <sup>a</sup> | Cells                   | Leaves                    | Composition <sup>b</sup>                            | Possible structure <sup>c</sup>                   |
|-------------------|-------------------------|---------------------------|-----------------------------------------------------|---------------------------------------------------|
| 953               | $1 \pm 0.1^{d}$         | < 1                       | Hex <sub>4</sub> Pent <sub>2</sub>                  | GXXG                                              |
| 995               | $17.5 \pm 0.1$          | $15.5 \pm 2.7^{e}$        | Hex <sub>4</sub> Pent <sub>2</sub> OAc <sub>1</sub> | XX <u>G</u> G / GS <u>G</u> G                     |
| 1055              | < 1                     | $4 \pm 0.7$               | Hex <sub>3</sub> Pent <sub>4</sub>                  | SSG                                               |
| 1085              | < 1                     | < 1                       | Hex <sub>4</sub> Pent <sub>3</sub>                  | XXXG/GXSG/LSG                                     |
| 1127              | <mark>26.1 ± 1.6</mark> | <mark>31 ± 1.5</mark>     | Hex <sub>4</sub> Pent <sub>3</sub> OAc <sub>1</sub> | <b>XS<u>G</u>G</b> / SX <u>G</u> G                |
| 1157              | $9.8 \pm 0.8$           | <mark>14.3 ± 1.8</mark> e | Hex <sub>5</sub> Pent <sub>2</sub> OAc <sub>1</sub> | LX <u>G</u> G / GXX <u>G</u> G                    |
| 1169              | $21.2 \pm 0.4$          | - <sup>f</sup>            | Hex <sub>4</sub> Pent <sub>3</sub> OAc <sub>2</sub> | T <u>GG</u> G                                     |
| 1199              | $3.8 \pm 0.1$           | < 1                       | Hex <sub>5</sub> Pent <sub>2</sub> OAc <sub>2</sub> | GS <u>GG</u> G / XX <u>GG</u> G                   |
| 1259              | $7.7 \pm 0.5$           | $4.6 \pm 0.3$             | Hex <sub>4</sub> Pent <sub>4</sub> OAc <sub>1</sub> | SS <u>G</u> G/ <b>XT<u>G</u>G</b>                 |
| 1289              | $4.5\pm0.2$             | $20.8 \pm 3.1$            | Hex <sub>5</sub> Pent <sub>3</sub> OAc <sub>1</sub> | XX <u>L</u> G/ <b>LS<u>G</u>G/</b> GXS <u>G</u> G |
| 1319              | $1.5 \pm 0.2$           | <mark>6.7 ± 1</mark>      | Hex <sub>6</sub> Pent <sub>2</sub> OAc <sub>1</sub> | <b>LL<u>G</u>G</b> /GL <u>L</u> G                 |
| 1331              | $4.5 \pm 0.2$           | < 1                       | Hex <sub>5</sub> Pent <sub>3</sub> OAc <sub>2</sub> | L <u>SG</u> G/XS <u>GG</u> G                      |
| 1421              | < 1                     | $1.6\pm0.4$               | Hex <sub>5</sub> Pent <sub>4</sub> OAc <sub>1</sub> | LT <u>G</u> G/GSS <u>G</u> G                      |
| Fucosylated       | -                       | -                         |                                                     |                                                   |

<sup>a</sup>Mass (m/z) of the  $[M+Na]^+$  adducts. <sup>b</sup>Hex, hexose; Pent, pentose; OAc, *O*-acetyl substituent. <sup>c</sup>Possible structures of XyG fragments are shown according to the one-letter nomenclature proposed by Fry *et al.*, (1993) and as shown in Fig. 1. The structures in bold were characterized by York *et al.*, (1996), Jia *et al.*, (2003), Jia *et al.*, (2005) and Hoffman *et al.*, (2005). Underlined structures represent *O*-acetylated side chains. <sup>d</sup>Values are expressed as relative percentage and are the means  $\pm$  SD from MALDI spectra obtained after *endo*-glucanase digestion from three independent cell wall extractions. The five most abundant fragments are highlighted in yellow. <sup>c</sup>Relative abundance of these fragments corresponds to the total of the  $[M+K]^+$  and  $[M+Na]^+$  adducts. <sup>f</sup> not detected above the signal to noise ratio.

