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SI Materials and Methods
GP Regression. We use GP regression, a nonparametric Bayesian
method for nonlinear regression, to model the concentration of
each species as a function of time, xnðtÞ, and the corresponding
derivatives, _xnðtÞ, from time course data for each species. For our
application, data are simulated from the initial candidate ODE
model we wish to analyze for sensitivity to topological alter-
ations. We used MATLAB functions from the GPML Toolbox
(1, 2) to infer hyperparameters and fit the GP regression models.
A GP is a collection of random variables, any finite subset of

which follows a multivariate Gaussian distribution (2). For GP
regression we assume a GP prior over a function, denoted, e.g.,

xnðtÞ∼GP�mðtÞ; k�t; t′��; [S1]

where mðtÞ is a mean function for the values taken by variable xn
at times t and kðt; t′Þ is a covariance function. We use a zero-
mean function and a squared covariance function,
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where σf and l are hyperparameters defining the distribution. We
assume the data are subject to normally distributed noise with
constant variance σ2e , thus inducing a GP prior over the observed
outputs for species n, ynðtÞ,

ynðtÞ∼GP�myðtÞ; ky
�
t; t′
��
; [S3]

with myðtiÞ=mðtiÞ and kyðti; tjÞ= kðti; tjÞ+ σ2eδij, where δij is the
Kronecker delta function.
Given the assumed GP prior and noise model we can write the
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where yn = ½ynðt1Þ; . . . ; ynðtsÞ�T is a set of observed outputs at times
t1; . . . ; ts; xpn = ½xnðtp1Þ; . . . ; xnðtpr Þ�T for any finite set of time points
tp1; . . . ; t

p
r ; m= ½mðt1Þ; . . . ;mðtsÞ�T and mp = ½mðtp1Þ; . . . ;mðtpr Þ�T are

vectors specified by the mean function mðtÞ; I is the s× s identity
matrix; and entries in the covariance matrices are given by
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We can specify the likelihood pðynÞ as
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Following the method of Rasmussen and Williams (2), we de-
termine values for the GP hyperparameters (σf ; l; σe) by maximizing
the likelihood function with respect to these parameters.

We obtain the posterior distribution for our function xnðtÞ by
updating the GP prior using the observed dataset yn. From the
joint distribution in Eq. S4 we can specify the GP posterior for
xnðtÞ conditioned on the observed data:	
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Using this approach, we can sample realizations of the function
xnðtÞ at any chosen time point.
Similarly, we can specify the joint distribution of the corre-

sponding derivative _xnðtÞ and the observed data yn to obtain the
GP posterior distribution for the derivative,	

_xnðt1Þ; . . . ; _xnðtsÞ
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where covariance matrix entries are defined by
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Here we assumed a zero-mean function for mðtÞ and only con-
sidered the time points t1; . . . ; ts of the observed data points to
simplify the notation. Samples of the derivative function at other
time points were obtained by calculating the corresponding co-
variance matrix entries.

Simulation Parameters for Synthetic Datasets. Data in Fig. 3 were
simulated from model A with parameters sn = 0:2, βnk = 2, mnk = 5,
and θnk = 1:5 for all n; k; and values for γn given by the nth com-
ponent of vector γ= ½0:9; 0:9; 0:7; 1:5; 1:5�. Initial concentrations of
species in the system were set to xð0Þ= ½1; 0:5; 1; 0:5; 0:5�.
Trajectories in Fig. S2B were simulated from model A with

parameters sn and γn given by the nth components of vectors
s= ½0:5; 0:5; 0:2; 0:2; 0:2� and γ= ½0:9; 0:9; 0:7; 0:5; 1:3�, respecti-
vely, and the parameters associated with interactions set to
ðβ15; β21; β31; β41; β43; β52; β54Þ= ð2; 1:5; 3; 1; 2; 2; 2Þ, ðθ15; θ21; θ31;
θ41; θ43; θ52; θ54Þ= ð1; 1; 1; 1; 2; 1:5; 1:5Þ, and ðm15;m21;m31;m41;
m43;m52;m54Þ= ð3; 2; 2; 2; 3; 1; 4Þ. Initial species concentrations
were set to xð0Þ= ½0:1; 0:5; 1; 0:5; 0:5� for condition 1 and xð0Þ=
½0:1; 0:1; 0; 3; 2:5� for condition 2.
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Fig. 4A data were simulated from model B with parameters
rn given by r= ½0:3; 0:7; 0:5; 0:4; 0:4�, and ða13; a15; a24; a42; a43;
a52Þ= ð0:4; 0:7; 1:5; 1:4; 0:7; 1:2Þ. Initial species populations were
set to xð0Þ= ½0:2; 0:5; 0:2; 0:2; 0:3�.
Data used for Bayesian inference (Fig. S4) were simulated from

