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Climate-driven spatial mismatches between British orchards and their 

pollinators: increased risks of pollination deficits. 

 Supporting Information 

Material and Methods 

Pollinator data 

Table S 1 lists the wild insect pollinator species used to predict the potential pollinator availability to 

orchard crop flowers in Great Britain. Available records indicate the number of sites of known 

presence, mapped on 5 by 5 km grid cells. The honeybee (Apis mellifera) was excluded due to the 

difficulties of separating records from managed colonies from those of wild colonies. 

Climate data for future projections 

Monthly averages for future projections were derived from the daily data generated by the 

HadRM3-PPE-UK experiment (Murphy et al., 2010), run at the UK Met Office Hadley Centre (MOHC). 

The dataset contained the outputs from an ensemble of eleven variants of the MOHC Regional 

Climate Model (HadRM3). The HadRM3 model run from 1950-2099 and was used to dynamically 

downscale global climate model results, as part of the climate change experiments carried out for 

the UK Climate Projections report (UKCP09). The data were obtained online after registration 

(http://badc.nerc.ac.uk/home/). For our study, we used the unperturbed model variant of the 

HadRM3-PPE-UK experiment (identified by the name HadRM3Q0).  

The HadRM3-PPE-UK data are located on a grid characterised by a rotated-pole and a spatial 

resolution of approximately 25 by 25 km. We used the accompanying metadata to convert the 

rotated grid into a regular grid of latitude and longitude. To match the resolution of the baseline 

data, we then rescaled the data to a 5 by 5 km British National Grid, giving to each of the 5 by 5 km 

grid cell the value of the coarser 25 by 25 km grid. 

  

http://badc.nerc.ac.uk/home/
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Table S 1: Wild insect pollinator species visiting orchards and number of available records  

Wild pollinator species Available records 

Bees 

Andrena barbilabris 169 

Andrena fulva 331 

Andrena haemorroa 652 

Andrena minutuloides 68 

Andrena minutula 431 

Anthophora plumipes 295 

Bombus hortorum 1388 

Bombus hypnorum 698 

Bombus lapidarius 1446 

Bombus lucorum 1706 

Bombus pascuorum 2096 

Bombus terrestris 1318 

Halictus rubicundus 378 

Halictus tumulorum 534 

Lasioglossum albipes 328 

Lasioglossum calceatum 724 

Lasioglossum fulvicorne 243 

Lasioglossum morio 510 

Lasioglossum nitidisculum 26 

Megachile maritima 70 

Osmia bicolor 129 

Osmia bicornis (O. rufa) 766 

Hoverfly 

Eristalis arbustorum 1200 

Eristalis horticola 461 

Eristalis intricarius 629 

Eristalis tenax 1590 

Rhingia campestris 1377 

Rhingia rostrata 150 

Syrphus ribesii 1981 

Syrphus vitripennis 866 
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Correlation between selected climatic predictors 

Table S 2 shows the Pearson’s correlation between the variables used to predict orchards 

distribution. Variables were selected from the original set of 20 climatic predictors, using literature 

(Franklin et al., 2013, Sork et al., 2010, Termansen et al., 2006, Thuiller, 2004, Warren et al., 2013). 

The values refer to present conditions, which for orchards corresponded to the 30-year period from 

1977 to 2006. Variables are defined in Table 1 of the main text.  

Table S 2: Pearson’s correlation between present climatic predictors used to model orchards 
distribution 

 TSeasSD mTCM MTWQ MTDQ RainWQ 

TSeasSD      

mTCM -0.03     

MTWQ 0.41 0.64    

MTDQ 0.14 0.64 0.30   

RainWQ -0.58 -0.33 -0.52 -0.23  

 

Table S 3 shows the Pearson’s correlation between the variables used to predict orchards 

distribution, based on the UKCP09 projections for the Medium emission scenario. The Medium 

emissions scenario corresponds to the A1B storyline of the IPCC’s Special Report on Emissions 

Scenarios (Nakićenović et al., 2000). We used the 30-year period from 2040 to 2069 (“M2050”). 

These variables were selected on present-day conditions using literature (see Table S 2) and are 

defined in Table 1 of the main text.  
 

