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SI Results
Sensitivity Analyses. We perform several sensitivity analyses to
evaluate the impact of key assumptions. The results of the sen-
sitivity analyses are shown in Figs. S3–S5 and are described below
and in the main text. All sensitivity analyses in Fig. S3 are per-
formed for PM2.5-related health impacts for the month of Sep-
tember only; as shown in Fig. S6, health impacts based on
September PM2.5 concentrations for the scenarios are similar to
health impacts based on annual average concentrations. The grid
resolution sensitivity analysis shown in Fig. S5 was performed for
the month of July to capture summer peak O3 conditions.
As shown in Fig. S2, not all emissions from the fuel life cycles

occur within our spatial modeling domain, and therefore some
emissions are excluded from our analysis. Refer to Tessum et al.
(1) for more information. The electric vehicle (EV) battery
production scenario has the most substantial fraction of emis-
sions assumed to occur outside of the United States, with around
30–40% of emissions of most pollutants from battery production
being excluded from the analysis (Fig. S2). We explore the
sensitivity of our results to this assumption by doubling health
impacts from battery production (Fig. S3) and find that the rank
order of impacts among the different scenarios remains un-
changed. For scenarios other than battery production, in most
cases more than 90% of emissions occur inside the spatial
modeling domain (Fig. S2). A fraction (30–45%) of SOx and
NOx emissions from the petroleum scenarios (gasoline, gasoline
hybrid, and diesel) are also excluded from the analysis, but be-
cause the excluded emissions are mainly from the extraction of
crude oil (1), which largely occurs over the open ocean or far
from population centers, their exclusion is not likely to impact
our overall conclusions. These international upstream emissions
are also excluded from fossil fuel use in the corn grain and stover
ethanol scenarios.
Additionally, as emissions from coal mining and cleaning cause

a substantial fraction of the total health impacts for some sce-
narios, and recent estimates of emissions factors for coal mining
and cleaning for surface mining (2) and for underground mining
(3) exist, we explore updating the GREET model with the new
emission factors and rerunning all analyses for the month of
September. We find that the change in coal mining and cleaning
emissions factors does not affect the rank order of scenario
impacts (Fig. S3) but does substantially reduces the air pollution
impacts of some scenarios.
We additionally compare the impacts from the full life cycle of

the fuels to impacts from either the vehicle tailpipe only for
internal combustion vehicles or the electrical generation units
only for EVs. As shown in Fig. S3, this sensitivity analysis affects
the rank order of scenario impacts, further demonstrating the im-
portance of including the emissions entire life cycle when performing
environmental impact assessment for transportation fuels.
We also perform a set of sensitivity analyses investigating the

effects climate-related assumptions on our results as shown in
Fig. S4.

i) Fig. 3 in the main text excludes emissions occurring outside
the United States for pollutants affecting both air quality
and climate change. We investigate the effects of including
these international emissions (exclusive of indirect land-use
change) on climate change impacts. We find that including
international climate-related emissions does not change overall
damage costs by more than $0.02 per gallon gasoline equiv-
alent for any scenario.

ii) We investigate the impact of including indirect land-use
change emissions as calculated by Plevin et al. (4) (using a
value of 80 g CO2e·MJ−1, which is near the middle of the
range of estimates in that paper) for the corn ethanol sce-
nario. This substantially increases the overall externality
damages from that scenario and reinforces the overall con-
clusion that corn ethanol is not an attractive alternative fuel
in terms of air pollution or climate change impacts.

iii) We investigate the sensitivity of our results to carbon pricing
using market-based carbon price of $6.19 Mg−1 CO2 (from
www.pointcarbon.com/productsandservices/carbon/ as of
March 9, 2013, adjusted to 2012$) as opposed to the $49
Mg−1 CO2 price used in Fig. 3. We find that this changes the
sign of the net externality damages of the EV corn stover
scenario from negative to positive but does not impact the
overall conclusions presented in this paper.

iv) Recent analysis by Brandt et al. (5) suggests that CH4 emis-
sions may be systematically underestimated in emissions in-
ventories, especially for natural gas extraction. We update
the GREET model with the middle value for CH4 leakage
during natural gas extraction from Brandt et al. (5), re-
sulting in 1.2% leakage on average instead of the GREET
1.8d1 default of 0.35%. We find that this does not affect
the overall conclusions presented here. Although increased
CH4 emissions may also impact O3 concentrations, we as-
sume the effect on our overall conclusions to be negligible
because O3 health impacts are small relative to PM2.5
health impacts.

