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Supporting Information 1: The selection coefficient

Figure S1 illustrates the time dependence of the selection coefficient s(x,y,t) in the
multi-dimensional moving-optimum model. Recall that s(x,y,t) can be written as

s(X,y,t) = Ay (t—Txy) (Sla)
with

Moy =2(x—y)E7 v (S1b)
o yE i xty)
i 2x —y)¥-tv

(Slc)

provided A\ 0), where Ay is the rate of change and 7y, is the lag time (i.e.,
Y Y g Y g
the time when s reaches zero).

The line Axy = 0 contains all mutational effects « that are orthogonal to X7 'v,
which in the case of uncorrelated selection (ps = 0) simply means orthogonal to the
direction of the moving optimum. Accordingly, the line divides the space of mutant
phenotypes into “backward mutations” (Axy < 0), which have a chance at fixation
only during a limited time window (if any), and “forward mutations”’, which have
an unlimited amount of time to appear and go on to fixation. The set of mutations



that are beneficial at time ¢ is given by an ellipse (the solution of s(x,y,t) = 0)
that passes through the wild-type y and has its center at the current optimum vt.
Note that, as the optimum moves on, the area of this ellipse decreases as long as
the optimum is to the left of the Ay, = 0 line, and increases indefinitely afterwards.
Together with the Ay = 0 line, the two ellipses corresponding to the initial and the
current optimum (bold and gray ellipse in Fig. S1, respectively) split the space of
mutant phenotypes into six sectors: backward mutations that never were and never
will be beneficial (sector I); backward mutations that were beneficial initially, but
which have become deleterious by that time (sector II); backward mutations that
are still beneficial (sector III); forward mutations that have been beneficial from the
outset (sector IV); forward mutations that have become beneficial after a positive
lag time 7y (sector V); and forward mutations that are not yet beneficial but will
become beneficial in the future (sector VI). Note that, as the optimum moves on,
sectors II and V will grow, sectors III and VI will shrink, and sectors I and IV
remain unchanged.
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Figure S1: The time dependence of selection in the two-dimensional moving op-
timum model. The axes span the values of two quantitative traits. The wildtype
phenotype combination y is represented by the open triangle, and the optimum z
has moved at constant speed along the dotted line from the open circle at time
t = 0 to the grey circle at time t = 70 and the black circle at time ¢ = 210. The
solid ellipse encloses the set of mutant phenotypes that were selectively favored at
t =0 (ie, {x ] s(x,y,0) > 0}), whereas the grey and the dashed ellipses repre-
sent those mutants that are selectively favored at ¢t = 70 and ¢t = 210, respectively
({x | s(x,y,70) > 0}). The solid line is the line A\, = 0, which divides the pheno-
type space into “forward” and “backward” types as described in the text. The roman
numerals refer to sets of mutant phenotypes at time ¢ = 70 that differ with respect to

their past, present and future selection coefficient (see text for details). Parameters:
V1 = 001, 6= 2,02 = 10,p2 =0.1.



Supporting Information 2: Transformation of phenotype space

To make further progress, we introduce a transformation of the phenotype space,
which will be denoted by tildes (z etc.) and has the following properties: (i) the
selection matrix ¥ is proportional to the identity matrix, that is, selection is equally
strong in all directions (isotropic); (ii) the optimum moves in the direction of the
first trait axis, v = (01,0, ...)’, that is, only the first trait is under moving-optimum
selection, whereas all other traits are under constant stabilizing selection; (iii) the mu-
tation matrix M has determinant 1; if mutation is uncorrelated in the transformed
space, this means that the geometric mean of the mutational standard deviations
equals 1; therefore, the length scale is determined by the average size of new mu-
tations. According to these goals, the transformation is done in three steps. First,
let A be the matrix whose rows contain the eigenvectors of X, scaled to magnitude
1, and let D be the diagonal matrix containing the corresponding eigenvalues (i.e.,
37! = A’'D7!A). For the first step of the transformation, we define