model C with parameters r= ½0:3; 0:7; 0:5; 0:4; 0:4� and ða12; a14;
a21; a23; a31; a34; a41; a45; a51; a54Þ= ð0:4;0:3;1:5;1:4; 0:7;1:2; 0:6;1:5;
1:1; 0:2Þ.
During gradient-matching parameter estimation, the allowed

values for parameters were constrained by the limits 0:1≤ sn ≤ 1,
0:1≤ γn ≤ 2, 0:5≤ βnk ≤ 4, 0:2≤ θnk ≤ 3, and 0:7≤mnk ≤ 5 for gene
regulatory network models, and 0:1≤ rn ≤ 2 and 0:1≤ ank ≤ 5 for
competitive population dynamics models.

Parameter Inference. We used one of the following methods (as
stated in the main text) to infer model parameters from the
synthetic or experimental datasets. In all cases we specified
likelihoods by assuming Gaussian noise with fixed variance.
Maximum likelihood estimation plus parametric bootstrap. Maximum
likelihood estimates for the parameters were obtained from the
original dataset and used to simulate trajectories for all species;
replicate datasets were generated based on these trajectories
assuming additive Gaussian noise. We obtained parameter esti-
mates from each replicate dataset using constrained optimization
to generate approximate sampling distributions for each pa-
rameter (3).
Nested sampling. Nested sampling is an algorithm developed by
Skilling (4) to estimate the evidence for a particular model which
also provides samples from the posterior distribution. We used
a C implementation of the algorithm (5) with uniform priors for
all parameters and a random walk sampling algorithm.
Metropolis–Hastings. This is a Markov chain Monte Carlo method
that enables sampling from the joint posterior distribution (6, 7);
we used a Gaussian transition kernel to generate parameter
proposals, and uniform priors for all parameters.
Laplace approximation. This method approximates the posterior by
a multivariate normal probability density function. Although
unlikely to be a good global approximation of the posterior, it may
nevertheless provide a good local approximation in the region of
the estimated parameter vector (obtained using constrained
optimization techniques, as in “Maximum likelihood estimation
plus parametric bootstrap” above). We used the R implementa-
tion provided in the LaplacesDemon package (8).

SI Results
Automated Model Generation and Ranking. As described in the
main text, we construct and rank all possible component equa-
tions that describe the dynamics of each species in a system using
gradient-matching parameter estimation. Fig. S2A illustrates the
rankings of the 165 possible component equations calculated
using the oscillating GP regression model trajectories displayed
in Fig. 3 (main text), and the rules described in the accompa-
nying section of the main text (titled “Automated Model Gener-
ation and Ranking”). We combine component equations for each
species to create a set of coupled ODEs describing the dynamics
of the complete system. As shown in Fig. 3 (main text), the best
model accurately captures the desired dynamics, whereas lower-
ranked models deviate from these trajectories. The “top-ranked
ODE” in Fig. 3 was created by combining the top-ranked com-
ponent model for each species, whereas the exemplar “lower-
ranked ODE” was constructed by combining the eighth-ranked
component equations. For clarity, in Fig. 3 we only show simu-
lations from two possible ODE models, but there are many al-
ternative highly ranked models that also produce the desired
dynamics displayed by the best model.
The relative rankings of models depend on the particular

dataset to which they are fitted during this parameter estimation
step. If we have multiple simulations from our candidate model,

corresponding to the known behavior of the modeled system
under different experimental conditions, we can use this in-
formation to reduce the set of compatible models. For example,
Fig. S2B shows trajectories simulated from model A using
identical parameter values but two different initial conditions
(see SI Materials and Methods for simulation parameters). As
before, we generate the same 33× 5= 165 component equations,
which combine to give 335 = 3:9× 107 possible complete ODE
models, and rank these complete models under each condition
(Fig. S2 C and D). Although there is some correlation between
the rankings, adding additional datasets clearly identifies a
smaller group of models with dynamics consistent with the data-
generating model.

Parametric Bootstrap Distributions.Fig. S3 extends Fig. 4B from the
main text, by showing bootstrap distributions for all parameters
present in the true model.

Bayesian Inference.Additional Bayesian inference results are given
here for the best close models selected by nested sampling—those
with estimated evidence (Table S1) greater than or equal to
the true model (model C, Fig. 2), and differing by just a single
edge. Posterior samples were obtained using two algorithms,
Metropolis–Hastings and nested sampling, with the same ar-
tificial dataset.