v) Because almost all oil extraction from oil sands occurs out-
side of our geographic modeling domain, our baseline anal-
ysis assumes all oil is extracted conventionally (0% oil sands
oil). This sensitivity analysis assumes that the GREET 1.8d1
year 2020 default value of 21% of crude oil comes from oil
sands. We find that this does not affect the overall conclu-
sions presented here. The use of oil sands oil instead of
conventionally extracted crude may also affect air pollution
concentrations, but the difference in health impacts is likely
small because both the Canadian oil sands and most con-
ventional extraction locations are typically located far from
population centers.

The final sensitivity analysis investigates the impact of model
spatial resolution on calculated health impacts (Fig. S5). For
PM2.5, total estimated impacts increase ∼10–15% when going
from 36- to 12-km resolution, and another 5% when going from
12- to 4-km resolution. (O3 impacts are not highly dependent on
grid resolution owing to the comparatively smaller spatial gra-
dients in O3 concentrations.) Our contiguous-United States,
12-km resolution analysis is an improvement over previous stud-
ies, which used 36-km or county-level resolution or considered
only part of the United States; Table S1); still, our approach is
potentially susceptible to underestimation of near-source ex-
posures. This dependence of impacts on model spatial resolution
is likely caused by numerical dispersion and is likely most pro-
nounced in scenarios where the most emissions occur in urban
areas (i.e., the gasoline, diesel, and gasoline hybrid scenarios). It
currently is not computationally practical to perform the full
methodology reported here at 4-km or finer resolution; current
models capable of higher resolution analyses (e.g., Gaussian
plume models) do so at the expense of the chemical and physical
representation of processes that our findings suggest are im-
portant (e.g., formation of secondary PM2.5).
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Comparison with Michalek et al. (6). An analysis by Michalek et al.
(6) finds that, in terms of air quality-related health impacts, EVs
do not compare favorably to conventional gasoline vehicles:
when only emissions from battery production and from brake
and tire wear during vehicle use are considered (which is
equivalent to the WWS EV scenario presented here), they find
that EVs cause air quality-related damages 150% greater than
do conventional gasoline vehicles. [Michalek et al., table S25,
adjusted to make equivalent for comparison by excluding the
following: (i) vehicle and battery production for gasoline ve-
hicles; (ii) vehicle and electricity production for EVs; and (iii)
GHG, CO, and oil premium impacts for both vehicles.] Our
analysis, however, finds that WWS EVs reduce impacts by 70%
compared with conventional gasoline vehicles. In both studies,
the main source of WWS EV impacts is battery production. We
are aware of two major reasons for the difference between our
and Michalek et al.’s results: (i) differences in the estimates of
amounts of emissions, and (ii) differences in the modeled loca-
tions of battery manufacturing processes.

i) Michalek et al. use a customized version of GREET 2.7 to
calculate emissions from battery production, whereas we use the
default settings in the more recently released GREET2_2012.
(Note: GREET 2 is not an updated version of GREET 1.
GREET 1.x models fuel pathways, and GREET 2.x models
vehicle production pathways.) Comparing our emissions re-
sults (Dataset S1) to those of Michalek et al. (table S3 in their
study), our emissions estimates are substantially lower than
theirs—87% lower for SO2 emissions (80% lower if interna-
tional emissions are included). The battery size used in both
studies is similar (66.1 kWh in Michalek et al.; 63 kWh in our
study). The differences in emissions instead appear to be
caused by differences between GREET versions—among
other differences, GREET2_2012 uses LiMn2O4 batteries
in place of the LiCoO2 batteries used in GREET 2.7 (7)—
and our use of year 2020 grid-average electric generation mix
for electricity used in battery production, which is cleaner
than the year 2010 mix used by Michalek et al.

