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Introduction

Figs. 7, 8, and 9 show the effects of changing model parameters τMER, the lifetime of
free merozoites, and p, the number of merozoites produced per bursting schizont,
for a Plasmodium vivax and a generalist model. These three figures show changes
in the time to the onset of catastrophic anemia, the peak, and the integrated
parasitemia.  

Figures 10, 11, and 12 shows changes in P. vivax and generalist dynamics that arise
from the bystander effect and diserythopoesis (see text).

Figures 13, 14, and 15 display some properties of the steady-state solutions as a
function of f0 for all 3 models.

There are four sections in this supplement: (i) Poisson Model of the Fate of Free
Merozoites, (ii) Limit on Exponential Growth of Parasitemia, (iii) Variance in
Population Lifespan in a CODE Model, and (iv) Steady-State Solutions.

Poisson Model of the Fate of Free Merozoites

As stated in the main text, we assume that there are two competing Poisson
processes that affect the fate of a merozoite when it is released from a bursting
RBC: (i) the merozoite will die or be cleared from circulation at rate 1/τMER; (ii) it
attaches to an uninfected RBCs at rate ζV. (In our present calculations, we ignored
infection of RBCs already infected.) We make the assumption that one of these
fates will occur before V changes significantly. Then the probability that by time t
after release neither fate occurs to the merozoite is

PNH(t) = exp( -t (1/τMER + ζV ) ) [S1]

The probability that neither has occurred by time t but the merozoite invades a RBC
between time t and t + ∆t (and is not cleared) is

δPINF(t) = PNH(t) ζV ∆t ( 1 - ∆t/τMER) [S2]

If N = t/∆t, then the probability that by time t, the merozoite has invaded an RBC
(and not died) is 



PINF(t) = Σn=1,N δPINF(n∆t) [S3]

Taking the limit of ∆t �  0 (and N � � ), we get 

PINF(t) = ζV (1/τMER + ζV)-1 [1 - exp( -t (1/τMER + ζV ) ) ] [S4]

As t �   � ,  

 PINF(t) 
�  ζVτMER/( 1 + ζVτMER ) [S5]

Consider the free merozoites that reach and infect RBCs. The average number of
descendants of those merozoites that also reach and infect RBCs is 

R = p PINF(t)  as t �  �

    = p ζ V τMER (1 + ζ V τMER
 )-1 [S6]

where p is the average number of merozoites released by a bursting RBC. If τMER

<< τI , then the merozoites released from a bursting RBC almost certainly will die
over a single development cycle unless they infect an RBC by time τI after release.
Thus R is a basic reproductive ratio during a cycle time. Note that  R �  p as VτMER

� � .

Limit on Exponential Growth of Parasitemia

R = R0 is the basic reproductive ratio when the merozoites are first released from
the liver. If the initial release is � 104 to 105 merozoites, the merozoite population is
dwarfed by the total population of vulnerable RBCs. If R0  > 1, then the parasite
count undergoes an initial phase of exponential growth as long as V �  V0. The
question, then, is how long this phase will last. We can set an upper bound on the
length of the exponential growth phase. During the initial growth phase, the
merozoite count for each generation n is 

Mern �  R0
n Mer0 [S7]

This approximation must certainly break down by the time Mern � V0. So the upper
bound on the duration of the exponential growth phase is

TC = τI NC [S8]



where NC is the solution to 

R0
NC Mer0 = V0 [S9]

This yields

NC = log(V0/Mer0)/log(R0) [S10]

TC = τI log(V0/Mer0)/log(R0)

Variance in Population Lifespan in a CODE Model

Our discussion in this section resembles those given in refs. 1 and 2, but is repeated
here for those readers who are not familiar with compartmental equations. Consider
a simple model for the dynamics of a population of individuals that age and then
die: initially all the population is in one compartment. As individuals age, they pass
from compartment to compartment at an average rate κ. After an individual passes
through the last compartment, it dies. Let F be the total number of compartments:

dX1/dt = -κX1 [S11]

dXn/dt = κ( Xn-1  - Xn), 1 < n < F

We use initial conditions X1(0) = P0, Xn(0) = 0 for n > 1. Then for t > 0 in all
compartments:

Xn(t) = P0 exp(-κt) (κ t)n-1/(n-1)! [S12]

The rate of individuals dying is

rD(t) = κXF(t) = κ P0 exp(-κt) (κ t)F-1/(F-1)! [S13]

This has a maximum at time tMX = (F - 1)/κ, the time when most of the population
has progressed into the final compartment. Define the quantity σ = (F - 1)1/2/κ.
Using the infinite series representation of ln(1 + x) = Σn (-1)n-1xn/n, we find that for
small enough time interval ∆t:



ln(rD(tMX + ∆t)/rD(tMX)) = -(1/2)∆t2σ-2 + (1/3)∆t3σ-3 - (1/4)∆t4σ-4 +…
[S14]

In particular, if ∆t = +σ or -σ:

ln(rD(tMX + σ)/rD(tMX)) = -1/2 + (1/3) (F - 1)-1/2 - (1/4)(F - 1)-1 +…

ln(rD(tMX - σ)/rD(tMX)) = -1/2 - (1/3) (F - 1)-1/2 - (1/4)(F - 1)-1 - …
[S15]

Eqs. S14 and S15 show that as F gets larger, tMX fixed, rD(t) approaches Gaussian
function of t centered about tMX with variance σ = (F - 1)1/2/κ = tMX (F  - 1)-1/2. If F =
10, rD(tMX + σ) �  0.66 rD(tMX) and rD(tMX - σ) �  0.52 rD(tMX). For F = 100, rD(tMX +
σ) �  0.63 rD(tMX) and rD(tMX + σ) �  0.58 rD(tMX).

The nominal lifespan of an individual is τ = F/κ; then 

σ2 = tMX
2/(F - 1) = τ2(F - 1)/F2

    
    = (τ2/F)( 1 - 1/F). [S16]

If F >> 1, τ fixed, we can use the approximation σ �  τ/F1/2.

Steady-State Solutions

The steady-state solutions obtained by setting all the time derivatives in the CODE
models to zero have analytic forms for all three models. The steady-state solutions
show both unifying themes and differences due to the age structure of the attack
strategies.  For all three models, the free merozoite count is given by 

MerS =  xFV/(ζ τV) [S17]

where τV = 120 days, τR, or τS for the generalist, P. vivax or P. malariae models
respectively. FV is the number of compartments that describe the susceptible RBC
stage. The dimensionless number x is the solution to

Fvx/(1 - ( 1 + x)-Fv) = f0 ET0 τMer ζ (p - 1) [S18]



Thus, the variance in the duration of a susceptible RBC affects the steady-state
solution. The right hand side can be written as R0(p - 1)/(p - R0). Since the left-hand
side � 1 as x �  0, R0 must be > 1 for there to exist a non-trivial steady state (i.e. a
real, positive solution for x).

The infected and susceptible RBC steady-state counts for all three models are
 

IES =  (τIE/τV) f0ET0 (1 - (1 + x)-Fv) [S19]

Vs =1/((p - 1 ) ζ τMER) [S20]

Note that V = Vs gives R = 1 in Eq. 1 in the main text, as expected.

For the P. malariae and generalist models, the steady-state count of nonsusceptible
RBCs is

NS = (1 - f0) ET0, [S21]

which is independent of the behavior of the susceptible fraction of RBC. However,
the P. vivax model is very different from the other two in that the steady-state count
of the non-susceptible RBCs is highly dependent on the susceptible RBCs:

NS = (1 - f0) ET0 (1 + x)-FR [S22]

US = NS + Vs is the total uninfected RBC population during steady-state. If the
simulation is not stopped when U declines to the threshold value for catastrophic
anemia UA (which we take arbitrarily as 75% of U for a healthy host), the total
uninfected RBC count, U, approaches US. The value of US tells us nothing about the
transients in U, however: even if US > UA, U can drop below UA before U stabilizes
at US.
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