B =aD"1?A, (S2)

with & = %/det(X) (eq. 3), such that det(B) = 1 and B'B = 5?X~'. Substituting
z by Bz, such that z = Bz, x = Bx, y = By, v = Bv and using the fact that
Y- = (B7'YX'B~! = 521, the selection coefficient (eq. 8a) in the transformed
phenotype space is given by

s,y 1) =077 (|ly — vt — [ — vt[|?) (83)

where [|£]|? = ¢ is the square of the Euclidean norm. After this first transformation
step, goal (i) has been reached, that is, selection is symmetric in all directions with
strength 2. For the second step, we need to define a n x n rotation matrix R that
satisfies Rv = (||v|[,0,...,0)". For the present calculation, it is not necessary to give
R explicitly. However, for numerical calculations, such a matrix can always been
found by applying the Gram-Schmidt orthonormalization algorithm (and a potential
step of rearrangement) to a basis of the unrotated vector space that is given by the
n x n identity matrix whose i*" column is replaced by v, where i is determined by
the first non-zero entry of v. Like all rotation matrices, R satisfies R’ = R™! and
det(R) = 1. With the transformations z = Rz etc., we get

$(5.5.,1) = o2 (I =Vt = I — 1)) (54



The third step of the transformation is to express all vectors relative to m =
X/det(M~1) (eq. b), that is, z = Z/m etc., leading to

s(%,3,6) = (Iy — vt|* — % — ¥t]%) . (S5)

with & = &/m. Summarizing, we can combine all three steps by defining a transfor-
mation matrix

1 _
Q= aRB = GRD'/2A, (S6)

with det(Q) = m™ = y/det(M~1!), such that z = Qz etc. Note that the trans-
formation also affects the distribution of new mutations p(c), which is given by
p(a) = det(Q") - p(Q'&) = m"p(ax), and has covariance matrix M = QMQ' with
det(M) = 1.

Supporting Information 3: The parameter ~

We can use the transformation from Supporting Information 2 to show that the
parameters O, v and X affect the distribution of adaptive substitutions only through
the composite parameter ~.

First, using the fact that v = (21,0, ...)", g(t,y) (eq. 9) can be rewritten as
3(t.5) = 0372 [ 5(@) 261~ )0t - (K5 - 79) dx (7)
X

where the integration region x(t,y) = {x | ||x — vt|| < ||y — vt||} is the set of
mutant phenotypes in the transformed space with positive selection coefficient at
time t. Next, using the substitution { = ¢, the waiting-time distribution on the

transformed scale, F(t|y) = exp < fo T,y d7'> (eq. 10) can be written as

() —exp(—— / / (&) 205 — 31)'¢ — (¥% — y'&)]df«dc) (38)

with

= 95-2 (S9)

Therefore, F(t|y) depends only on «, p (or M), ¥, and the product #;¢. Furthermore,
the same substitution can be applied to the distribution of adaptive substitutions,



which can be written as

als) =22 [0 b —g)c- ®Rx-F9IFCEDG (510
2(21-91)

Thus, in the transformed space, the distribution of adaptive substitutions depends
only on 7, the initial phenotype y, and the distribution of new mutations p(a). At
the original scale, we have ¢(a]y) = det(Q)p(a]y) = m "¢(Qa|Qy). Finally, since

1 1 _
0 = ||v|| = =|Bv|| = =VVB'Bv =gvv' X lv, (S11)
m m

v reduces to the form given in equation (13) of the main text when expressed in
terms of the original variables.

In the adaptive-walk approximation, the effects of the rate and direction of environ-
mental change v, the population-wide mutation rate © and the selection matrix 3
are completely captured by . The same is, however, not true for changes in the mu-
tational covariance matrix M (and, hence, the distribution of new mutations p(c);
see eq. S10), since v contains only the “average variance” of mutational effects (1m?,
eq. 5), but not the details of the correlation structure. v also does not capture the
impact of organismic complexity per se, as it is independent of n in the absence of
mutational and selectional correlations (eq. 14). In the presence of correlations,
may depend on n, but only because ¢ or m depend on n. For example, increasing the
number of selectionally correlated traits increases the average strength of selection,

and hence decreases & (eq. 3).

