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Mathematical Details of SCUBA.
Additional details for step 1. Inference of cellular hierarchy using dynamic
clustering: Refinement of the lineage tree. In the final calculation in
step 1 of SCUBA we used a penalized likelihood function to
refine the binary tree structure (see Eq. 1 in the main text).
The first component logPðxjθÞ= PT

t=1logPðxtjθtÞ can be de-
composed into T terms, one for each time point. In our case
t= 1; . . . ;T corresponds to the 1; 2; . . . ;   64 cell stages, re-
spectively. The notation xt is used for denoting all of the data
collected at time t, whereas the parameter θt includes (i) the
number of clusters and (ii) the cluster-specific centers and dis-
persions. If the cluster-specific dispersions are spherical and
identical across clusters, then k-means clustering is the rou-
tinely used method to identify maxima of logPðxtjθtÞ. From
a Bayesian perspective, the maximization of logPðxtjθtÞ, when
T = 1, is equivalent to the maximum a posteriori estimator
(MAP) of θt with a flat prior. The second component of the
likelihood function λ

P
c

��μc − μaðcÞ
��2 also has a simple Bayesian

interpretation. To see this, we notice that, if the vector μc − μaðcÞ
has a prior covariance matrix λI where I is the identity matrix,
then the maximization of logPðxjθÞ− λ

P
c

��μc − μaðcÞ
��2 is equiv-

alent to the MAP estimator. In this case the parameters include
not only cluster center locations but also the tree structure.
We assume that within each cluster the gene expression data

follow a multivariate normal distribution: Pðxi j si = cÞ∼Nðμc;
PÞ,

where si be the missing data that indicate the cluster from which
the i-th cell is drawn. Eq. 1 in the main text can be expanded as

L
�
θ
�
=−

KN
2

log 2 π−
N
2
log

���X���

−
1
2

XN
i=1

X
c

δsic
�
xi − μc

�
′
X−1�

xi − μc
�
− λ

X
c

��μc − μaðcÞ
��2;

[S1]

where N is the number of cells and δsic is the Kronecker delta.
We use the following iterative procedure maximizing each com-
ponent at each time:

i) Update si by minimizing ðxi − μcÞ′
P−1ðxi − μcÞ:

ii) Update μc by setting μc =
2λμaðcÞ +

P
i
δsicxi

2λ+
P

i
δsi c

:

iii) Update aðcÞ by minimizing
P

c

��μc − μaðcÞ
��2, with the constraint

that each parent cluster can only have one or two progenies.
iv) Repeat i–iii until convergence.

Convergence is guaranteed here because the likelihood function is
increased at each individual step. In general, the procedure only
identifies a local maximum, as is the case for k-means clustering.
Notice that the refinement process can change themodel parameters
as well as the tree structure; for example, certain clustersmay become
empty after a few iterations, resulting in a truncated tree. Because the
refinement process does not involve further partitioning of existing
clusters it cannot add new bifurcations. Taken together, the above
iterative procedure allows us to identify the optimal partition of
the gene expression data into coherent dynamic clusters, whereas
each bifurcation captures a cell-differentiation event.
It is possible to generalize our current model by allowing a

bifurcation to give rise to more than two cell lineages. For this

purpose, we use the gap statistic to determine the optimal number
of clusters at each time step without imposing additional constraint.
However, this “constraint-free” version of clustering may intro-
duce spurious bifurcations and is not considered in our analysis.
Additional details for step 2. Modeling gene expression dynamics using
bifurcation theory: Formulation of the mathematical equations. Mathe-
matically, a cusp bifurcation can be represented by the following
first-order ODE (1, 2):

dx
dt

=−∇U
�
x
�
=−x3 + xa+ b; [S2]

where UðxÞ is the potential function

U
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ax2

2
− bx+ c: [S3]