| F                       | S. lycopersicum        |                           |                        | S.               | S.             |                                                                      |                               |
|-------------------------|------------------------|---------------------------|------------------------|------------------|----------------|----------------------------------------------------------------------|-------------------------------|
| Mass                    | var. cerasiforme       |                           | var. St-Pierre         | pimpinellifolium | peruvianum     | - Composition                                                        | Dessible structure            |
| ( <i>m</i> / <i>z</i> ) | Cell Wall              | КОН                       | Cell Wall              | Cell Wall        | Cell Wall      | - Composition                                                        | Possible structure            |
| 953                     | $4.6 \pm 0.7$          | $29.9 \pm 2.8^{\rm f}$    | $7.1 \pm 0.3$          | $15.8 \pm 2.6$   | $6.2 \pm 0.5$  | Hex <sub>4</sub> Pent <sub>2</sub>                                   | GXXG                          |
| 995                     | $15.7 \pm 1.7$         | $1.2 \pm 0.5$             | $20.8 \pm 5.8$         | $15.8 \pm 2.2$   | $15.7 \pm 2.4$ | $Hex_4Pent_2OAc_1$                                                   | XX <u>G</u> G/GS <u>G</u> G   |
| 1037                    | - <sup>e</sup>         | -                         | $1.1 \pm 0.6$          | -                | -              | Hex <sub>4</sub> Pent <sub>2</sub> OAc <sub>2</sub>                  | S <u>GG</u> G                 |
| 1055                    | $2.6 \pm 0.3$          | -                         | $5.0 \pm 1.4$          | $2.6 \pm 1.6$    | -              | Hex <sub>3</sub> Pent <sub>4</sub>                                   | SSG                           |
| 1085                    | $3.1 \pm 1.4$          | $5.1 \pm 0.5$             | $4.8 \pm 0.1$          | $4.2 \pm 0.4$    | $13.0 \pm 1.5$ | Hex <sub>4</sub> Pent <sub>3</sub>                                   | XXXG/LSG/GXSG                 |
| 1097                    | $1.8 \pm 0.9$          | -                         | $3.5 \pm 0.3$          | $2.1 \pm 1.0$    | $2.1 \pm 0.6$  | $Hex_3Pent_4OAc_1$                                                   | S <u>S</u> G                  |
| 1115                    | $2.2 \pm 0.8$          | $11.8\pm0.0^{ m f}$       | $1.9 \pm 0.4$          | $5.7 \pm 0.6$    | $2.5 \pm 0.2$  | Hex <sub>5</sub> Pent <sub>2</sub>                                   | LLG                           |
| 1127                    | $6.1 \pm 1.8$          | -                         | $3.6 \pm 0.1$          | $1.5 \pm 0.2$    | $2.8 \pm 0.2$  | $Hex_4Pent_3OAc_1$                                                   | XS <u>G</u> G/SX <u>G</u> G   |
| 1157                    | $11.0 \pm 1.9$         | -                         | $11.1 \pm 1.9$         | $8.8 \pm 0.5$    | $10.0 \pm 1.8$ | $Hex_5Pent_2OAc_1$                                                   | GXXGG/LXGG                    |
| 1199                    | $1.9 \pm 0.1$          | -                         | $1.9 \pm 0.4$          | $1.4 \pm 0.3$    | $1.5 \pm 0.9$  | Hex <sub>5</sub> Pent <sub>2</sub> OAc <sub>2</sub>                  | GS <u>GG</u> G/XX <u>GG</u> G |
| 1217                    | $1.1 \pm 0.3$          | -                         | $1.1 \pm 1.3$          | < 1              | < 1            | Hex <sub>4</sub> Pent <sub>4</sub>                                   | GSSG/GXTG                     |
| 1247                    | $2.5 \pm 0.6$          | $24.2 \pm 1^{\mathrm{f}}$ | $2.8 \pm 0.7$          | $3.7 \pm 0.5$    | $4.4 \pm 0.8$  | Hex <sub>5</sub> Pent <sub>3</sub>                                   | XXLG/GXXXG                    |
| 1259                    | $1.2 \pm 0.1$          | -                         | $2.0 \pm 0.5$          | $1.1 \pm 0.5$    | < 1            | Hex <sub>4</sub> Pent <sub>4</sub> OAc <sub>1</sub>                  | SS <u>G</u> G/XT <u>G</u> G   |
| 1277                    | < 1                    | $10\pm0.6^{\rm f}$        | < 1                    | $3.4 \pm 0.4$    | < 1            | Hex <sub>6</sub> Pent <sub>2</sub>                                   | GLLG                          |