Selection of Models for Yeast Gene Expression Data.We constructed
an initial candidate model for the dynamics of clustered yeast
gene expression profiles (data from ref. 9) using the network
inference approach described by Lu et al. (10), as implemented
in D-NetWeaver (11). We sampled ODE models with X edges
randomly rewired, relative to this initial candidate model, to find
alternative models with consistent dynamics. To do this, X
nonzero entries in connectivity matrix A (each corresponding to
an interaction) were chosen at random to delete, and replaced by
new interactions absent from the initial model; in this way model
complexity (measured as the total number of edges and pa-
rameters) remained constant across all tested models.
We sampled 5× 104 rewired models for each of X = 1; 2; 3;

5; 10; 20; or 30 rewired edges, and estimated the associated pa-
rameters by gradient matching [using GP regression estimates
of concentrations x̂ðtÞ and derivatives b_xðtÞ, calculated from tra-
jectories simulated from the initial candidate model]. The top 50
models within each rewiring category were selected based on log-
likelihood values calculated using the gradient-matching pa-
rameter estimates (θGM); this provided a group of 350 models, in
addition to our initial candidate model, for further analysis.
To assess the robustness of parameter estimation to topological

alterations, we then used constrained optimization (using the
fmincon function in MATLAB, with parameter bounds of ±5,
and initializing the algorithm at the corresponding gradient-
matching parameter estimates, θGM) to obtain maximum likeli-
hood estimates of the parameters for each of the 351 models, by
fitting to the cluster means. We denote these estimates by θOPT1.
To allow for the possibility that, for some of the models, the

optimization algorithm may only have converged to a local op-
timum, we performed a second round of optimization for each
model, using alternative starting points. To obtain “good” al-
ternative starting points for each model, we made use of the set
of all 351 estimates θOPT1 (one for each model), and took the
median for each parameter (calculated from θOPT1, over all of
the 351 models in which it appears). We denote the resulting
estimates by θOPT2.
Finally, for each model we chose whichever of θOPT1 and θOPT2

had the higher likelihood value (in most cases this was θOPT1, but
in a few cases θOPT2 provided a marginal improvement).
Despite performing a restart of the optimization algorithm, we

still cannot be entirely certain that the final parameter estimate
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for each model corresponds to the true global maximum likeli-
hood estimate. This problem is ubiquitous in maximum likelihood
estimation problems. As a result of this, we cannot strictly say that
we are performing a topological sensitivity analysis of the true
(global) maximum likelihood parameter estimate. Instead, we are
performing a TSA of the parameter estimates provided by an
algorithm that targets the true maximum likelihood estimate
(MLE). This accurately reflects what will generally be possible in

practice, because (for any realistic practical problem) all that will
be available is the output of such an algorithm, which cannot be
guaranteed to be equal to the global MLE. TSA as performed
here then lends increased credibility to those model features that
are supported by all or, more likely, the majority of models. Any
aspect that is only displayed by a few of the models, by contrast,
ought to either be viewed with skepticism or be investigated
further, ideally in carefully designed experiments (12, 13).
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Fig. S1. Reducing combinatorial complexity using gradient-matching parameter estimation. (A) Considering the regulation of each species independently
reduces the search space of possible models. For a system with 3 species and interactions possible between any pair of species (including self-interaction) there
are 512 possible topologies for the complete network. If we always consider the complete ODE system (i.e., the complete set of parent sets, C) we would need
to test 512 models to do an exhaustive search. We can reduce this search space by considering the possible parent sets PaðxnÞ for each species n independently;
for this example there are 8 possible parent sets for each species so we only need to test 24 models to search all possible network topologies. We obtain the
overall network topology by combining a selected parent set for each species to obtain the complete set C. (B) Overview of the gradient-matching parameter
estimation method. GP regression models are fitted to time course data (circles) for all species, in this case two, to provide estimates of species concentrations
x̂gpðtÞ. GP estimates for the corresponding derivatives b_xgpðtÞ are also calculated. A second model-derived estimate of the derivatives b_xmodelðtÞ is calculated using
the GP estimates of species concentrations and the ODE model, fðx̂gp,t,θÞ. ODE model parameters θ are estimated by minimizing the discrepancy between the
data-driven and model-driven estimates of the derivatives (b_xgp and b_xmodel , respectively) using a constrained optimization algorithm or linear regression as
appropriate (the fmincon or fitlm MATLAB functions, respectively).