The parameter b controls the asymmetry of the potential and
biologically accounts for any bias toward specific lineages during
cell differentiation, a models the dynamic changes during devel-
opment, and c is a constant that does not affect the dynamics and
is set to zero here. For combinations of parameters such that
4a3 − 27b2 < 0 (green area in step 2 in Fig. 1), Eq. S2 has a single
steady-state solution (3), which is the only attractor (see blue
marble in step 2 in Fig. 1). However, for 4a3 − 27b2 > 0 (blue
area in step 2 in Fig. 1), Eq. S2 has three real roots, corresponding
to three steady states, of which one is unstable (red marble in step
2 in Fig. 1) and the other two are stable (purple marbles in step 2
in Fig. 1). If we assume the value of b does not change between
developmental stages, then a bifurcation occurs as a passes through
the critical value, where 4a3 − 27b2 = 0. A special case is when b= 0,
then the system is reduced to the supercritical pitchfork bifurcation,
which may occur when the system has the symmetry x→ − x (4). In
the context of gene expression analyses, gene expression levels are
intrinsically stochastic (5–7). Therefore, we modified Eq. S2 by
adding a Brownian diffusion term, dW ðtÞ=dt, to incorporate the
stochastic deviations. Therefore, our model becomes

dx
dt

=−∇U
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x
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+ σ
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: [S4]

The magnitude of diffusion is parameterized by the constant σ. In
this form, this potential UðxÞ is analogous to the epigenetic land-
scape schematically described by Waddington (8), represented
by a marble rolling down a hill with rugged topology.
Because each cell is measured only once, it is infeasible to iden-

tify the unknown parameters by fitting Eq. S4 directly. Instead, we
turned our attention to the distribution of cell-states, ψ , which evolves
in time according to the Fokker–Planck equation
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To get the equilibrium distribution, we set ∂ψ=∂t= 0, resulting in
an equation that can be solved analytically, with the following
form (9):

ψS

�
x
�
=C  e−2UðxÞ=σ

2
=C  e−2V ðxÞ; [S6]

with C a normalization constant and V ðxÞ≡UðxÞ=σ2 a rescaled
potential (see step 2 in Fig. 1). Assuming that the equilibrium
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distribution can be approximated by the observed single-cell data,
we estimated the model parameters by fitting Eq. S6 to single-cell
gene expression data. The details are described in the next section.
In step 2, the bifurcation direction is used as the basis for

dimensional reduction and subsequent dynamical system analysis.
Therefore, it can only be used to study bilineage differentiation
processes.
Additional details for step 2. Modeling gene expression dynamics using
bifurcation theory: Inference of model parameters. The model parame-
ters are inferred by using a maximum likelihood procedure. Spe-
cifically, the log-likelihood of a given set of parameters is given by

L
�
ξ
�
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XTb

t=T0

1
Nt

logψS

�
xtjσ; b; at

�
; [S7]

where ψS is given by Eq. S6, with unknown parameters σ, b, and
a (see Eqs. S3 and S4). In Eq. S7 the sum starts at an undiffer-
entiated state at t=T0 and ends at the bifurcation event at t=Tb.
xt are the expression data on the bifurcation direction from the
parent clusters until the differentiated state at t=Tb, with popu-
lation means centered at the origin (Fig. 3 A and C). For simplic-
ity, we assumed that at is the only parameter that changes between
time points, and we used common σ and b values for all fitted time
points. We used the simplex search method (10) to maximize LðξÞ,
as implemented by the fminsearch function in MATLAB.