Table S 3: Pearson’s correlation between future climatic predictors used to model orchards 
distribution 

 TSeasSD mTCM MTWQ MTDQ RainWQ 

TSeasSD      

mTCM 0.87     
MTWQ 0.04 0.36    
MTDQ -0.80 -0.73 0.26   

RainWQ -0.66 -0.49 0.37 0.81  
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Table S 4 shows the Pearson’s correlation between the variables used to predict pollinators’ 

distribution. We used Jolliffe’s Principal Component Analysis with the rejection method “B2” and λ0 

= 0.70 (Jolliffe, 1972, Jolliffe, 1973), to select a set of variables that minimised multicollinearity, from 

the original 19 bio-climatic predictors. The values refer to present conditions, which for pollinators 

corresponded to the 10-year period from 1990 to 1999. Variables are defined in Table 1 of the main 

text. 

Table S 4: Pearson’s correlation between present climatic predictors used to model pollinators’ 
distribution 

 Isoth TAR MTDQ MTCQ RainSeasCV RainCQ 

Isoth       

TAR 0.34      

MTDQ 0.16 -0.26     

MTCQ 0.01 0.04 0.17    

RainSeasCV 0.00 -0.43 0.42 0.00   

RainCQ 0.06 -0.62 0.32 -0.30 0.68  

 

Table S 5 shows the Pearson’s correlation between the variables used to predict pollinators’ 

distribution, based on the predictions for the Medium Emission Scenario (SRES A1B storyline), for 

the M2050 period. These variables were selected on present-day conditions using PCA (see Table S 

4) and are defined in Table 1 of the main text. 

Table S 5: Pearson’s correlation between future climatic predictors used to model pollinators’ 
distribution 

 Isoth TAR MTDQ MTCQ RainSeasCV RainCQ 

Isoth       

TAR 0.87      

MTDQ 0.04 0.36     

MTCQ -0.80 -0.73 0.26    

RainSeasCV -0.66 -0.49 0.37 0.81   

RainCQ 0.03 -0.23 -0.27 -0.02 0.11  
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Pollinator distribution models 

Detailed settings for the Maxent pollinators’ distribution models (PDM) follows Polce et al.(2013) . 

Models were set to run with Hinge features and with modified values of prevalence, to reflect the 

differences in number of available sightings at any resolution, from the original databases. The 

background was chosen to reflect the non-random distribution of the species’ sightings in relation to 

the environmental range available for Great Britain. It corresponded to all localities where crop 

pollinators had been recorded (Phillips et al., 2009).  

Contribution of different predictors 

The contribution of each predictor to the final Maxent model was measured using the permutation 

importance. Within Maxent, permutation importance is determined for each variable by randomly 

permuting the values of the variable among the presence and background training points and 

evaluating the resulting decrease in training AUC. The drop in AUC is then normalised to percentage 

allowing comparison across models; a larger percentage (a larger drop) indicates that the original 

model depended heavily on that variable. Average and confidence interval for the importance of the 

different predictors were derived through 10,000 bootstrap replicates. 

Results 

Climatic and bioclimatic variables 

Each chart in Fig. S 1 shows the distribution of predictors’ values for present (in black) and future 

M2050 (in grey) climatic conditions. The predictors are the ones used to model pollinators and 

orchards distribution. They are defined in Table 1 of the main text. The y-axis provides an estimate 

of the number of grid cells characterised by each predictor’s value.  
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Figure S 1: Distribution of the predictors’ values across GB, for present and future (continuing on next page) 
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Figure S 1 (continuing from previous page): Distribution of the predictors’ values across GB, for present and future 
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Model performance 

Figure S 2 show the model performance for the pollinator distribution models, as measured by the 

the AUC of model testing. Error bars show the standard deviation of the null models (10 sets for 

each pollinator species, each modelled with 10-fold cross-validation). The number of available 

records is used to plot different species along the x-axis. 

 

 

  

Figure S 2: Performance of the calibrated PDMs against performance of the null models 
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Contribution of different predictors 

Figure S 3 shows the contribution of the different predictors used for PDMs, measured by the 

arithmetic and bootstrap mean of each predictor’s importance, pooled across pollinator species. 

Confidence interval shows the 95% biased-corrected accelerated percentile, based on 10000 

replicates. TAR was significantly more important than the other predictors, whilst Isoth and MTDQ 

were equally the least important. The significance of multiple pairwise comparisons was tested using 

Tukey’s post-hoc test (Table S 6 and Table S 7). Predictors are defined in Table 1 of the main text. 

