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1. Equivalence of posterior inference under Poisson and multinomial models

Forster [1] shows that for complete contingency tables (i.e. when N is known), the joint posterior distribution

for βm and m is identical under the Poisson and multinomial formulations when π(β0) ∝ 1, assuming the same

prior distribution on the remaining parameters and over the model space. We extend this result here to the case

of incomplete contingency tables (i.e. when N is unknown) and in the presence of (uninformative) left censoring.

In particular, the posterior distributions are identical under the different model formulations under the prior

specifications, π(β0) ∝ 1 and π(N) ∝ N−1 (assuming identical priors on all other parameters and over model

space).

First we consider the Poisson formulation given in equation (2.1) of the main manuscript. The full set of model

parameters, under model m, is denoted by θm = {βm, σ
2}. We let φm =

(
αm, σ

2
)

(i.e. the set of parameters

excluding the intercept term). In addition, for model m (dropping the subscript notation for simplicity) we let

hi = ηi − β0 (i.e. the linear predictor for cell i, minus the intercept term). From equation (2.5) of the main

manuscript, and integrating out the intercept term, the (marginal) posterior distribution of φm, m, yC and yU is

given by

π(φm,m,yC ,yU |yO, zC) ∝ π(zC |yC)π(φm,m)

∫
R
π(y|θm,m)π(β0)dβ0

∝ π(zC |yC)π(φm,m)

∫
R

∏n
i=1 exp(−µi)µyii∏n

i=1 yi
dβ0

(recalling that π(β0) ∝ 1)

= π(zC |yC)π(φm,m)

∏n
i=1 exp(hi)

yi∏n
i=1 yi

×
∫
R

exp(β0)
N

(
− exp(β0)

n∑
i=1

exp(hi)

)
dβ0.
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Using the substitution u = exp(β0) and simplifying the expression, we obtain

π(φm,m,yC ,yU |yO, zC) ∝ π(zC |yC)π(φm,m)

∏n
i=1 exp(hi)

yi (N − 1)!∏n
i=1 yi! (

∑n
i=1 exp (hi))

N
. (1)

Next we consider the alternative multinomial formulation. The posterior distribution of φm, m, yC and yU is

given by,

π(φm,m,yC ,yU |yO, zC) ∝ π(zC |yC)π(φm,m)π(y|N,φm,m)π(N)

∝ π(zC |yC)π(φm,m)
N !∏n
i=1 yi!

n∏
i=1

pyii ×
1

N
,

substituting the probability mass function for the multinomial distribution. The result immediately follows (i.e.

the posterior distribution is identical to equation (1) in this document) by noting that

pi =
exp(hi)∑n
j=1 exp(hj)

.

2. Weighted least squares implementation of the Metropolis-Hastings algorithm

In this section we describe the weighted least squares implementation of the Metropolis-Hastings algorithm

for GLMs [2] as applied to log-linear models. Let the current parameter values be denoted by βm and define

W(βm) = diag {µi} and ∆i(βm) = (yi − µi)/µi, where µi is evaluated at the current log-linear parameters, βm.

Furthermore, we let

ỹ(βm) = Xmβm + ∆(βm);

C(βm) =

(
1

σ2
I + XT

mW(βm)Xm

)−1
; and

m(βm) = C(βm)XT
mW(βm)ỹ(βm).

The Metropolis-Hastings proposal parameters, β′ are simulated from,

β′ ∼ N (m(βm),C(βm)) ,
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and accepted with the standard acceptance probability, min(1, A), where

A =
π(β′|y, σ2,m)q(βm|β′)
π(βm|y, σ2,m)q(β′|βm)

,

in which q(β′|βm) denotes the multivariate normal proposal density for the proposal values, given the current

parameter values (and vice versa).

3. Reversible jump algorithm

Here we consider the reversible jump algorithm [3] to update the model within the MCMC algorithm. We let

m denote the current model with associated vector of log-linear parameters βm and design matrix Xm. Let m̃

denote the maximal model, i.e. the most complex model we are prepared to consider and β̃m̃ the corresponding

posterior mode of the log-linear parameters under the maximal model fitted to the observed cell counts, yO. Note

that, for the examples we consider, the maximal model corresponds to the model with all main effects and two-way

interactions present. We set η̃ = Xm̃β̃m̃ and define the (n× n) matrix W̃ = diag {exp(η̃)}.

We propose to move to a model that differs with respect to the current model m by only a single interaction

and choose each of these models with equal probability. Suppose that we propose to move to model k, which

involves adding an interaction term (i.e. a “birth” move). We let the associated design matrix for model k be Xk.

We can write Xk = (Xm,S) where S is the column vector of the design matrix corresponding to the interaction

term that is added to the current model (note that for such moves we also re-order the β terms accordingly).

We define,

P k = Xk

(
XT

k W̃Xk

)−1
XT

k W̃ ;

Ck =
(
STW̃ (I − P k)S

)−1
; and

mk = CkS
TW̃ (I − P k) η̃.

We simulate u ∼ N (mk, Ck) and set the proposed model parameters β′k such that,

β′k =

 β′(1)

β′(2)

 =

 I −
(
XT

k W̃Xk

)−1
XT

k W̃S

0 1


 βm

u

 .
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Note that β′(1) denotes the proposed parameter values for the log-linear terms present in model m and β′(2) the

parameter value for the interaction term that is proposed to be added.