| 1289                    | $7.3 \pm 1.5$          | -                         | $5.4 \pm 0.3$          | $3.4 \pm 0.4$    | $4.4 \pm 0.0$  | $Hex_5Pent_3OAc_1$                                                   | XXLG/LSGG/GXSGG               |
| 1319                    | $11.5 \pm 1.8$         | -                         | <mark>7.9 ± 1.3</mark> | $6.8 \pm 0.9$    | $7.3 \pm 2.1$  | $Hex_6Pent_2OAc_1$                                                   | LL <u>G</u> G/GL <u>L</u> G   |
| 1331                    | $1.0 \pm 1.5$          | -                         | -                      | -                | -              | Hex <sub>5</sub> Pent <sub>3</sub> OAc <sub>2</sub>                  | LSGG                          |
| 1361                    | $2.1 \pm 0.3$          | -                         | $1.4 \pm 0.2$          | $1.7 \pm 0.5$    | $1.1 \pm 0.3$  | Hex <sub>6</sub> Pent <sub>2</sub> OAc <sub>2</sub>                  | XL <u>GG</u> G                |
| 1379                    | < 1                    | -                         | $1.2 \pm 1.3$          | < 1              | -              | Hex <sub>5</sub> Pent <sub>4</sub>                                   | XLSG                          |
| 1393                    | < 1                    | $1.8 \pm 0.5$             | $1.1 \pm 0.4$          | $2.9 \pm 0.7$    | $5.6 \pm 1.4$  | Hex <sub>5</sub> Pent <sub>3</sub> Dox <sub>1</sub>                  | XXFG                          |
| 1409                    | $1.2 \pm 0.8$          | $15.1\pm1.6^{\rm f}$      | < 1                    | $1.2 \pm 0.2$    | $1.1 \pm 0.2$  | Hex <sub>6</sub> Pent <sub>3</sub>                                   | XLLG/XXFG*                    |
| 1421                    | $1.2 \pm 0.4$          | -                         | $1.4 \pm 0.6$          | < 1              | < 1            | $Hex_5Pent_4OAc_1$                                                   | GSS <u>G</u> G                |
| 1435                    | $2.9 \pm 0.9$          | -                         | $2.1 \pm 0.6$          | $3.4 \pm 0.9$    | $6.8 \pm 2.0$  | Hex <sub>5</sub> Pent <sub>3</sub> Dox <sub>1</sub> OAc <sub>1</sub> | XXFG                          |
| 1451                    | $1.0 \pm 0.3$          |                           | $1.2 \pm 0.3$          | $1.3 \pm 0.5$    | $1.2 \pm 0.2$  | Hex <sub>6</sub> Pent <sub>3</sub> OAc <sub>1</sub>                  | XXL <u>G</u> G                |
| 1463                    | -                      | -                         | $1.0 \pm 0.2$          | < 1              | $1.2 \pm 0.2$  | $Hex_5Pent_4OAc_2$                                                   | XX <u>SG</u> G                |
| 1481                    | <mark>6.4 ± 2.3</mark> | -                         | $3.7\pm0.6$            | $2.1 \pm 0.8$    | $3.0 \pm 1.3$  | $Hex_6Pent_2OAc_1$                                                   | GLL <u>G</u> G                |
| 1493                    | $2.0 \pm 0.5$          | -                         | $1.1 \pm 0.2$          | < 1              | < 1            | Hex <sub>6</sub> Pent <sub>3</sub> OAc <sub>2</sub>                  | GXS <u>GG</u> G               |
| 1555                    | -                      | -                         | < 1                    | $2.0 \pm 0.6$    | $2.1 \pm 0.7$  | Hex <sub>6</sub> Pent <sub>3</sub> Dox <sub>1</sub>                  | XLFG                          |
| 1597                    | $1.3 \pm 0.1$          | -                         | $1.0 \pm 0.6$          | $2.8\pm0.9$      | $2.8 \pm 1.0$  | Hex <sub>6</sub> Pent <sub>3</sub> Dox <sub>1</sub> OAc <sub>1</sub> | X <u>L</u> FG/XL <u>F</u> G   |
| 1639                    | $2.3\pm0.7$            | -                         | $1.1 \pm 0.4$          | $1.8 \pm 0.4$    | $2.1 \pm 0.7$  | $Hex_6Pent_3Dox_1OAc_2$                                              | X <u>LF</u> G                 |
| Fucosylated             | $6.5 \pm 1.4$          | -                         | $5.3 \pm 1.0$          | $12.9 \pm 1.7$   | $19.4 \pm 2.6$ |                                                                      |                               |
| O-acetylated            | $73.9\pm6.2$           |                           | $91.1 \pm 8.4$         | $55.3\pm6.1$     | $63.5\pm8.3$   |                                                                      |                               |

