PIP₂-dependent coupling is prominent in Kv7.1 due to weakened

interactions between S4-S5 and S6

Marina A Kasimova, Mark A Zaydman, Jianmin Cui, Mounir Tarek

Supporting information

	<u>S1</u>		
KV1.2	IIAIVSVMVILISIVSFCLETLPIFRE	ENEDMHGGGVTFHTYSQSTIGYQQSTSFTDPFF	223
KV7.1	VYHFAVFLIVLV <mark>C</mark> LIF <mark>S</mark> VL <mark>ST</mark> IEQY	AALA <mark>TGT</mark> LF	157
KV7.2	IYHAYVFLLVFSCLVLSVFSTIKEY	<mark>EKSSEG</mark> ALY	127
KV7.3	LYHALVFLIVLGCLILAVLTTFKEY	<mark>ETVSGDWLL</mark>	157
KV7.4	VYHVFIFLLVFSCLVLSVLSTIQEH	QELANECLL	133
KV7.5	IYHAFVFLLVFGCLILSVFSTIPEH	TKLASSCLL	101
	S2	← \$3	
KV1.2	IVETLCIIWFSFEFLVRFFACPSKAG-	FFTNIMNIIDIVAIIPYFITLGTEL	274
KV7.1	WMEIVLVVFFGTEYVVRLWSAGCRSKY	VGLWGRLRFARKPISIIDLIVVVASMVVLCVGS	217
KV7.2	ILEIVTIVVFGVEYFVRIWAAGCCCRY	RGWRGRLKFARKPFCVIDIMVLIASIAVLAAGS	187
KV7.3	LLETFAIFIFGAEFALRIWAAGCCCRY	KGWRGRLKFARKPLCMLDIFVLIASVPVVAVGN	217
KV/.4	ILEFVMIVVFGLEYIVRVWSAGCCCRY	RGWQGRFRFARKPFCVIDFIVFVASVAVIAAGT	193
KV/.5	ILEF VMIVVFGLEF IIR IWSAGCCCRY	RGWQGRLRFARKPFCVIDTIVLIASIAVVSAKT	221
	← S4	\longrightarrow	
KV1.2	AEKPEDAQQGQQAMSLAILRVIRLVRV	FRIFKLSRHSKGLQILGQTLKASMRELGLLIFF	334
KV7.1	KGQVFATSAIRGIRFLQI	LRMLHVDRQGGTWRLLGSVVFIHRQELITTLYI	268
KV7.2	Q <mark>GNVFATS</mark> AL <mark>R</mark> SL <mark>R</mark> FLQI	LRMIRMDRRGGTWKLLGSVVYAHSKELVTAWYI	238
KV7.3	QGNVLATS-LRSLRFLQI	LRMLRMDRRGGTWKLLGSAICAHSKELITAWYI	267
KV7.4	QGNIFATSALRSMRFLQI	LRMVRMDRRGGTWKLLGSVVYAHSKELITAWYI	244
KV7.5	QGNIFATSAL <mark>R</mark> SLRFLQI	LERMVRMDRRGGTWKLLGSVVYAHSKELITAWYI	272
	<u>\$5</u>		
KV1.2	LFIGVILFSSAVYFAEADERD	SQFPSIPDAFWWAVVSMTTVGYGDMVPTTI	385
KV7.1	GFLGLIFSSYFVYLAEKDAVNE	SGRVEFGSYADALWWGVVTVTTIGYGDKVPQTW	323
KV7.2	GFLCLILASFLVYLAEKGE	NDHFDTYADALWWGLITLTTIGYGDKYPQTW	288
KV7.3	GFLTLILSSFLVYLVEKDVPEVDAQGE	EMKEEFETYADALWWGLITLATIGYGDKTPKTW	327
KV/.4	GFLVLIFASFLVYLAEKDA	NSDFSSYADSLWWGTITLTTIGYGDKTPHTW	294
KV/.5	GFLVLIFSSFLVYLVE <mark>K</mark> DA	NKEFSTYADALWWGTITLTTIGYGDKTPLTW	322
	← \$6		
KV1.2	GGKIVGSLCAIAGVLTIALPVPVIVSN	FNYFYHRET 421	
KV7.1	VGKTIASCFSVFAISFFALPAGILGSO	FALKVQQKQRQKHFNRQIP 369	
KV7.2	NGRLLAATFTLIGVSFFALPAGILGSC	FALKVQEQHRQKHFEKRRN 334	
KV7.3	EGRLIAATFSLIGVSFFALPAGILGSC	LALKVQEQHRQKHFEKRRK 373	
KV7.4	LGRVLAAGFALLGISFFALPAGILGS	FALKVQEQHRQKHFEKRRM 340	
KV7.5	LGRLLSAGFALLGISFFALPAGILGS	FALKVQEQHRQKHFEKRRN 368	

Figure S1 | Multiple sequence alignment between the Kv1.2 channel and the members of the Kv7 family (Kv7.1 to Kv7.5).

Figure S2 | The average number of salt bridges formed between each PIP_2 molecule (in total 38) and Kv7.1 estimated for the 50-100 (top), 100-120 (middle) and 120-140 (bottom) ns time-windows. The results for the three time-windows are similar, indicating that the simulations have been converged. Red bars correspond to the four PIP_2 molecules bound at the intrasubunit binding site.

Figure S3 | Two modes of protein-lipid interactions in Kv7.1. Probabilities of salt bridges formation between PIP_2 and several positive residues of Kv7.1 in the activated/open (A/O) and resting/closed (R/C) states.

Figure S4 | Probabilities of salt bridges formation between PIP_2 and positive residues of Kv7.1. The results for the WT, the R249 and K183 mutants in their A/O (left panels) and R/C (right panels) states are present.

Figure S5 | The I/V curves of the WT (black), K354E (blue), K358E (green), R360E (cyan), K362E (magenta) and R366E (orange) mutants.

Figure S6 | R555 and R539 residues compose the PIP_2 distal C-terminus site in Kv7.1. (a) The F/V curves of the WT (black solid), L353K (black dashed), R555C (red solid) and R555C/L353K (red dashed). (b) The F/V curves of the WT (black solid), L353K (black dashed), R539W (red solid) and R539W/L353K (red dashed).

Figure S7 | The salt bridge between K312 (S4-S5) and E420 (S6) in the Kv1.2 channel. The conformation of the channel was taken from previous simulations^{1,2}.

Figure S8 | Comparing properties of the Kv7.1 (black) and Kv7.2/Kv7.3 (red) channels.(a) Currents elicited by a family of depolarizing pulses. (b) Timecourses of current onset;left shows expanded view of dashed boxed region. (c) The G/V curves.

References

- Delemotte, L., Tarek, M., Klein, M. L., Amaral, C. & Treptow, W. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 6109–6114 (2011).
- Kasimova, M. A., Tarek, M., Shaytan, A. K., Shaitan, K. V. & Delemotte, L. Voltagegated ion channel modulation by lipids: Insights from molecular dynamics simulations. *Biochim. Biophys. Acta* 1838, 1322–1331 (2014).