Validation of Clustering Results by Comparison with Cell-Position Labels.
To test whether our clustering results in step 1 of SCUBA indeed
reflected true lineage differences, we used our clusters as the basis
to predict cell lineages in an independent cell population studied in
ref. 11. These authors applied the same procedure and generated
an additional dataset containing 134 cells. In addition to the gene
expression levels, the location of each cell was labeled by using a
fluorescent marker (PKH26). At the 32-cell stage, the cell lineage
can be uniquely determined by its location, with the ICM cells
located at the inner embryo and the TE cells located at the outer
embryo. Therefore, we focused on the 32-cell stage and selected the
37 cells whose locations were unambiguously determined. Using our
previously obtained clustering results, we assigned each cell to the
closest cluster and evaluated the prediction accuracy by comparing
the cluster assignments with the experimentally determined cell
lineage. Out of the 37 cells that could be compared in this manner,
we found only one misclassification error, indicating that our pre-
dictions are highly accurate (Fig. S1).

Booststrap Analysis of Clustering Results. To test the robustness of our
clustering results, we simulated 1,000 datasets by resampling the data
using bootstrap (12) and repeated our analysis pipeline for each
simulated sample. For each pair of cells we enumerated their co-
clustering frequency: A score of 1 indicates they are always as-
signed to the same cluster, whereas a score of 0 indicates that they
are never in the same cluster. The results in Fig. S2 show clear
blocks of values close to 1, indicating that our method is robust.

Analysis of the Effects of Decreasing the Number of Cells in the Detection
of Bifurcations. To estimate how many cells are needed for our
bifurcation analysis we took a series of subsamples of decreasing
size of the RT-PCR dataset and analyzed them with SCUBA.
For the 32-cell bifurcation, we excluded all cells at the 64-cell
stage to remove any possible confounding effect and gradually
down-sampled the cells at the 32-cell stage. For each selected
sample size a total of 1,000 subsamples were analyzed. For the
64-cell bifurcation, we gradually down-sampled the cells at the
64 cell-stage and repeated the analysis for each subsample as
described above. The results show that for the 32-cell bifurcation,
where there are only two different cell types that are clearly
separated by the data, subsampling as few as 20 cells still allows

detection of the bifurcation event (Fig. S3A). However, for the 64-
cell bifurcation, which has three final cell types, the detectability of
the bifurcation is more compromised (Fig. S3B). Fifty cells are
needed to detect the bifurcation at least 70% of the time. These
results indicate that the minimum number of cells required de-
pends both on the difference between the bifurcating lineages and
on the complexity of the lineage structure itself.

SPADE Analysis. The SPADE software (Version 1.0) was down-
loaded from Peng Qiu’s website (pengqiu.gatech.edu) and ap-
plied to analyze the data in ref. 11 by using default parameter
values. Four genes (Nanog, Id2, Sox2, and Gata4) were selected
as markers for down-sampling and tree construction.

Prediction of the Effect of Perturbing Key Regulators on Lineage Bias.
To analyze the effect of perturbing the expression level of an
individual regulator on the lineage bias, we make use of the in-
formation obtained in the two steps of the SCUBA analysis: step
1, the projections of each gene along the bifurcation axis, and step
2, the shape of the potential extracted from the experimental data.
At the end of each bifurcation, two new stable cell states emerge,
corresponding to the two local minima of the potential V ðxÞ. We
use L and R to denote the left and right minima of the potential
(Fig. 5A). At the 32-cell stage L and R represent the TE and
ICM, respectively, whereas at the 64-cell stage L and R represent
the EPI and PE, respectively.
We first estimate the probability of a cell differentiating into

a certain lineage in normal conditions. For a cell with starting at
position x on the bifurcation axis, the probability that it ends up at
a specific cell state can be estimated by the splitting probabilityQ

RðxÞ[or
Q

LðxÞ, respectively], which is the probability that a cell
first reaches the attractor state at R (or L, respectively). The split-
ting probability is related to the potential V ðxÞ via the following (9):
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The blue curve in Fig. 5A shows the relationship between
Q

RðxÞ
and x. Under a perturbation where the expression level of one
gene is forcedly changed, the initial effect can be modeled as a
displacement Δgene along the bifurcation axis, and this displace-
ment of this initial condition leads to altered splitting probabil-
ities. Therefore, the lineage bias due to such a perturbation can
be estimated by

Bias
�
gene

�
=
Y

R

�
C+Δgene

�
−
Y

R

�
C
�
: [S9]

Fig. 5 B and C show the predicted effect due to a twofold de-
pletion of each assayed transcription factor at the 32-cell and 64-
cell stage bifurcation, respectively.

