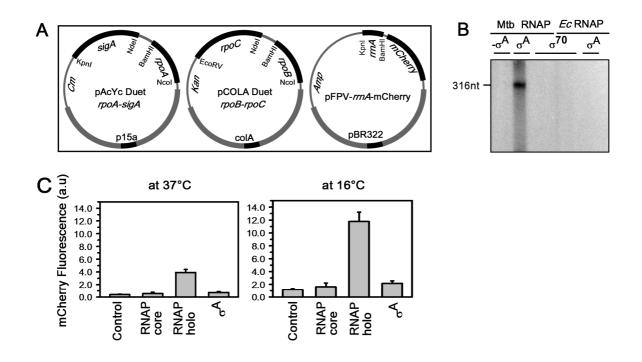
SUPPLEMENTARY DATA:

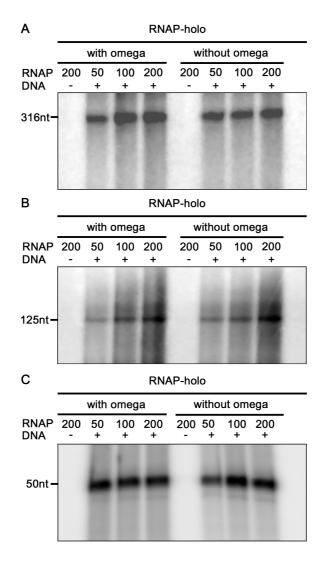

Supplementary Figures:

Supplementary Fig. S1: *In vivo* recombinant Mtb reporter assay: Dependence of mCherry expression as a function of *E. coli* growth:

- A. Fluorescent intensity of mCherry was measured at regular intervals and plotted as a function of OD. Fluorescent intensity gets saturated at OD (595) = 1.5. Red Line: pFPVmCherry *sinP3*, Green Line: RNAP core + pFPVmCherry *sinP3*, Pink line: Mtb σ^{A} + pFPVmCherry *sinP3*, Blue line: RNAP-holo + pFPVmCherry *sinP3*. Assays were conducted at 37°C for 6 hours.
- B. Same as (A), assays were conducted at 16°C for 16 hours.

The data represents the mean of three replicates and error bars represent standard deviations.

Supplementary Fig. S2, Mukhopadhyay


Supplementary Fig. S2: Recombinant *in vivo* Mtb reporter assay in *E. coli* using Mtb σ^A specific promoter *rrnA*:

- A. Strategy: three plasmid expression system, dual plasmid (first two plasmids) for expression of Mtb RNAP holo and the third plasmid containing a σ^A dependent promoter element *rrnA* for expression of mCherry. All three plasmids were transformed in *E. coli* Bl21 (DE3) cells and then the cells were grown at 37°C up to OD (at 595 nm) 0.4 and induced with 0.5 mM IPTG at different growth conditions.
- B. *In vitro* transcription assay to assess the interactions between Mtb core and *E. coli* σ^{70} and *E. coli* RNAP core with Mtb σ^{A} . *rrnA* was used as a DNA fragment. Run-off transcripts of 316 nucleotides (nt) were produced. Lane 1: Mtb RNAP core, Lane 2: Mtb RNAP core + Mtb σ^{A} , Lane 3: Mtb RNAP core + *E. coli* σ^{70} , Lane 4: *E. coli* RNAP + *E. coli* σ^{70} , Lane 5: *E. coli* RNAP + Mtb σ^{A} .
- C. Results for recombinant Mtb reporter assays: The bars represent mCherry fluorescence of *E. coli* cells containing pFPVmCherry-*rrnA* plasmid in presence of the following; 1. No Mtb RNAP; 2. Mtb RNAP core (pAcYc Duet *rpoA-rpoZ* + pCOLA Duet *rpoB-rpoC*); 3. Mtb RNAP holo (as in Fig. S2); 4. σ^{A} : (pAcYc Duet-*sigA*). The data represents the mean of three replicates and error bars represent standard deviations.

Left panel: cells were induced with 0.5 mM IPTG at 37^oC for 6 hrs.

Right panel: cells were induced with 0.5 mM IPTG at 16^oC for 16 hrs.

The data represents the mean of three replicates and error bars represent standard deviations.

Supplementary Fig. S3, Mukhopadhyay

Supplementary Fig. S3: Effect of ω subunit on *in vitro* transcriptional activity of Mtb RNAP:

Assays were performed with the purified Mtb RNAP holo (with and without ω subunit) samples.