Kopp and Hermisson (2009) proposed a value of v < 1 as an approximate boundary
between the environmentally- and genetically-limited regimes. In the context of the
present paper, a value of v = 1 is already very large and often leads to population
extinction in individual-based simulations. Indeed, it refers to a situation where the
adaptive process is clearly neither environmentally nor genetically limited. Forn = 1,
the environmental limit (where the distribution of new mutations can be treated as
effectively uniform) provides a very good approximation for v < 1072 — 107! (see
Fig. 4F Kopp and Hermisson 2009). Here, we show that this boundary shifts to
smaller values as complexity increases (reflecting the cost of complexity, see above),
but the approximation remains reasonably good for v = 1072 (Fig. S5 1, S5 2,
S5 3). In general, for the mean step size in the direction of the optimum (a;), the
relative error incurred by the approximation remains at the order of 10% as long as
the mean step size is on the order of magnitude of the (mean) standard deviation



of the effects of new mutations (@; ~ m, see Fig S5 _2). Similarly, in Fig. 6, the
effects of mutational and selectional correlations offset each other (indicating an
intermediate regime) around v = 0.1 (v, & 0.005).

Supporting Information 4: The environmentallylimited regime
(uniform distribution of new mutations)

As argued in the main text, if 7 is sufficiently small, the distribution of new mutations
p(a) can be approximated by a uniform distribution with p,(a) = p(0) = py. This
simplification allows further analytical progress. For the instantaneous rate of fixa-
tion, g(t,y) (eq. S7), we can use the fact that, in the transformed phenotype space,

all mutants with a given distance 7 = ||x — vt|| from the optimum have identical
selection coefficients
(7, 5,1) =572 (5(t,y)2 - f2) . for 7 < 3(t,¥) (S12)

where we denote by (¢, ¥) = ||y —vt|| the distance of the wild-type from the optimum
at time 2.

The weight of such a class of mutants is given by the surface S, (7) of a n-dimensional
hypersphere with radius 7 (Hartl and Taubes 1998; Tenaillon et al. 2007; Gros et al.
2009), which is

2me
re’
where I' (o) denotes the gamma function. §(¢,y) is then given by
y 3(t,3)
.5) =0 [ S,(7)s(r.3. )07
0
. 975 o(t,y) 5
e [ (B - ) ar (514)
T'(3) Jo
_ nz
= Oy ? 5(t,y)" 2,
Po F(Q—l— %) ( y)

where we used the fact that £0(€) = T'(€ + 1). Here, pg = det(Q~1)py = m"py. For



a general wild-type phenotype y, the waiting-time distribution is given by

(4] t~ > pO 7T% n+2
Ft]5) = exp (- / i 9)ir) = exp | L / v — §™+2r |
0 YT (2+12)

(S15)

The integral in the exponent can be easily calculated for even values of n, and (e.g., by
using Mathematica) also for small odd n, but the resulting expressions are unwieldy
and will not be given here. We note that adaptive walks in the environmentally-
limited regime can be efficiently simulated by alternately drawing the step time from
the distribution (S15) and the step size from the conditional distribution (11). (For
the latter, use the symmetry of the transformed trait space by first drawing the new
distance from the optimum, 7 [see (S14)|, and then choosing a random direction.)

Characterization of the first step of the adaptive walk in the environmentally-
limited case. Further progress can be made if the wild-type is initially well-adapted
(y = 0), such that S(t,y) = 01t. We refer to the adaptive substitution with these
initial conditions as the first step of the adaptive walk. The waiting-time distribution
for this step simplifies to

F(1]0) = exp (—%nm)(w*?’) (S16)

with

w[3

7

1) = LT 2+2)

(S17)

Below, we will use the moments of the waiting-time distribution, which are given by

. o 1 v O\ (n+ 3+ .
E0)= [ #f(t0)dt = — _ r{——200), i=1,2,.... (S18
oo et () (). v o

Using equations (S1) and (12b), the distribution of the first adaptive step can be




expressed as

~ n . n n)po , . n
¢(a|0) _ )\d,OTo%,O (Em <77( ’Y)po (Ule,O) +3> . E% (77( ,y)p() (Ule,O) +3)>

_ b & B, [ 100 o7 B n(n)po [llal*]""
(n+3)y 2 Tn v 261 T 26, ’
(S19)

where E¢ () = ffo(exp(—wt) /t%)dt denotes the exponential integral function.