ii) Michalek et al. assume processes upstream from EV battery
manufacturing are colocated with automobile manufactur-
ing facilities, but our more detailed analysis shows that, for
example, copper ore smelting, which causes the majority of
battery production SO2 emissions, mainly occurs in the
sparsely populated southwestern United States (8). Because
the production of copper and other raw materials for bat-
teries occurs far from people, even if impacts from battery
production as calculated here are doubled to adjust for
emissions that occur outside of our spatial modeling do-
main, impacts from WWS EVs would still be 57% lower
than conventional gasoline vehicle impacts. We test this
hypothesis by using the ratio of population-weighted aver-
age ground-level concentrations to area-weighted average
ground-level concentrations as an imperfect surrogate for
the proximity of emissions sources to people. The ratio for
our results for EV battery production is 1.9, lower than any
of the other scenarios. The ratios for the other scenarios

range between 3 and 9. If emissions from battery produc-
tion were located so as to give a population-weighted aver-
age to domain average ratio of 9 instead of 1.9, impacts
from WWS EVs would be ∼30% greater than impacts from
conventional gasoline vehicles, which is closer to the result
reported by Michalek et al. GREET assumes zero trans-
portation emissions between mining operations and smelt-
ing facilities. This implies that smelting occurs at the mining
site; to maintain consistency with GREET, we have main-
tained that assumption in our analyses. Given the poten-
tially large importance of those emissions in estimating the
impacts of battery EVs, further investigation of this topic
is warranted.

Sensitivity of Results to EV Battery Life. In these analyses, we use the
GREET default assumption that EV battery life is 160,000 miles:
the same as the life of the rest of the vehicle. To explore a hy-
pothetical scenario where battery life is only 100,000 miles, we
multiply our results for air quality impacts from battery pro-
duction by a factor of 1.6. This gives results similar to the sen-
sitivity analysis in Fig. S3 where we double battery impacts: the air
quality impacts of the EV scenario increase (WWS EVs, 34%
increase; natural gas EVs, 18%; corn stover EVs, 7%; grid av-
erage EVs, 5%; coal EVs, 2%), but the rank order of scenarios
does not change.

Model Availability. The GREET model is available at greet.es.anl.
gov/. GREET-cst is freely available upon request. WRF-Chem is
available at www2.mmm.ucar.edu/wrf/users/. The SMOKE model
is available at www.cmascenter.org/smoke/. Our program used to
convert between SMOKE and GREET-cst output and WRF-
Chem input formats is available at bitbucket.org/ctessum/emcnv/.

Additional Data. Additional supporting data files are available:

• Dataset S1: A Microsoft Excel file containing emissions
amounts disaggregated by life cycle stage for each scenario.
For more information on emissions, refer to Tessum et al. (1).

• DatasetS2.pdf: Maps of annual average ground-level concen-
trations of PM2.5, O3, PM10, NOx, HCHO, NH3, particulate
SO4, particulate NH4, particulate NO3, organic aerosol, ele-
mental carbon aerosol, particle number, and CO; maps of
annual average daily peak O3 concentrations; and maps of
PM2.5 and O3 concentrations animated by month of year,
day of week, and hour of day for the baseline simulation
and each scenario. A PDF viewer that allows embedded Java-
Script, such as Adobe Acrobat, is required to view the anima-
tions. Available in an external repository at dx.doi.org/
10.13020/D6159V.

• VideoS1.mp4: A video showing temporal variation in PM2.5
concentrations attributable to each scenario. Available in an
external repository at dx.doi.org/10.13020/D6159V.

• VideoS2.mp4: A video showing temporal variation in O3 con-
centrations attributable to each scenario. Available in an ex-
ternal repository at dx.doi.org/10.13020/D6159V.
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%20Coal%20Mine%20PM%20BMP%20Determination.pdf. Accessed September
26, 2013.
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6. Michalek JJ, et al. (2011) Valuation of plug-in vehicle life-cycle air emissions and oil
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A: Baseline B: Gasoline C: Gasoline hybrid D: Diesel E: CNG

F: Corn grain ethanol G: Corn stover ethanol H: EV grid average I: EV coal

J: EV natural gas K: EV corn stover L: EV WWS M: EV battery production
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2.4-2.4 Scenario changes in concentration: Panels B-M (ppb)