- A. Assays with RNAP- σ^A holo and *rrnA* promoter DNA fragment. Lane 1, 5: No DNA, Lane 2-4: RNAP holo with ω subunit; Lane 6-8: with RNAP holo without ω subunit. Run-off transcripts were 316 nt.
- B. Same as (A) with Mtb CRP dependent promoter *WhiB1*. Mtb CRP was incubated with RNAP holo before open complex formation. Run-off transcripts were 125 nt.
- C. Same as (A) with RNAP-*sigE* holo enzyme and *sigE* dependent promoter *SigBpr*. Run-off transcripts were 50 nt.

Name of the primer	Sequences	
pFPV-mCherry <i>sinP3</i> fwd	GAATTCCAGCCAGAAGTCATACCGTA	
pFPV-mCherry <i>sinP3</i> rv	GGATCCGTATTCGGTTTCATGTTTCT	
pFPVmcherry <i>rrnA</i> fwd	TCTGGTACCTCGTGGAGAACCTGGTGAGTC	
pFPVmcherry <i>rrnA</i> rv	TCTGGATCCTACGCCGCCAGCGTTCGT	
pBlueScriptII sigBpr fwd	CGTCTGTTGGCCGGCG	
pBlueScriptII sigBpr rv	CCCTTGTGGGTGCATCGG	
pBSII- <i>WhiB1</i> fwd	GCTCTAGAGCAAGAAAGCGGATCTG	
pBSII- <i>WhiB1</i> rv	GCAAGCTTGCCTTGTGGCGCCAATC	
pET 28a-Mtb CRP fwd	CATCCGGAATTCGTGGACGAGATCCTGGCC	
pET 28a-Mtb CRP rv	CATCATACTCGAGCACTATTACCTCGCTCGGCGGGC	
pET 28a- <i>E. coli</i> CRP fwd	CGAAACATATGGTGCTTGGCAAACCGCA	
pET 28a- <i>E. coli</i> CRP rv	GCGTTGGATCCAATTTAACGAGTGCCGT	
pFPV mCherry-CRP fwd	CCCGCGAAATTAATACGACTCACTATAGGGG	
pFPV mCherry-CRP rv	TTAAAGCTTTTACCTCGCTCGGCGG	
pAcYc Duet sigA fwd	GGAATTCGTGGCAGCGACCAAAG	
pAcYc Duet sigA rv	ATAAGAATGCGGCCGCTCAGTCCAGGTA	
pAcYc Duet sigE fwd	CCAGGATCCGAATTCCATCATGGAACTCCTCGG	
pAcYc Duet <i>sigE</i> rv	CCGAGGAGTTCCATGATGGAATTCGGATCCTGG	

Supplementary Table S2: Cloning strategies:

Name of the plasmid	Restriction enzymes used and cloning strategies	Source of gene
pCOLA rpoB-rpoC		Banerjee et al (24)*
pAcYc Duet <i>rpoA-rpoZ</i>		Banerjee et al (24)*
pAcyC Duet rpoA- sigA		Banerjee et al (24)*
pCDF 1b rpoZ		Banerjee et al (24)*
pAcYc Duet <i>rpoA-sigE</i>	rpoA:NcoI & BamHI; sigE: EcoRV &XhoI	Genomic DNA
pFPVmcherry-sinP3	sinP3: EcoRI & BamHI	Synthetic DNA
pFPVmcherry-rrnA	rrnA: KpnI & BamHI	Verma <i>et al</i> (21)**
pFPV mcherry-sigBpr	sigBpr: KpnI & BamHI	Genomic DNA
pFPV-mcherry-WhiB1	WhiB1: KpnI & BamHI	Genomic DNA
pFPV-mcherry-WhiB1-CRP	Rv3676: EcoRV & Hind III	Genomic DNA
pET 28a-Mtb CRP	Rv3676: EcoRI & XhoI	Genomic DNA
pET 28a- <i>E. coli</i> CRP	CRP: NdeI & BamHI	Genomic DNA
pAcyC Duet- sigA	sigA: EcoRI & NotI;	Genomic DNA
pAcyC Duet- <i>sigE</i>	sigE: EcoRV &XhoI	Genomic DNA
pBluescript II Sk(+)-WhiB1	WhiB1:SmaI	Genomic DNA
pBluescript II Sk(+)-rrnA	rrnA: SmaI	Genomic DNA
pBluescript II Sk(+)-sigBpr	SigBpr:SmaI	Genomic DNA

Supplementary Reference:

* Banerjee R, Rudra P, Prajapati RK, Sengupta S, Mukhopadhyay J. 2014. Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification. *Tuberculosis* (Edinb) **94:**397-404.

****Verma A, Sampla AK, Tyagi JS.** 1999. Mycobacterium tuberculosis rrn promoters: differential usage and growth rate-dependent control. Journal of bacteriology **181**:4326-4333.