  

Figure S 3: Importance of predictors used for PDMs 
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Table S 6 shows the significance of the differences in permutation importance of the six predictors 

used for the pollinator distribution models. We used linear mixed effects model, with model run 

nested within species and group (bees or hoverflies) as a random factor, and predictor as fixed 

effect. Before the analysis, we applied an angular transformation to the permutation importance 

percent, to improve normality of residuals. We used Isoth as a baseline. Predictors are defined in 

Table 1 of the main text. Fixed effects only are shown here.  

Table S 6: Difference in the importance of predictors used for PDMs 

 Estimate SE DF t P 

Intercept 0.186 0.009 1495 19.948 < 0.001 

MTCQ 0.336 0.013 1495 25.400 < 0.001 

MTDQ -0.026 0.013 1495 -1.961 0.050 

RainCQ 0.295 0.013 1495 22.320 < 0.001 

RainSeasCV 0.132 0.013 1495 9.957 < 0.001 

TAR 0.380 0.013 1495 28.757 < 0.001 

 

Table S 7 shows the significance of the pairwise comparisons of means, for the different predictors 

used in PDMs. Multiple comparisons were assessed with Tukey’s test, using general linear 

hypothesis test (Hothorn et al., 2013). These results and those in Table S 6 show that TAR was the 

most important predictor, significantly more important than all others (e.g. MTCQ, which followed 

next). On the opposite end, with equal importance, MTDQ and Isoth were the least important 

predictors. Predictors are defined in Table 1 of the main text. 

Table S 7: Multiple comparisons of means, for the importance of predictors used in PDMs 

Linear hypothesis Estimate SE z value Pr(>|z|) 

MTCQ - Isoth == 0 0.336 0.013 25.400 <0.001 

MTDQ - Isoth == 0 -0.026 0.013 -1.961 0.365 

RainCQ - Isoth == 0 0.295 0.013 22.320 <0.001 

RainSeasCV - Isoth == 0 0.132 0.013 9.957 <0.001 

TAR - Isoth == 0 0.380 0.013 28.757 <0.001 

MTDQ - MTCQ == 0 -0.362 0.013 -27.362 <0.001 

RainCQ - MTCQ == 0 -0.041 0.013 -3.080 0.025 

RainSeasCV - MTCQ == 0 -0.204 0.013 -15.443 <0.001 

TAR - MTCQ == 0 0.044 0.013 3.357 0.010 

RainCQ - MTDQ == 0 0.321 0.013 24.281 <0.001 

RainSeasCV - MTDQ == 0 0.157 0.013 11.918 <0.001 

TAR - MTDQ == 0 0.406 0.013 30.718 <0.001 

RainSeasCV - RainCQ == 0 -0.163 0.013 -12.363 <0.001 

TAR - RainCQ == 0 0.085 0.013 6.437 <0.001 

TAR - RainSeasCV == 0 0.248 0.013 18.800 <0.001 
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Figure S 4 shows the contribution of the different predictors used for ODMs, measured by the 

arithmetic and bootstrap mean of each predictor’s importance, from different runs of the orchard 

distribution model. Confidence interval s show the 95% biased-corrected accelerated percentile, 

based on 10,000 replicates. TSeasSD was significantly more important than all other predictors. The 

significance of multiple comparisons was tested using Tukey’s post-hoc test (Table S 8 and Table S 9). 

Predictors are defined in Table 1 of the main text. 

  

Figure S 4: Importance of predictors used for ODM 
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Table S 8 shows the significance of the differences in permutation importance of the five predictors 

used for the crop distribution models. We used linear mixed effects model with model run as a 

random factor and predictor as fixed effect. Before the analysis, we applied an angular 

transformation to the permutation importance percent, to improve normality of residuals. We used 

Temperature Seasonality as a baseline. Predictors are defined in Table 1 of the main text. Fixed 

effects only are shown here.  

Table S 8: Difference in the importance of predictors used in ODM 

 Estimate SE DF t P 

Intercept 0.674 0.008 36 84.793 0.000 

mTCM  -0.035 0.011 36 -3.108 0.004 

MTWQ  -0.319 0.011 36 -28.343 0.000 

MTDQ  -0.469 0.011 36 -41.759 0.000 

RainWQ  -0.368 0.011 36 -32.770 0.000 

 

 

Table S 9 shows the significance of the pairwise comparisons of means, for the different predictors 

used in ODM. Multiple comparisons were assessed with Tukey’s test, using general linear hypothesis 

test (Hothorn et al., 2013). These results and those obtained from the mixed effects model in Table S 

8 show that TSeasSD was significantly more important than all other predictors, including mTCM 

which followed next. The remaining predictors followed in a significantly decreasing importance, 

according to the rank shown in Figure 5 of the main text. 