Fig. S1. April to September average daily peak O3 concentrations. (A) Year 2005 baseline modeled concentrations. (B–L) Increase in concentration above the
baseline attributable to replacement of 10% of year 2020 vehicle use with the given technology. (M) Increase in concentration attributable to EV battery
manufacturing. Color scales contain a discontinuity at the 99th percentile of emissions. Abbreviations: CNG, compressed natural gas vehicle; EV, electric vehicle;
WWS, wind, water, or solar.
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Fig. S2. Fractions of emissions from each scenario that occur within the spatial modeling domain. Boxes marked with “X” indicate that total emissions are
zero. Emissions outside of spatial modeling domain are not included in the above analyses.
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Fig. S3. Air pollution damages based on air quality modeling for the month of September for the baseline scenarios and sensitivity analyses where battery
production impacts are doubled (“Doubled battery impacts”), where coal mining and cleaning emissions factors were updated to a recently published value
(“Coal mining EF”), and where only emissions from vehicle tailpipes or electrical generation units are considered (“Tailpipe or EGU only”). The numbers at the
base of each bar are rank orders where number 1 has the lowest impacts and number 11 has the highest impacts of all of the scenarios. Climate change and air
pollution impacts of battery production are added to the EV scenarios assuming effects are additive. Abbreviations: CNG, compressed natural gas vehicle;
WWS, wind, water, or solar.
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Fig. S4. Annual air pollution and climate change externalities attributable to each scenario relative to the gasoline scenario (“Baseline”) and sensitivity
analyses assessing the impacts of (i) “Indirect land-use change”: including indirect land-use change emissions in the corn ethanol scenario; (ii) “International”:
including climate impacts of emissions outside of the United States; (iii) “Market carbon price”: using a market-based carbon prices rather than the mitigation-
based price used in the main analysis; (iv) “Natural gas leakage”: assuming increased leakage of methane during natural gas extraction; and (v) “Oil sands”:
assuming 21% of crude oil comes from oil sands as opposed to the baseline assumption of 0%. The numbers at the end of each bar are rank orders where
number 1 has the lowest impacts and number 10 has the highest impacts of all of the scenarios. Impacts from the gasoline scenario equal zero on this plot.
Climate change and air pollution impacts of battery production are added to the EV scenarios assuming effects are additive. Abbreviations: CNG, compressed
natural gas vehicle; WWS, wind, water, or solar.
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Fig. S5. Impact of grid resolution on apparent health impacts for two scenarios.
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Fig. S6. Average percent differences in number of deaths among all scenarios when only considering air quality modeling results from one month compared
with all 12 months.
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Table S1. Results of previous studies of air quality impacts from alternative transportation fuels and technologies

Article Result Notes

Peer-
reviewed
journal?

Alhajeri et al. (1) Seventeen percent plug-in hybrid EV (PHEV)
adoption leads to greater decreases in O3 than
100% biofuel (E85) adoption.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Austin, TX.

Yes

Boureima et al. (2) Battery EVs greatly decrease air quality impacts
compared with gasoline or hybrid vehicles.

Full life cycle analysis including battery production
but does not include any spatial information and
uses generalized emissions impact functions.
Electric generation mix is Belgium average.

Yes

Brinkman et al. (3) PHEVs decrease O3 concentrations compared with
gasoline vehicles.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Denver, CO.

Yes

Cook et al. (4) Increased ethanol use in the United States will
increase O3 concentrations in most areas, but
decrease concentrations in some highly
populated areas with poor air quality.

Full life cycle analysis with spatially explicit
emissions, but the degree of spatial
disaggregation is not clear. Impacts on PM2.5

concentrations are not reported. Air quality
model uses two separate 12-km resolution
domains, each covering half of the United States.

Yes

EPA (5) Standard mandating biofuel (both corn grain-
based and cellulosic) production and
consumption will cause 35–85 cases of adult
PM2.5 mortality and 36–160 cases of adult O3

mortality compared with business as usual.

Use detailed air quality model for contiguous
United States with life cycle inventory, and
spatial data are included in the life cycle
inventory. Impacts of corn grain and cellulosic
ethanol are not reported separately.

No

EPRI (6) PHEV adoption decreases O3 and PM2.5 levels
compared with business-as-usual in almost all
urban areas.