While this expression is not particularly instructive, further insight can be gained by
focusing on the moments of the distributions of certain components of .

Distribution of a;. We start by deriving the moments of the marginal distribution
of step sizes in the direction of the optimum, which we will denote by gzgl(&l). Here
and below, our strategy will be to first focus on the conditional distribution of step
sizes given the waiting time (eq. 11), which in the transformed trait space, is given
by

_ Opos(a,0,t) 20401t — &

b(&lt,0) = = :
A=) T

(S20)

Accordingly, the conditional distribution of @ is

b1(Gnlt,0) = / S 1 (MG, 7,0, . )'|t, OldF
2 T (n) /\/m
G T (5 J

(26101t — &% — 7F2)2di - (S21)

(26,5t — &%),

where the integration is over all classes of mutations with identical fitness. Using
Mathematica, the 2th moment of this conditional distribution can be evaluated to

2T (n + 3)T (22322

T(n+3+4)T (%£2) (0:8)" (522)

) 201t o
E(ai]t,0) = / al i (alt, 0)da, =
0



By applying the properties of the Gamma function and cancelling, this can be sim-
plified to

' (01t)" H;/=21 % if 4 is even,
E(aylt,0) = R (S23)
(018) [T}5Y7 20820 if i s odd,
In particular,
- n+5, .
E(a2|t,0) = - 4(1)115)2. (S25)

The moments of the unconditional distribution are given by

s = [“ar ([ dial oo ) ai

1/(201)

0o 201t o
_ / F(t/0) (/ & di(anlt, O)dd1> dt.
0 0

The inner integral equals the conditional moment (eq. S22). Since the latter is
proportional to ¢, the unconditional moment is simply

(S26)

E(at|0) = lE(dﬂt, 0) E(t'|0). (S27)

ti

For the ease of notation, ¢ denotes a random variable as well as its realization. In
particular,

o () (228

Var(a,|0) = E(a7[0) — (E(d@]0))* = (n(%ﬁo) - ZIZF (Z 1 g) - <Z i ;l)Q
(S29)

As a consequence, the coefficient of variation y/Var(a;|0)/E(&;|0) is independent
of v, n and py. For the isotropic case, equations (16) and (17) in the main text
are obtained by using fy = (27)"2 and transforming back to the original scale with
a=Q la=ma.

10



Distribution of as. A similar calculation leads to the moments of the distribution
of ay, or indeed of any trait under constant stabilizing selection (i.e., orthogonal to
the direction of the moving optimum).

The conditional distribution of as is given by

530
= . L) (818)? — a2 .
(n2 — 1)(0:t)" 2 /7T (=) 2
with moments
. 1+ (—=1)0 (1 n44
@0y = LHEVILEI TS )
SR (S31)
_ Hz/j nijz +12)j (01t)" if 4 is even,
o if 7 is odd.
The unconditional moments are again given by
1 i
E(a5/0) = 7i E(as|t,0) E(t',0). (S32)

In particular, the variance of as is

Var(ds]0) = B(G2]0) = — <n(7~)"i‘°’r(”+5). ($33)

n+ 4 n)Po n+3

Furthermore, due to symmetry, all pairs of components of & are uncorrelated (though
not independent). Hence, the covariance matrix of & is a diagonal matrix with its first
entry given by the right-hand side of equation (S29) and all others by the right-hand
side of equation (S33). Furthermore, the covariance matrix in the untransformed
space can be obtained from the back-transformation

Cov(a|0) = Q 'Cov(a|0)(Q )" (S34)

For the special case of selectional correlation discussed in the main text, one finds

11



that, for n = 2

1 1 — p%)Var(a;|0) + p2Var(a|0 Var(ds|0
Cov(a0) = (1 = p3)Var(a:|0) + p5,Var(az|0) - psVar(as|0) (35)
V1—pi ps Var(as|0) Var(as|0)
and, hence,
Var(as|0)
po = Cor(ai, a2|0) = px, Var(a|0) ~ pz\/(l — p3)0.77 4+ pi =~ ps. (S36)

In particular, p, (for the first step and in the environmentally-limited regime) is
independent of ~.