Table S 9: Multiple comparisons of means, for the importance of predictors used in ODM 

Linear hypothesis Estimate SE z value Pr(>|z|) 

mTCM - TSeasSD == 0 -0.035 0.011 -3.108 0.016 

MTWQ - TSeasSD == 0 -0.319 0.011 -28.343 <0.001 

MTDQ - TSeasSD == 0 -0.469 0.011 -41.759 <0.001 

RainWQ - TSeasSD == 0 -0.368 0.011 -32.770 <0.001 

MTWQ - mTCM == 0 -0.284 0.011 -25.235 <0.001 

MTDQ - mTCM == 0 -0.434 0.011 -38.651 <0.001 

RainWQ - mTCM == 0 -0.333 0.011 -29.662 <0.001 

MTDQ - MTWQ == 0 -0.151 0.011 -13.416 <0.001 

RainWQ - MTWQ == 0 -0.050 0.011 -4.426 <0.001 

RainWQ - MTDQ == 0 0.101 0.011 8.990 <0.001 
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Fig. S 5 shows the probability of orchards occurrence (p), for a Maxent model built exclusively with 

Minimum Temperature of Coldest Month (mTCM). Values of mTCM are taken from present 

conditions. Greatest p is predicted around 1.5 °C. The red line shows the mean from 10 Maxent 

models, the blue shade shows 1 standard deviation from the mean.   

Figure S 5: Dependency of crop probability of occurrence on Minimum Temperature of 
Coldest Month 
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Future projections 

The two histograms in Fig. S 6 show current and future distribution of Spearman’s correlations 

between orchards extent and probability of occurrence (p), based on 9999 samples with 

replacement. The dashed lines indicate the observed correlation in each period. Probability of 

occurrence was estimated using climatic predictors, with Maxent. From the position of the dashed 

line we conclude that the correlation between crop extent and p is significantly different than what 

it could be expected by chance alone. In particular, there is a positive correlation between crop 

extent and p in the present (ρ = 0.153), and a negative correlation (ρ = -0.233) between the current 

crop extent and the future p.   

Figure S 6: Observed and simulated correlation between orchards extent and probability of 
occurrence for present and future climatic conditions 
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Fig. S 7 shows the predicted pollinator availability (PA) currently available to orchards. PA is used as a 

proxy for pollination service, and measured with a relative index from 0 to 1. PA is mapped from red 

to green using intervals. Red is used only to indicate areas where PA is predicted to be 0 (i.e. where 

pollinators are predicted to be absent). The chart shows the frequency of the predicted PA, following 

the same intervals used for the map. Frequency is measured as number of grid cells with a certain 

value of PA. The intervals are based on a common scale, used for Figs S 7 to S 9. 

 

 

  

Figure S 7: Current pollinator availability to orchards 
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Fig. S 8 shows the predicted future PA available to orchards, in areas identified as the most suitable 

to crop growth, based on future climatic conditions (i.e. M2050 scenario). Red is used to map areas 

where PA is predicted to be 0, due to absence of wild pollinators. The chart shows the frequency of 

the predicted PA, following the same intervals used for the map. Frequency is measured as number 

of grid cells with a certain value of PP. The intervals are based on a common scale, used for Figs S 7 

and S 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S 8: Future pollinator availability in areas predicted to have the greatest 
suitability for orchards under future climatic conditions 



17 
 

Fig. S 9 shows the predicted PA where orchards are currently grown, based on future climatic 

conditions (i.e. M2050 scenario). PA is mapped using interval classes, following the same scale 

adopted for Figs S 7 and S 8. The map suggests that, if orchards persisted where they are currently 

planted, they would all receive some pollination service. Green shades are used to map areas with 

greater PA. The chart shows the frequency of the predicted PA, following the same intervals used for 

the map. Frequency is measured as number of grid cells with a certain value of PA. The intervals are 

based on a common scale, used also for Fig. S 7 and S 8. 

 

Figure S 9: Future pollinator potential predicted where orchards are currently planted 
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