Babtie et al. www.pnas.org/cgi/content/short/1414026112 3 of 10

http://www.bayesian-inference.com/software
www.pnas.org/cgi/content/short/1414026112


Interactions:         positive        negative

0 2 4 6 8 10
0

1

2

3

4

5

Time

C
on

ce
nt

ra
tio

n

 

 

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5
x 10

4

Model rank (condition 1)
M

od
el

 r
an

k 
(c

on
di

tio
n 

2)

A

 1
 2
 3
 4
 5

Species:

Initial 
condition:

 1
 2

CB D

Fig. S2. Example of automated model generation and ranking for a five-species gene regulatory network (model A). (A) Rankings of models describing the
regulation of each species 1–5, calculated using the GP regression models illustrated in Fig. 3 of the main text. For each species, 33 models were tested during
an exhaustive search of all possible models within the chosen rules—a maximum of 2 parents, and 2 possible types of interaction (activation or inhibition). Bar
graphs show the minimized distance obtained during gradient-matching parameter estimation for each model. The edges present in each model are indicated
by the colored plots below the bar graphs (activating interactions are shown in blue, and inhibiting interactions in red). (B) Trajectories simulated frommodel A
using two different initial conditions (SI Materials and Methods). Data for all species at 40 equally spaced time points were used to test potential ODE models.
(C) Comparison of complete ODE model rankings for each initial condition dataset. Each model is indicated by a gray dot, with the ranks of the true model
shown by a red circle. Models were ranked by AICc weights calculated for all possible complete ODE models (total number of possible models is 335 = 3:9× 107).
(D) Enlarged section of Fig. S2C to show the ranks of the model used for simulation. Note that, as in this example, the true model may not rank first because
parameter estimation relies on the GP regression mean estimates x̂nðtÞ and not the exact noiseless values xnðtÞ.
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Fig. S3. Comparison of parametric bootstrap distributions obtained for the parameters present in the true model (model 1) using the top 10 complete ODE
models (ranked by AICc values). Solid lines indicate kernel density estimates of the distributions obtained for each of the alternative model structures; vertical
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Fig. S4. Nested sampling posterior predictive trajectories. Concentration trajectories for the five species in model C were simulated using the posterior
samples obtained by nested sampling for each selected alternative model. Graphs are arranged with the data for each species in a different column, and each
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Fig. S5. Comparison of marginal posterior parameter distributions obtained for different models using (A) nested sampling or (B) Metropolis–Hastings al-
gorithms. Kernel density estimates (colored solid lines) are shown for the marginal posterior distributions estimated using each of the selected models for
parameters present in the true model; true parameter values are indicated by dashed gray lines.
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Fig. S6. Comparison of nested sampling pairwise posterior parameter estimates for different models illustrating observed dependencies. Example bivariate
scatter plots for the posterior samples obtained for the best models using nested sampling. Each sample is shown by a circle, with the color corresponding to
the likelihood value (ranging from blue to red in ascending order); missing plots indicate that a particular model does not contain that pair of parameters.
Consistent pairwise parameter dependencies were also inferred using the Metropolis–Hastings algorithm.
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Fig. S7. Comparison of selected linear ODE models describing the dynamics of cell-cycle regulated yeast genes. Clustered gene expression profiles for yeast
genes are shown in gray (α-factor synchronized expression data from ref. 9). Maximum likelihood point estimates were obtained by fitting models to the mean
expression profile for each gene cluster (clusters labeled “c1–c41”); simulated trajectories from the optimized models are shown in red (initial candidate model)
and blue (seven selected rewired models). The rewired models include the best model from each tested level of rewiring (models with 1, 2, 3, 5, 10, 20, or 30
edges rewired at random relative to the initial candidate model).
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Fig. S8. Comparison of parameter estimates obtained using alternative models for clustered yeast gene expression data. Point estimates were obtained using
maximum likelihood estimation for each of the eight selected models (initial candidate and seven rewired models). Graphs show the values estimated using the
different models for 132 equivalent parameters that are common to all selected models (i.e., parameters corresponding to the same interaction or constant
term). Each line indicates the optimized values obtained for these parameters using one of the models; shaded regions indicate 95% confidence intervals
obtained using a Laplace approximation (8)—we have chosen to represent discrete data as continuous in this case for clarity (overlaid error bars would be hard
to distinguish).

Table S1. Nested sampling evidence estimates for the best
models (those with evidence greater than or equal to the
true model)

Model Evidence, ln Z (±1 SD)

15 81.9 (±0.1)
13 81.5 (±0.1)
12 80.2 (±0.1)
18 80.1 (±0.1)
True 79.4 (±0.1)
8 79.4 (±0.1)
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