**Table S2.** Relative abundance of XyG oligosaccharides released after *endo*-glucanase digestion of the cell wall residue and the hemicellulose-enriched extract from tomato pollen tubes.

<sup>a</sup>Mass of the  $[M+Na]^+$  adducts. <sup>b</sup>Hex, hexose; Pent, pentose; Dox, deoxyhexose; OAc, *O*-acetyl substituent. <sup>c</sup>Possible structures of XyG fragments are shown according to the one-letter nomenclature proposed by Fry *et al.*, (1993) and described in Fig. 1. Underlined structures represent *O*-acetylated side chains. <sup>d</sup>Values are expressed as relative percentage and are the means  $\pm$  SD from MALDI-TOF mass spectra obtained after *endo*-glucanase digestion from three independent pollen tube cell wall extractions. The five most abundant fragments are highlighted in yellow. <sup>e</sup> not detected above the signal to noise ratio. <sup>f</sup>Relative abundance of these fragments corresponds to the total of the  $[M+K]^+$  and  $[M+Na]^+$  adducts. \* adduct  $[M+K]^+$ . Structures in bold were characterized in *S*. *peruvianum* pollen tubes.

| Mass <sup>a</sup> | Cell wall               | КОН                    | Composition <sup>b</sup>                                             | Possible structure <sup>c</sup> |
|-------------------|-------------------------|------------------------|----------------------------------------------------------------------|---------------------------------|
| 953               | $4.9 \pm 1.6^{d}$       | $1.0 \pm 0.8$          | Hex <sub>4</sub> Pent <sub>2</sub>                                   | GXXG                            |
| 995               | $3.6 \pm 3.4$           | _ <sup>e</sup>         | Hex <sub>4</sub> Pent <sub>2</sub> OAc <sub>1</sub>                  | XX <u>G</u> G/GS <u>G</u> G     |
| 1085              | $11.7 \pm 2.7$          | $5.2 \pm 1.2$          | Hex <sub>4</sub> Pent <sub>3</sub>                                   | XXXG                            |
| 1157              | $3.1 \pm 0.4$           | -                      | Hex <sub>5</sub> Pent <sub>2</sub> OAc <sub>1</sub>                  | LX <u>G</u> G                   |
| 1247              | $4.5 \pm 2$             | $16.8\pm2.7^{\rm f}$   | Hex <sub>5</sub> Pent <sub>3</sub>                                   | XXLG/XLXG                       |
| 1289              | <mark>8.8 ± 1</mark>    | -                      | Hex <sub>5</sub> Pent <sub>3</sub> OAc <sub>1</sub>                  | XX <u>L</u> G/X <u>L</u> XG     |
| 1393              | $3.0 \pm 0.6$           | $50.4 \pm 1.4^{\rm f}$ | Hex <sub>5</sub> Pent <sub>3</sub> Dox <sub>1</sub>                  | XXFG                            |
| 1435              | <mark>29.7 ± 1.9</mark> | -                      | Hex <sub>5</sub> Pent <sub>3</sub> Dox <sub>1</sub> OAc <sub>1</sub> | XX <u>F</u> G                   |
| 1555              | < 1                     | $26.6 \pm 3.3^{\rm f}$ | Hex <sub>6</sub> Pent <sub>3</sub> Dox <sub>1</sub>                  | XLFG                            |
| 1597              | <mark>6.2 ± 1.6</mark>  | -                      | Hex <sub>6</sub> Pent <sub>3</sub> Dox <sub>1</sub> OAc <sub>1</sub> | X <u>L</u> FG/XL <u>F</u> G     |
| 1639              | <mark>23.0 ± 3.5</mark> | -                      | Hex <sub>6</sub> Pent <sub>3</sub> Dox <sub>1</sub> OAc <sub>2</sub> | X <u>LF</u> G                   |
| Fucosylated       | $61.9 \pm 4.4$          | $77 \pm 4.7$           |                                                                      |                                 |
| O-acetylated      | $71.9\pm7.2$            | -                      |                                                                      |                                 |