Distribution of ||&||. As shown by equation (S19), the distribution of adaptive
substitutions depends only on the first component &; and the total step size ||&l|
(i.e., of the Euclidean norm of &). To characterize the distribution of ||&||, we again
start with the conditional distribution, which can be written as

anorm(Hé‘H | t,O) =

& ) : N
oS (Viale=at) 8 [ (@flalle = ato....) o] Sl aa.
Ja)2 &l* = af

(S37)

Here, the last term arises because the integral is calculated along a line in the (&1, &2)
space, where a = +/||@||? — a2. After some rearrangements and using Mathematica,
the moments of this distribution can be evaluated to yield

nt14i (nT—‘rél) r (n+21+i)

(n+2+1i)y/m I (22

E(lal | t,0) = (011", (538)

and the unconditional moments are again given by
~ 1l 1 ~ |l i
E(llallo) = ZE(lal | £, 0) E(#'[0). (539)

Again, the coefficient of variation is independent of v, n and py.

12



J=2"
from the optimum an adaptive substitution incurs in the traits under constant se-
lection (this can be seen as the “cost” for following the moving optimum). Let this

deviation be denoted by € = , /3°7 , &3 = \/||&||* — 7. The conditional distribution

of €1is

Distribution of /> ,&%. We might also be interested in how much deviation

5 v1t+ (171t)2—€2
J(elt,0) = / ! S 1 ()9l 2,0,....)|t, 0)da,

Ve " (340)
8 T (n+4) ((@115)2 o 62)
3(01t)"+2y/m T (%52) '
Its moments are . »
A (2=)r (2= .
E(¢']t,0) = )T )(mt)’, (S41)

r(EDT (=)

2 2

and the unconditional moments are again E(¢'|0) = t°E(€'|t,0)E(t!|0), with the
coefficient of variation independent of v, n and py. In addition, we can calculate
the covariance between &; and €. We start with the conditional expectation of the
product aqé€,

201t 2a1v1t al 5
E(cndlt, 0 / / 1S ()3 ((Gn, 7,0, [t 0)dedan

B (n+2)l ( ) .
S

2

(842)

The unconditional expectation is E(d1€|0) = £E(a1€|0)E(¢?|0), and the covariance
is given by
Cov(ay, €/0) = E(a;€|0) — E(a1]|0)E(€|0). (S43)

Furthermore, it is easy to show that the coefficient of correlation

Cov(ay, €]0)
\/Var(;|0)Var(€|0)

p(a, €l0) = (S44)

is independent of v, n and py.

An illustration of some of these results is give in Figure S4 1. Note that all quantities
depend on 7 only through the moments of the waiting-time distribution (eq. S18),

13



whose power-law form leads to the linear relationship in double-log plots, with the
slope for the i’th moment given by the exponent i/(n+3). Since this slope decreases
with n (ultimately a geometric consequence of equation S13), the lines in Figure S4 1
cross at high values of v. Biologically, this means that, while at a given distance to
the optimum, the proportion of beneficial mutations is smaller in complex organisms,
the same proportion increases faster as the distance to the optimum increases. As a
consequence, at very high values of v, the relationship between mean step size and n
is reversed, with more complex organisms being predicted to evolve in smaller steps.
However, this effect only sets in if the environment changes so fast that realistic
populations cannot follow anyway and go extinct right away:.
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Figure S4 1: Dependence of various components of the first adaptive step a in
the transformed phenotype space, as a function of the scaled rate of environmental
change v for various numbers of traits n, assuming a uniform distribution of new
mutations. (a,b) Expectation and variance of the step size in the direction of the
moving optimum, a; (eq. S28 and S29); (c, d) expectation and variance of step size
in an direction orthogonal to the moving optimum, &; (eq. S33); (e, f) expectation
and variance of the total step size (Euclidean norm), ||&|| (based on eq. S39); (g,
h) expectation and variance of the total deviation from the optimum in traits under