Use detailed photochemical model for contiguous
United States, but only consider tailpipe, EGU,
and petroleum supply chain emissions. Assume
no marginal SOx or NOx emissions from EGUs.
Air quality model uses 36-km spatial resolution.

No

Hill et al. (7) PM2.5 impacts from corn ethanol are ∼60% greater
than from gasoline, impacts from cellulosic
ethanol are slightly better than from gasoline,
and PM2.5 impacts are larger than GHG impacts.

Full life cycle analysis at county-level spatial
resolution for contiguous United States, with
reduced-form air quality model.

Yes

Jacobson (8) Ethanol vehicles cause increased O3-related
mortalities compared with business-as-usual.

Use detailed photochemical model for contiguous
United States, but only consider tailpipe
emissions. Air quality model uses 0.5 by 0.75°
(∼50 km × 75 km) spatial resolution.

Yes

NRC (9) For year 2030, corn ethanol causes similar air
quality impacts to gasoline; cellulosic ethanol,
diesel vehicles, and compressed natural gas
vehicles cause decreased impacts; EVs cause
increased impacts.

Use reduced-form air quality model with full life
cycle emissions inventory. Emissions inventory
and air quality model have county-level spatial
resolution.

No

Michalek et al. (10) Using “base case” assumptions, EVs do not improve
PM2.5 and O3 air quality impacts compared with
gasoline, owing largely to emissions from battery
production.

Use reduced-form air quality model with full life
cycle emissions inventory. Emissions inventory
and air quality model have county-level spatial
resolution.

Yes

Thompson et al. (11) PHEVs decrease O3 concentrations compared with
gasoline vehicles.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Pennsylvania,
New Jersey, and Maryland.

Yes

Thompson et al. (12) PHEVs decrease O3 concentrations compared with
gasoline vehicles.

Use detailed photochemical model, but only
consider vehicle tailpipe and EGU emissions,
and only estimate impacts in Texas.

Yes

1. Alhajeri NS, McDonald-Buller EC, Allen DT (2011) Comparisons of air quality impacts of fleet electrification and increased use of biofuels. Environ Res Lett 6(2):024011.
2. Boureima F-S, et al. (2009) Comparative LCA of electric, hybrid, LPG and gasoline cars in Belgian context. World Elec Vehicle J 3:1–8.
3. Brinkman GL, Denholm P, Hannigan MP, Milford JB (2010) Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado. Environ Sci Technol 44(16):6256–6262.
4. Cook R, et al. (2010) Air quality impacts of increased use of ethanol under the United States’ Energy Independence and Security Act. Atmos Environ 45(40):7714–7724.
5. US Environmental Protection Agency (2010) Regulation of fuels and fuel additives: Changes to renewable fuel standard program; Final Rule. 75. Federal Register 58 (2010), pp 14670–14904.
6. Electric Power Research Institute (2007) Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 2: United States Air Quality Analysis Based on AEO-2006 Assumptions for

2030. Available at www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001015326. Accessed November 24, 2014.
7. Hill J, et al. (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci USA 106(6):2077–2082.
8. Jacobson MZ (2007) Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Environ Sci Technol 41(11):4150–4157.
9. National Research Council (2009) Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use. Available at www.nap.edu/catalog.php?record_id=12794. Accessed

November 24, 2014.
10. Michalek JJ, et al. (2011) Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits. Proc Natl Acad Sci USA 108(40):16554–16558.
11. Thompson T, Webber M, Allen DT (2009) Air quality impacts of using overnight electricity generation to charge plug-in hybrid electric vehicles for daytime use. Environ Res Lett 4(1):014002.
12. Thompson TM, King CW, Allen DT, Webber ME (2011) Air quality impacts of plug-in hybrid electric vehicles in Texas: Evaluating three battery charging scenarios. Environ Res Lett 6(2):024004.
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Table S2. Fractions of processes related to battery production
that occur outside of the spatial modeling domain

Process Percent excluded, % Data source, ref.

Steel production 9 1
LiMn2O4 100 2
Graphite production 100 1
Copper production 35 1
Aluminum production 13 1
LiPF6 100 2

The spatial modeling domain includes the continental United States and
surrounding waters. Processes not included in this table are assumed occur
100% inside the spatial modeling domain. Refer to Dataset S1 for total
emissions for each of these processes after the excluded fractions have been
removed.
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