The move is accepted with probability, min(1, A), where,

A =
π(β′k, k|y, zC , σ2)

π(βm,m|y, zC , σ2)q(u)
,

such that q denotes the proposal normal density function with mean mk and variance Ck. The Jacobian term is

simply equal to one and the probabilities of moving between models m and k cancel in the probability so that

these terms are omitted in the acceptance probability.

We now consider the case where we move from model k with parameters β′k to model m with parameters

βm which involves removing a single interaction term from the model (i.e. a “death” move). The corresponding

log-linear parameters in the proposed model are deterministically given by,

βm = β′(1) +
(
XT

k W̃Xk

)−1
XT

k W̃Sβ′(2),

and u = β′(2). Recall that β′(1) is the vector of current elements of β′k corresponding to the log-linear parameters

present in model m and β′(2) is the current value of the log-linear parameter that is removed from the model. This

move is accepted with probability min(1, A−1), where A is given above. Finally, note that in both types of model

moves (adding or removing an interaction parameter), the hyperparameter σ2 is not updated within the model

move.

4. Additional output

Web Table 1 shows the posterior means of the interaction terms for each year and for the INC-C, REM-C

and IGN-C methods. This table acts as a complement to Table 5 (showing posterior probabilities) in the main

manuscript.

Web Table 2 shows the posterior mean and 95% HPDIs for the total population size for each year under four

different specifications of the prior hyperparameters, a and b, under the proposed INC-C method. The values in

this table should be compared against the corresponding values in the first two columns of Table 4 in the main

manuscript, where the prior hyperparameters are a = 0.001 and b = 0.001.
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Web Table 1: The marginal posterior means for each two-way log-linear interaction term for the INC-C, REM-
C and IGN-C methods. The data-sources are labelled as S1 - social enquiry reports; S2 - hospital records; S3
- Scottish Drug Misuse Database (SDMD) and S4 - HCV diagnosis data-source. An NA indicates that this
interaction cannot be identified with the REM-C method.

2003 2006 2009
Interaction INC-C REM-C IGN-C INC-C REM-C IGN-C INC-C REM-C IGN-C
S1 × S2 0.00 0.00 0.13 -0.01 -0.00 0.00 0.00 0.01 0.19
S1 × S3 -0.08 -0.09 0.08 0.12 0.14 0.19 0.07 0.09 0.26
S1 × S4 -0.00 NA -0.01 0.01 NA -0.00 0.04 NA 0.01
S2 × S3 0.02 0.02 0.19 -0.01 0.00 0.06 -0.04 -0.02 0.17
S2 × S4 0.31 NA 0.27 0.27 NA 0.21 0.18 NA 0.07
S3 × S4 0.01 NA -0.01 0.01 NA -0.00 0.01 NA -0.01

S1 × Age 0.21 0.21 0.25 -0.17 -0.16 -0.21 0.05 0.05 0.19
S2 × Age -0.04 -0.04 -0.00 0.13 0.13 0.08 -0.24 -0.24 -0.11
S3 × Age 0.09 0.09 0.15 -0.13 -0.12 -0.18 0.01 0.01 0.16
S4 × Age -0.00 NA -0.01 0.00 NA 0.01 0.03 NA -0.01

S1 × Sex 0.09 0.09 0.09 -0.00 -0.00 -0.01 0.00 0.00 0.01
S2 × Sex -0.00 -0.00 -0.00 0.12 0.12 0.10 -0.13 -0.13 -0.12
S3 × Sex 0.00 0.00 0.00 0.01 0.01 0.00 -0.00 -0.00 0.00
S4 × Sex -0.01 NA -0.00 0.00 NA 0.01 -0.00 NA -0.00

S1 × Region 0.06 0.06 0.07 0.01 0.01 0.04 0.00 0.00 0.01
S2 × Region -0.16 -0.17 -0.15 0.00 0.00 0.03 -0.00 -0.00 0.01
S3 × Region -0.00 -0.00 0.00 0.21 0.21 0.24 0.12 0.12 0.14
S4 × Region -0.14 NA -0.19 -0.00 NA -0.10 -0.01 NA -0.25

Age × Sex -0.12 -0.12 -0.12 -0.15 -0.15 -0.14 -0.16 -0.16 -0.14
Age × Region 0.19 0.19 0.18 -0.14 -0.14 -0.13 0.13 0.13 0.14
Sex × Region -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 -0.00

Web Table 2: Posterior mean (95% HPDI) for the total population size under the INC-C method for each year, for
different values of the prior hyperparameters, a and b. The analysis presented in the main manuscript corresponds
to a = b = 0.001 and the posterior mean (95% HPDI) for the total population size under this analysis (from Table
4) is also shown here for comparison.

Year a = 0.001 a = 0.001 a = 0.001 a = 0.001 Gelman
b = 0.004 b = 0.002 b = 0.001 b = 0.0005 prior

2003 16300 16500 16700 16700 16500
(14200, 20500) (14300, 20800) (14300, 20900) (14300, 20900) (14300, 20700)

2006 22800 23200 22900 23000 22900
(15700, 26600) (19800, 27000) (16300, 27000) (19300, 27600) (18700, 27800)

2009 14600 14600 15600 15200 14600
(11400, 18300) (11500, 18300) (11500, 18600) (11700, 18700) (11500, 18400)
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