constant stabilizing selection, € = /> 7, &7 (based on eq. S41).
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Figure S4 2: (a) Coeflicient of variation of the size of the first step in the direction
of the moving optimum, +/Var(a;)/E(&;). (b) Correlation coefficient between the
size of the first step in the direction of the moving optimum and its total deviation
from the optimum in traits under constant stabilizing selection, p(aq,€) (eq. S44).
Both quantities depend only on the number of traits, n. Results are valid in the
transformed phenotype space and assume a uniform distribution of new mutations.
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Supporting Information 5: Supplementary Figures

Vp = 1073
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Figure S5 1: Distribution of the size of the first adaptive substitution, for two
(top row) and four (bottom row) traits and two different rates of environmental
change v;. For each rate, columns display the distribution of step sizes in direction
of the moving optimum (o, left column), the distribution of step sizes for the trait
under stabilizing selection (s, central column) and the distribution of the total step
sizes (|||, right column). Results are shown for adaptive-walk simulations (dark
bins) assuming a normally-distributed distribution of new mutations and for the
approximation eq. S19, which is based on a uniform distribution of new mutations
(light bins). Note that the scales of the axes vary between plots. Parameters: © =
1,02 =10, px = 0,m? = 1, pjy = 0. Scaled rate of environmental change v = 10 - v;.
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Figure S5 4: Mean selection coefficient of adaptive substitutions as a function of
the rate of environmental change for various strengths of mutational (dashed lines)
and selectional (solid lines) correlations pp; and px. The inset gives a representative
distribution of the selection coefficient for the isotropic case (pyr = px = 0.0) and
v1 = 107*. Note that with increasing v; the distribution becomes more asymmetric.
Parameters: © = 1.
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Figure S5 5: The mean time to extinction for different levels of phenotypic com-
plexity n as a function of the rate of environmental change. The mean extinction
time was calculated based on 100,000 adaptive-walk simulations, where populations
were considered extinct when the mean fitness dropped below 0.5. Simulations that
persisted for more than 1,000,000 generations were aborted for performance rea-
sons. Parameter values are © = 1,0% = 10,py = 0.0,m? = 1; the scaled rate of
environmental change v = 10v;.
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Figure S5 6: The multivariate distribution of the first adaptive substitution (left)
and over the entire adaptive walk (right) for n = 2 traits, when the optimum moves
slowly in the direction of the first trait and the effects of new mutations are strongly
correlated (py;r = 0.9). In the top-left figures on each side, shades of grey indi-
cate the frequency of a given step size in adaptive-walk simulations with normally-
distributed mutational effects (with dark grey corresponding to high frequency), with
the white cross showing the observed mean. The contour lines on the left represent
the probability density intervals predicted for a uniform distribution of new muta-
tions (environmentally-limited regime, eq. S19; highest probability density intervals
for 0.25,0.5,0.75,0.95 from inside out). Histograms show the marginal distribution
of the first and second trait, a; and as, and the distribution of the total step size
|c||. Parameter values are v; = 107°,0 = 1,02 = 10, px = 0.0,m? = 1; the scaled
rate of environmental change v = 1074
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Figure S5 7: The multivariate distribution of the first adaptive substitution (left)
and over the entire adaptive walk (right) for n = 2 traits, when the optimum moves
slowly in the direction of the first trait and selection is strongly correlated (ps, = 0.9).
In the top-left figures on each side, shades of grey indicate the frequency of a given
step size in adaptive-walk simulations with normally-distributed mutational effects
(with dark grey corresponding to high frequency), with the white cross showing
the observed mean. The contour lines on the left represent the probability density
intervals predicted for a uniform distribution of new mutations (environmentally-