Experimental Procedure for Blastocyst Generation and Single-Blastocyst
RT-PCR.A null mutation of the mouse Nanog gene was generated
by homologous recombination in embryonic stem cells. The Nanog
allele was modified to produce a fusion between Nanog amino acid
60 (Leucine) and the β-galactosidase (LacZ) reporter gene.
NanoglacZ/LacZ homozygotes die shortly after implantation
(embryonic day 5.5), whereas NanoglacZ/+ heterozygotes are
phenotypically normal.
For single-blastocyst quantitative PCR, total RNA was ex-

tracted from individual blastocysts at approximately the 64-cell
stage using the PicoPure RNA Isolation Kit (Arcturus Bioscience)
and cDNA synthesized at 37 °C for 2 h using the high-capacity
cDNA Archive Kit (Applied Biosystems). One-eighth of each
cDNA preparation was preamplified for 16 cycles (95 °C for 15 s
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and 60 °C for 4 min) using the TaqMan PreAmp Master Mix Kit
(Applied Biosystems) and gene-specific primers. Products were
then diluted fivefold for PCR (Applied Biosystems) in 48.48 Dy-
namic Arrays on a BioMark System (Fluidigm). Threshold cycle
(Ct) values were calculated using the system’s software (BioMark
Real-time PCR Analysis).

Estimates of Cell-Type Composition for Mutant Embryos and Comparison
with SCUBA Prediction. To validate our SCUBA predictions for the
effects of Nanog perturbations, we first used the whole-embryo
dataset to estimate its decomposition into fractions of the different
cell types present at the 64-cell stage, TE, PE, and EPI. Next, we
calculated the lineage bias in embryos with decreasing Nanog
expression and compared with our SCUBA predictions. Finally, we
also compared the lineage bias data with a null model that uses
only the values of Nanog. The details are described as follows.
Estimation of the cell-type composition in each embryo. At the 64-cell
stage there are three different cell types present: EPI, PE, and TE.
Assuming that their related fractions are pE; pP; and pT , respec-
tively, with 1= pE + pP + pT , the expression level for each gene,
G, can be decomposed into contributions from the three cell
types, GE;GP; and GT , as

G= pE pGE + pP pGP + pT pGT : [S10]

The values of GE;GP; and GT , were estimated from single-cell
data by taking the mean value for each cell type. The values of
pE; pP; and pT were then obtained by linear regression, based on
the expression levels of all 48 genes. To estimate the lineage bias,
we first calculated the fractions of PE cells at the 64-cell stage,
pP=ðpP + pEÞ, and then calculated the bias as the change in these
fractions with respect to wild-type (taken as the embryo with
highest Nanog gene expression). The biases for 25 embryos with
decreasing values of Nanog are shown in Fig. 5E.
SCUBA prediction.Using the cell (the leftmost point in Fig. 5E) with
highest Nanog gene expression as reference, we predicted the
lineage bias in each embryo by projecting the observed Nanog
expression level onto the bifurcation axis, followed by calculating
the bias as in Eq. S9. The predicted effect is shown as the ma-
genta curve in Fig. 5E.
Prediction using only Nanog values.As a null model, we also estimated
the different cell-type composition for each embryo using only the
expression level of Nanog in Eq. S10. Assuming that the Nanog
perturbation has no impact on the TE lineage, the change of Nanog
expression in the embryo is given by

ΔNanog=ΔpE pNanogE +ΔpP pNanogP; [S11]

with 0=ΔpE +ΔpP. We solve Eq. S11 for ΔpP as the null model
and used it to calculate the lineage bias as defined above (blue
line in Fig. 5E).