**Table S3.** Relative abundance of XyG oligosaccharides released after *endo*-glucanase digestion of the cell wall residue and the hemicellulose-enriched extract from *N. tabacum* pollen tubes.

<sup>a</sup>Mass (m/z) of the  $[M+Na]^+$  adducts. <sup>b</sup>Hex, hexose; Pent, pentose; Dox, deoxyhexose; OAc, *O*-acetyl substituent. <sup>c</sup>Possible structures of XyG fragments are shown according to the one-letter nomenclature proposed by Fry *et al.*, (1993) and as described in Fig. 1. Underlined structures represent *O*-acetylated side chains. <sup>d</sup>Values are expressed as relative percentage and are the means  $\pm$  SD from MALDI-TOF mass spectra obtained after *endo*-glucanase digestion from three independent pollen tube cell wall extractions. The five most abundant fragments are highlighted in yellow. <sup>e</sup>not detected above the signal to noise ratio. <sup>f</sup>Relative abundance of these fragments corresponds to the total of the  $[M+K]^+$  and  $[M+Na]^+$  adducts. Structures in bold were characterized in *Nicotiana alata* pollen tubes by Lampugnani *et al.*, (2013).

**Table S4.** Monosaccharide composition and glycosyl-linkage analysis of *N. tabacum* hemicellulose-enriched pollen tube extract.

| Monosaccharide composition <sup>a</sup> |                             |  |
|-----------------------------------------|-----------------------------|--|
| (mol%)                                  |                             |  |
| Glc                                     | 27.9                        |  |
| Xyl                                     | 11.1                        |  |
| Gal                                     | 25                          |  |
| Ara                                     | 21.2                        |  |
| Fuc                                     | 1.4                         |  |
| GalA                                    | 4.3                         |  |
| Rha                                     | 2.4                         |  |
| Man                                     | 6.8                         |  |
| Detected glycosyl-linkage <sup>b</sup>  |                             |  |
|                                         | 3-Glcp (callose)            |  |
|                                         | <b>4-Glc</b> <i>p</i> (XyG) |  |
| <b>4,6-Glcp</b> (XyG)                   |                             |  |
| <b>t-Xylp</b> (XyG)                     |                             |  |
|                                         | 2-Xylp (XyG)                |  |
|                                         | t-Galp (XyG, RG-I, AGP)     |  |
| <b>2-Gal</b> <i>p</i> (XyG)             |                             |  |
| 4-Galp (RG-I)                           |                             |  |
|                                         | 6-Galp (RG-I, AGP)          |  |
|                                         | t-Araf (RG-I, AGP)          |  |
|                                         | 5-Araf (RG-I)               |  |
|                                         | t-Fucp (XyG)                |  |

<sup>a</sup>Determined by GC and expressed as mol%. Ara, arabinose; Fuc, fucose; Gal, galactose; Glc, glucose; GalA, galacturonic acid; Rha, rhamnose; Man, mannose; Xyl, xylose. <sup>b</sup>Determined by GC-MS of partially methylated alditol acetates. t-Araf denotes 1,4-di-*O*-acetyl-1-deuterio-2,3,5-tri-*O*-methyl-D-arabinitol, etc... Polymers that contain these glycosyl-linkages are indicated in brackets. XyG, Xyloglucan, RG-I, rhamnogalacturonan-I, AGP, arabinogalactan proteins. In bold are the glycosyl-linkages found in XyG. nd. not detected.