limited regime, eq. S19; highest probability density intervals for 0.25,0.5,0.75,0.95
from inside out). Histograms show the marginal distribution of the first and second
trait, a; and g, and the distribution of the total step size ||c||. Parameter values
are v; = 107°,0 = 1,0? = 10,m? = 1, py = 0; the scaled rate of environmental
change v = 10~%.
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Figure S5 8: The impact of mutational and selectional correlations on the distri-
bution of adaptive substitutions for n = 3 traits. For details, see Fig. 5 of the main
text.
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Figure S5 9: The effects of linkage and interference between co-segregating alleles
on the mean step size in direction of the moving optimum «; (left) and the correlation
between adaptive substitutions pa,.a, (right) under strong mutational correlations
pyv = 0.9. The plots are based on 5000 replicated individual-based simulations. The
population-wide mutation rate © was varied by increasing the per-locus mutation rate
1. Rates of environmental change vy were chosen such that the same three values
of v (i.e., the scaled rate of environmental change; see above; (o) = 0.0035,v(OJ) =
0.035, (%) = 0.17) applied for each ©. Other parameters: K = 1000, L = 10,0% =
10, ps = 0.0,m? = 1.
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Figure S5 10: The effects of linkage and interference between co-segregating alleles
on the mean step size in direction of the moving optimum «; (left) and the correlation
between adaptive substitutions pa,.a, (right) under strong selectional correlations
ps = 0.9. The plots are based on 5000 replicated individual-based simulations. The
population-wide mutation rate © was varied by increasing the per-locus mutation
rate p. Rates of environmental change v; were chosen such that the same three
values of v (i.e., the scaled rate of environmental change; v(o) = 0.00066,~(0J) =
0.0066,v(%) = 0.033) applied for each ©. Other parameters: K = 1000,L =
10,0% = 10,m? = 1, pp; = 0.0.
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Figure S5 11: The multivariate distribution of the first adaptive substitution in
adaptive-walk simulations with strong selectional correlation (psx = 0.9), illustrating
the “diving-kite effect” (the negative bias in the as-direction) present for fast (v; =
0.1) but not for slow (v; = 107°) environmental change. The left-hand plot on each
side is as in Figure S5 7, with shades of grey illustrating the distribution in adaptive-
walk simulations with normally-distributed new mutations, and contour lines showing
the prediction for a uniform distribution of new mutations (environmentally-limited
regime, eq. S19). The histograms compare the marginal distributions of both traits
for the two distributions of new mutations. Other parameters are identical to those
in Figure S5 7.
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Figure S5 12: Comparison of the first adaptive substitution under the constant
total-effect (darker grey) and the Euclidean superposition model (lighter grey) for
Fisher’s geometric model with constant selection (left) and a moving optimum (right).
The boxplots are based on 10000 replicated adaptive-walk simulations and show the
distribution of step sizes in direction of the optimum «a; (top row), the distribution
of total step sizes ||| and the distribution of the selection coefficient s of adaptive
substitutions. Whiskers extend to maximally 1.5 times the size of the box. Horizontal
white bars indicate the mean. In the constant selection case, the population started
at an initial distance of 1 from the optimum. In the moving-optimum model, the
rate of environmental change was v; = 107°. The variance of mutational effects was
m? = 0.1 in the Euclidean superposition model and 0.1/ (v2(I'[(n +1)/2] /T [n/2]))
in the constant total-effect model (here, the denominator is the expected mean of the
norm of a multinormal distribution with covariance matrix I, which is equal to the
expectation of a y-distribution with n degrees of freedom). Note that the constant
total-effects model used here differs from the one in Orr (2000), because Orr only
considered mutations of a single fixed total effect ||a]| (i.e., his mutations are drawn
from the surface of a hypersphere, whereas ours are drawn from a multivariate normal
distribution). Other parameters: © = 1,02 = 10, pg = 0.0, pas = 0.0.
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