Method to Infer Pseudotime from Non-Time-Ordered Datasets. Our
method to infer pseudotime from non–time-ordered datasets con-
sisted of two steps. In the first step, we used t-SNE (13) to reduce the
data into a three-dimensional space. We used the MATLAB im-
plementation of t-SNE [Matlab Toolbox for Dimensionality Re-
duction (v0.8.1b)]. In the second step, we fitted a smooth curve
passing through the reduced data using the principal curved anal-
ysis (14). We used the R package “princurve” version 1.1-12. For
each cell, the pseudotime is estimated by taking the corresponding
projection index along the principal curve (parameter λ) and re-
scaling by [λ − min(λ)]/[max(λ) − min(λ)].

Comparison with Wanderlust andMonocle.Recently, two new methods
have been developed to estimate the temporal order of single-cell
data from non-time-ordered datasets (15, 16). To compare the
performance of each method, we applied each method to ana-
lyze a human B-cell development datasets (16). The dataset
consisted of 19,486 cells with 17 lineage markers. One of them
(IgM) was measured in two cell locations, surface and intra-
cellular, resulting in a set of 18 signatures per cell.
For Wanderlust we used their published pseudotime estima-

tion, which showed a high correlation with our pseudotime
estimates (Fig. 7C). For Monocle, with this dataset and markers,
analysis of more than 1,000 cells resulted in a run-time error,
probably owing to its limited capacity for large-scale data. To
overcome this difficulty, we applied Monocle to analyze a ran-
domly selected subsample containing 900 cells. The inferred
pseudotime was then extrapolated to all other cells by using
k-nearest neighbor (k = 3) method. To evaluate the variation
due to subsampling, we repeated the analysis three times, each
using an independently selected subsample. For each pseudo-
time reconstruction method we calculated the temporal ex-
pression profiles of several signature genes using 100 equally
spaced time windows and normalizing it to a maximum value of 1,
as in ref. 16.
We applied SCUBA to infer the lineage tree and compared the

results using two different estimates of pseudotime, obtained
from principal curve analysis and Wanderlust, respectively. Spe-
cifically, we sorted cells based on the inferred pseudotime and
divided them into eight equally sized groups.We then sequentially
constructed the lineage tree using step 1 of SCUBA, treating each
group of cells as representing a single time point. In both cases,
SCUBA detected two branches, indicating that there is significant
cell heterogeneity. The three markers with most significant dif-
ferences (using Mann–Whitney U test) are shown in Fig. S8.

Software.A MATLAB implementation of the SCUBA algorithm
is available at github.com/gcyuan/SCUBA.
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Fig. S1. Comparison between the predicted and observed cell lineages at the 32-cell stage. ICM:OBS, inner cell according to florescent marker; ICM:PRED,
predicted as ICM cell; TE:OBS, outer cell according to florescent marker; TE:PRED, predicted as TE cell. X32 and X64 are the bifurcation directions for the 32- and
64-cell stages, respectively.
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Fig. S2. Stability of the dynamic clustering step of SCUBA. Step 1 of SCUBA is repeated 1,000 times by bootstrapping. Each pixel in the grid represents the
frequency of one specific pair of cells being assigned to the same cluster. The heat map shows that the cells are frequently associated within each of our 10
detected clusters. Only the last two clusters associated with EPI and PE states show a mild mixing.
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Fig. S8. Gene signature of the two branches found by SCUBA in the human B-cell development dataset. Developmental tree depicting two branches (orange
and blue) found by SCUBA using SCUBA pseudotime (A) or Wanderlust pseudotime (C). Violin plots show the distribution of values for the most significantly
different markers in branch 1 (orange) and branch 2 (blue), analyzed using SCUBA pseudotime (B) or Wanderlust pseudotime (D).

Dataset S1. Gene weights associated with the 32-cell and 64-cell bifurcation directions for the single-cell RT-PCR dataset

Dataset S1
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